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Abstract: This study focuses on applying intelligent modeling methods to different injection molding
process parameters, to analyze the influence of temperature distribution and warpage on the actual
development of auto locks. It explores the auto locks using computer-aided engineering (CAE)
simulation performance analysis and the optimization of process parameters by combining multiple
quality characteristics (warpage and average temperature). In this experimental design, combinations
were explored for each single objective optimization process parameter, using the Taguchi robust
design process, with the L18 (21 × 37) orthogonal table. The control factors were injection time,
material temperature, mold temperature, injection pressure, packing pressure, packing time, cooling
liquid, and cooling temperature. The warpage and temperature distribution were analysed as
performance indices. Then, signal-to-noise ratios (S/N ratios) were calculated. Gray correlation
analysis, with normalization of the S/N ratio, was used to obtain the gray correlation coefficient,
which was substituted into the fuzzy theory to obtain the multiple performance characteristic
index. The maximum multiple performance characteristic index was used to find multiple quality
characteristic-optimized process parameters. The optimal injection molding process parameters
with single objective are a warpage of 0.783 mm and an average temperature of 235.23 ◦C. The
optimal parameters with multi-objective are a warpage of 0.753 mm and an average temperature of
238.71 ◦C. The optimal parameters were then used to explore the different cooling designs (original
cooling, square cooling, and conformal cooling), considering the effect of the plastics temperature
distribution and warpage. The results showed that, based on the design of the different cooling
systems, conformal cooling obtained an optimal warpage of 0.661 mm and a temperature of 237.62 ◦C.
Furthermore, the conformal cooling system is smaller than the original cooling system; it reduces the
warpage by 12.2%, and the average temperature by 0.46%.

Keywords: injection molding; Taguchi methods; fuzzy theory; warpage; shrinkage; conformal
cooling; multiple performance characteristic index (MPCI)

1. Introduction

With the development of the plastics industry, the injection molding process has
become the most widely used technology for molding plastics, and the majority of plastic
products are manufactured in this way. The injection molding process has various advan-
tages, including excellent dimensional precision and stability, good surface accuracy, low
cost, and ease of complex shape formation, thus making it a highly productive processing
technique. The quality of injection molded products is mainly affected by the selection
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of the process parameters, such as injection time, injection pressure, plastic temperature,
mold temperature, holding pressure, and holding pressure time, which will afford different
qualities under different settings. Therefore, the selection and setting of the process param-
eters are important factors in injection molding. At present, injection molding technology
is being utilized for the production of high-tech products, automotive parts, and household
products [1]. The mold is designed to match the gates and cooling circuits, according to the
complexity of the product structure during the injection molding process, considering the
diversification of the product applications, the trend towards meeting diversified demands,
and under the influence of functionality. In the actual mold-opening production, the
process parameters are often determined by trial and error, or according to rules that are
formulated by experienced experts; this makes quality improvement a challenging task [2].
Therefore, this experiment will use intelligent modeling for the single- and multi-objective
optimization of the quality characteristics of the injection molding process parameters.

The simulation technologies of computer-aided design (CAD) and computer-aided
engineering (CAE) are used to help developers analyze and predict problems and their
causes in each part of the injection molding process. The simulation helps decrease the
number of actual mold trials, reduce the cost and time spent, and improve the quality of
the mold. In this study, CAE software is used for the mold flow analysis. The software
mainly utilizes the finite element method (FEM) to simulate plastic in the mold cavity
at various stages of injection molding, which can be used as a reference for setting the
injection molding parameters and mold design, to facilitate rapid product development
as well as to reduce product and mold development costs. Wang et al. [2] presented a
numerical dynamic injection molding technology (DIMT), which is based on the finite
element (FE) method. In the warpage optimization work, three kinds of structures, with
different molding materials, are selected for comparison. The final warpage of each product
is efficiently minimized by using a Gaussian process-based sequential optimization method.
Jong et al. [3] used CAE analysis data to train the BPNN. The Taguchi orthogonal method is
used to optimize the hyperparameters in the neural networks, to construct a neural network
that can predict CAE analysis results. Studies show that the prediction of the maximum
injection pressure and the maximum cooling time is pretty good. A study by Huang et al. [4]
applied both computer-aided engineering (CAE) simulation and experimental methods to
investigate the fiber feature in a co-injection system. The fiber orientation distributions,
and their influence on the tensile properties for the single-shot and co-injection molding,
have been discovered. The results show that, based on the 60:40 skin/core ratio and the
same materials, the tensile properties of the co-injection system, including the tensile stress
and modulus, are a little weaker than those of the single-shot system. From these CAE
analysis results, it can be seen that both the improvement in the quality of injection molding
and the improvement in the performance of injection molding materials have a significant
improvement effect.

At present, plastic injection molding is widely used in the manufacturing of automo-
tive components, including bumpers, lights, dashboards, and connector parts. Among
them, auto lock parts have extremely high-precision requirements. Their structure is
complex, and the finished products are easily subject to warpage deformation, volume
shrinkage, and weld line, making the selection and setting of the control process parameters
even more important. Problems with the parts, related to warpage, can arise, which could
be solved by adjusted process parameters to meet the part requirements [5]. Polymer
parts suffer from shrinkage and warpage during the injection molding process, and are
induced by thermal and pressure changes that are achieved over them [2]. As a result, the
final dimensions of the injected components are affected by material shrinkage during the
process, caused by the filling orientation, packing conditions, and cooling parameters [6,7].
For the selection of the warpage deflection of the injection molded products and related
parameters of the injection molding process, the following related literature introductions
have been sorted out. Rosaa et al. [8] believed that the experimental design should be
widely used in order to optimize the molding parameters, to improve the quality character-
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istics of the product. Conventional experimental design methods are often complex and
often fail to achieve the desired results. Moreover, these methods require a large number of
experiments when the number of molding parameters is increased. Therefore, the use of
the Taguchi orthogonal method for selecting experimental data may reduce the number of
experiments. With respect to the defects produced in injection molding, Marinset et al. [9]
proposed the use of the Taguchi method and the analysis of variance (ANOVA), to evaluate
the effect of injection molding parameters on bending and shrinkage. They used two
different plastics and mold temperatures, while the holding pressure, holding time, plastic
temperature, cooling time, cooling water speed, and injection speed, were kept constant.
The experimental results showed that the control factors of warpage and bending defects
have the greatest influence on the holding time and holding pressure. Furthermore, to
reduce the molding cycle time, Dimla et al. [10] performed a finite element analysis to
find the optimal cooling circuit design for injection molding, and found that the cooling
circuit and gate had the greatest effect on the injection cycle time. They performed further
optimization, and, finally, using simulation analysis, they found that the molding cycle
time was reduced and the surface condition of the product was significantly improved.
This study will refer to the above-mentioned studies to select relevant injection molding
control parameters and levels.

The following related studies are in the related research of different cooling water
systems, and the development and application of conformal cooling. Park and Pham [11]
proposed the use of the CAE software to analyze the molding temperature distribution
of their products, designed a conformal cooling circuit system using the temperature
distribution and product shape, compared the traditional cooling circuit with their design,
and verified, using CAE, that this new method can make the temperature distribution more
uniform. Ahn [12] discussed the manufacturing methods of various conformal cooling
circuit molds, briefly described the development of a conformal cooling circuit design
technology, introduced various production methods of conformal cooling circuits, and
analyzed their respective heat transfer methods. Agazzi et al. [13] proposed a design
method for cooling circuits. Through analysis and observation of the cooling temperature
of the plastic inside the product and the cooling temperature distribution of mold, they
designed a cooling circuit based on the temperature distribution. The results proved that
the design method was effective. Juan et al. [14] proposed the use of an analysis software for
the design and performance verification of the cooling circuit system of injection molding.
For two thin-walled products, the automatically and manually designed cooling circuits
were compared by a software, and the manually designed cooling circuit was found to
greatly improve the warpage, according to the product shape. Wang et al. [15] explored the
cooling circuit design of a complex automotive part interior. First, finite element analysis
was used to obtain the mold temperature distribution, and then, the improved cooling
circuit design was analyzed and verified. The method can make the mold temperature
uniform, and improve the surface accuracy of the plastic part. From these related studies,
it can be found that the use of conformal cooling is much higher than the traditional
cooling water system, in terms of heat conduction simulation analysis and actual process
application measurements of the cooling benefits. Therefore, this study will first optimize
the process, and then use the optimized results to compare different forms of conformal
cooling. The aim is to study the impact of the cooling benefits of automobile lock parts on
the target quality characteristics.

The following related studies are part of using the intelligent modeling method opti-
mization of injection molding performance. In a related study, Ozcelik and Erzurumlu [16]
applied CAE as a research tool for the minimum warpage values in injection molding
processes, designed experiments using DOE and Taguchi orthogonal tables, and used ANN
and GA methods in combination to find the optimal warpage values. Ko-Ta Chiang and
Fu-Ping Chiang [17] used a fuzzy gray-order method to explore the optimization of the
process parameters of cell phone cases, and selected the following four control factors:
mold temperature, plastic temperature, injection pressure, and filling time. Through finite
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element analysis, they found that the main factors that affected volume shrinkage and
temperature distribution were the mold temperature and holding pressure; the volume
shrinkage was reduced from 0.012 to 0.007 mm, and the temperature distribution decreased
from 8.510 ◦C to 7.345 ◦C. Cheng et al. [18] discussed the optimization of mold performance
using fuzzy theory analysis, and validated the fuzzy theory method based on the creation
of three molds. The seriousness of the defect was categorized as very slight, slight, medium,
severe, and very severe, according to the triangular membership function. Six criteria,
including short shot, weld line, sink mark, volume shrinkage, air trap, and warpage, were
discussed. A study on the optimization of mold schemes proved this method to be effec-
tive and feasible. However, these related studies all use intelligent modeling methods to
optimize a single goal. In the current industrial environment, where production efficiency
is emphasized, the optimization of multiple goals at the same time is required, in order to
improve the product performance greatly. The intelligent modeling method that was used
in this study integrates multiple optimization algorithms, which can optimize the quality
characteristics of a single goal and multiple goals simultaneously.

This study examines a set of auto lock parts in actual production. The warpage
deformation of parts during the manufacturing process has made the parts unfit for
assembly. In actual production, important parameters have to be found through trial-
and-error, to determine whether the selected parameter settings need to be changed after
observing the product quality, which can greatly increase the cost and time. Herein, CAE
software is used, with intelligent modeling methods, to solve this problem. Due to the
uneven distribution of the thickness of the structure, the uneven temperature distribution
can result in shape and size deformation of the product, thus affecting the quality of the
subsequent assembly, in which case the process parameters are changed in order to reduce
the warpage deformation. In order to confirm the accuracy of CAE software analysis, we
performed calibration before the start of the experiment. The actual car lock parts in actual
production are used for calibration and comparison analysis with the original process
parameters, which has ensured the correctness and accuracy of the experimental results;
it is not because there are only simulated data experiments. In addition, the intelligent
modeling method that was used in this experiment is also the first, in the related research,
to combine the results of Taguchi’s experimental data with gray correlation and fuzzy
theory analysis, to conduct research that can simultaneously optimize a single objective and
multiple objectives. First, the CAE mold flow analysis software is used with the Taguchi
robust process design method, to find the combination of each single quality optimization
parameter, and the warpage deformation and average temperature are discussed separately.
Combining the results of Taguchi’s experimental data with gray correlation and fuzzy
theory analysis, the optimal combination of a multi-objective quality process was found [19],
and the warpage deformation and average temperature were then compared with those of
the original process. Finally, comparison and analysis were performed for the parameter
combination of the multi-objective quality optimization process in different system designs
of cooling circuits, namely, original cooling, square cooling, and conformal cooling.

The Taguchi method is a robust design method that uses the concept of statistical
experimental design. Orthogonal array (OA) can analyze a large number of design vari-
ables through some experiments. Since OA is a fractional factorial matrix, it ensures a
balanced comparison of the level of any factor or the interaction of the factors. Using
OA to collect appropriate data, and applying intelligent modeling methods to optimize
the multiple quality characteristics of the automotive lock injection molding process, can
reduce development and manufacturing costs. In comparison with this experimental
method, Wang et al. [15] studied automotive parts, similar to the subject of this study, and
the parts were three-dimensional complex-shaped automotive interior parts. The injection
mold on the heating/cooling system design of the part was studied. In the experimental
design, the full factorial experiment is used without any experimental method, and only
two control factors are used in the experimental control factor. The mold heating time
has four levels, and the mold cooling time has five levels. There are only two control
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factors, but the number of experiments needs to be as many as 20 (4 × 5 = 20) times. It
can be observed that if the current industry development trend needs more factors, and
levels must be controlled at the same time, the number of experiments will be greatly
increased. As a result, the experiment cost and time increased significantly, which could
not effectively improve the efficiency and immediately solve the practical problems in
industrial production. In this article, for each quality feature of the eight control factors, if
we do not use Taguchi’s method to collect the experimental data, the number of full-factor
experiments is 4374 (2 × 37 = 4374). However, L18 (21 × 37) only has 18 experiments to
collect appropriate data for each quality feature. While optimizing the process parameters
of the combination of fuzzy logic and multiple performance characteristic index (MPCI)
in the injection molding process of automobile lock parts, all the quality characteristics
in the injection molding process can be considered simultaneously. The current industry
practices are measured by engineers’ field experience, which introduces a lot of uncertainty.
The fuzzy logic program used in MPCI reduces the uncertainty that is caused by humans,
and does not require complicated mathematical calculations. The system simulation in
this study applied fuzzy logic in MPCI. Compared with conventional methods, the output
can better meet the requirements of technical engineers and customers. Practical applica-
tions can further encourage the transfer of fuzzy logic-based technology from academia to
industry.

2. Experiment Configuration
2.1. Construction of Auto Lock Spare Parts

The actual shapes of the auto lock parts that were studied in this study are shown in
Figure 1. According to the original design for the configuration and drawing of the double-
cavity mold (Figure 2), the dimensions of the parts are as follows: the length is 80.40 mm,
the width is 62.82 mm, and the height is 64.82 mm. Figure 3 shows the original design of the
cooling circuit, which has a circumferential structure, with a diameter of 6 mm. Polyamide
66 (PA66) is a thermoplastic polymer that has been widely used in automotive-related
component materials, due to its excellent mechanical and thermal resistance, good barrier
properties, and recyclability [20]. The selected plastic material is engineering plastic nylon
(polyamide, PA66), a composite polymer of 6212GC that is produced by Nan Ya Plastics
Corporation, containing 33% glass fiber. This material is especially suitable for parts that
require high rigidity and high toughness. For example, the automobile lock parts in this
experiment need to be repeatedly used in the car’s high-temperature and low-temperature
environments for a long time, so the material itself must have high rigidity and high
toughness. Table 1 shows the basic properties of the materials. The viscosity and specific
volume properties of the PA66 (6212GC) are shown in Figure 4a,b, respectively. As the CAE
software used in this study is Moldex3D, there is only general PA66 material characteristic
data in this built-in material library. There are no material characteristic data of this part
material PA66 (6212GC). To make the experimental results more accurate, the source of the
material property data in Table 1, and Figure 4a,b, are used to commission the Moldex3D
Material Science Research Center to carry out the material property data before starting
the experiment. The center has passed ISO 17025 international certification. The dynamic
viscosity is measured using a cone-and-plate/parallel-plate viscometer. The specific heat
capacity is measured using a differential scanning calorimeter.

Table 1. PA66 (6212GC) material characteristics.

Mechanical Properties PA66

Density 1.14 (g/cc)
Poisson’s ratio 0.3

Modulus E 2 × 1010 (dyne/cm2)
CLTE 7.5 × 10−5 (1/K)

Fiber Weight Percentage 33 (%)
Melt Temperature 275–305 (◦C)
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The CAE software that was used in this study was Moldex3D, with the Moldex3D/Solid
analysis module being the main analysis tool, followed by the Moldex3D-Mesh module.
First, the 3D drawing software was used to construct the model, and then, the completed
model, cooling circuit, sprue channel, and mold were assembled and imported into the
software for setting. Thereafter, the Moldex3D/Mesh software was used to construct the
solid meshes for the cooling circuits and products, thereby establishing the tetra solid mesh,
which has approximately 1.25 million meshes and 1.2 million nodes in this study. Finally,
the injection molding parameters were set and the analysis results were interpreted.

2.2. Simulation Analysis of Original Injection Process Parameters and Comparison with Actual
Plastic Parts

To understand the existing condition of the auto lock parts, an analysis was first
performed by setting the actual process parameters, given by the original manufacturer,
as the original process parameters, and the results were analyzed through CAE software
simulation. To make the simulation analysis consistent with the actual situation, the
warpage measurement of the existing product was first performed with a 3D measuring
instrument (Tesa Micro-Hite 3D 4.5.4, with a measurement accuracy of 0.001 mm). Mutual
verification with CAE software simulation results was performed. Twelve points were
selected for the measurement of the parts, each point was measured three times and the
average value was taken, and the same points were selected for the experiment, as shown in
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Figure 5. The comparison between the actual measured warpage values in the Z-direction
and the analysis result of the warpage deformation in the Z-axis direction, is shown in
Table 2. Figure 6 shows the trend comparison chart for verifying that the simulation results
are consistent with the actual production conditions. There will be different changes in the
geometry design of the injection molded parts, which will cause different parts in each area
of the part to have different part wall thickness changes, which will also cause the difference
in the dimensional stability of the part area. From the comparison result of Figure 6, it can
be found that points 1–6 have larger warpage values because of the thin wall thickness of
the parts in this area. At points 7–10, because the wall thickness of the parts in this area is
thicker, there are relatively small warpage values. Related research results show that PA66
is very sensitive to different cooling conditions. The material has different crystallization
changes during the cooling process, due to the different cooling conditions inside and
outside the material, which affects the dimensional stability of the part [21]. Therefore,
this study was also carried out after optimizing the injection parameters—comparison and
analysis of different cooling systems.
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Table 2. Comparison of actual and simulated warpage value measurements.

Point Actual Measurement
(mm) Simulation (mm) Error (%)

1 0.646 0.649 1.00
2 0.641 0.650 1.01
3 0.521 0.550 1.06
4 0.635 0.706 1.03
5 0.635 0.640 1.01
6 0.538 0.550 1.02
7 0.232 0.226 0.97
8 0.235 0.228 0.97
9 0.174 0.175 1.01
10 0.158 0.157 0.99
11 0.433 0.437 1.01
12 0.411 0.423 1.03

AVG 0.438 0.449 1.03
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2.3. Overall Experiment Flow

The experimental framework of this study can be divided into three main parts. The
overall experimental flow chart is shown in Figure 7. First is the experimental design part in
(3) of Figure 7; the Taguchi robust process design method is applied for the single-objective
optimization design for the warpage and average temperature of an auto lock part. Second
is the experimental design part in (4) and (5) of Figure 7, in which gray correlation and
the fuzzy theory are used, respectively. Then, the first and second steps are used to find
the optimal parameter combination of multiple quality characteristics of warpage and
average temperature. Third is the experimental design part in (6) of Figure 7, which refers
to the related conformal cooling research. This experiment will be the optimal parameter
combination of multiple quality characteristics in different cooling circuit systems, such as
original cooling, square cooling, and conformal cooling, and their effects on warpage and
average temperature are also compared [22,23].

In this study, the L18 (21 × 37) orthogonal table is used to perform the experiments.
The arrangement of the combined parameters on the orthogonal table is used to perform
the simulation analysis of the mold flow. Through the signal-to-noise (S/N) value, the
best parameters for the injection molding of automobile lock parts can be obtained. The
S/N value that was obtained through the orthogonal table planning experiment, can be
used to find the relevant data of ANOVA, perform the confirmation experiment, and
observe the contribution of each factor. As shown in Table 3 (the multi-objective analysis
flow of the Taguchi robust process design method), the warpage and average temperature
of the auto lock part are first separately used for single-objective optimization; the control
factors are injection time, material temperature, mold temperature, injection pressure,
packing pressure, packing time, cooling liquid, and cooling temperature. The quality
characteristics to be optimized in this study are the total warpage and average temperature
of the auto lock parts, with the expectation that the warpage and shrinkage are as small as
possible.



Polymers 2021, 13, 2515 10 of 30
Polymers 2021, 13, x FOR PEER REVIEW 10 of 31 
 

 

 
Figure 7. Overall experiment flow chart. 

  

Figure 7. Overall experiment flow chart.



Polymers 2021, 13, 2515 11 of 30

Table 3. Control factors and levels.

Control Factors
Level

1 2 3

A. Cooling Liquid Oil Water
B. Holding Pressure (MPa) 190 200 210
C. Cooling Temperature (◦C) 15 30 45
D. Holding Time (s). 1 1.5 2
E. Mold Temperature.(◦C) 20 40 60
F. Filling Time (s) 1 1.5 2
G. Plastic Temperature (◦C) 255 265 275
H. Injection Pressure (s) 110 130 150

2.4. Taguchi Robust Design Process

The measured values of the two target total warpage and average temperature values
are measured after the mold parting surface is opened, after the entire injection molding
process is completed, and the molded product is demolded, to measure these two target
simulation values. In the CAE simulation environment, there will be no temperature
and pressure difference, due to the long time contact with the ambient temperature after
the molded product is demolded, and the accuracy of the experimental value can be
ensured. Generally, PA66 is easily affected by moisture absorption, which significantly
impacts its dimensional stability and mechanical properties. However, the PA66 (6212GC)
composite polymer containing 33% glass fiber was used in this experiment. Generally,
in an environment of 20 ◦C and 50% relative humidity, the saturated moisture content of
PA66 is 2.3~2.8%, and the saturated moisture content of PA66 (6212GC) is 1.4~1.7%. In an
environment of 20 ◦C and 100% relative humidity, the saturated moisture is 8.0~10.0%, and
the saturated moisture of PA66 (6212GC) is 5.0~6.0%. As the PA66 (6212GC) material that
was used in this experiment is added with glass fiber reinforced material, the dimensional
stability of the molded product after moisture absorption is excellent. Therefore, the quality
is defined as a static smaller-the-better (STB) characteristic. In this study, the parameters
used are as follows: oil and water were selected as the cooling liquid, the packing time was
in the 1–2 s range, the cooling temperature was in the 15–45 ◦C range, the packing pressure
was in the 190–210 MPa range, the mold temperature was between 20 ◦C and 60 ◦C, the
injection time was from 1 to 2 s, the material temperature was between 255 ◦C and 275 ◦C,
and the injection pressure was in the 110–150 MPa range. Then, the warpage and average
temperature conditions were further observed, in order to obtain the manufacturing process
parameters of auto lock parts with the optimal design for each single objective. Taguchi
methods are the most widely applied robust design methods in the planning of process
parameters, because they reveal the effects of various combinations of parameters on
a relevant single quality characteristic [24–27]. The combinations of parameters for the
experimental injection molded sample were assessed with the Taguchi L18 (21 × 37) OA,
using the warpage and average temperature as single quality characteristics. Small values
of these characteristics are more favorable. Therefore, the optimization of the injection
molded parameters was considered as a static problem with smaller-the-better S/N ratios
(S/NSTB), which were expressed as Equation (1).

S/NSTB = −10log10

[
1
n

n

∑
i=0

y2
i

]
(1)

where,

n: instances observed in each experimental combination;
yi: the i-th datum in the experimental combination.
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2.5. Fuzzy Theory Analysis

This study is mainly to solve the optimization of multiple quality characteristics. When
only the objective function and conditional constraints are known, it is necessary to seek
better results through mathematical programming methods. The gray correlation analysis
method can convert multiple quality characteristics into a single gray correlation value.
By comparing the gray correlation value, the response size of each quality characteristic
value is arranged, so the best combination of factors can be selected. However, the gray
correlation analysis assumes that the quality characteristics are independent of each other.
Once there is a correlation between the quality characteristics, the gray correlation analysis
cannot be resolved. However, to make the multi-objective quality optimization effect
better, the design adopts the fuzzy theory method, and the basic spirit accepts the fact that
fuzzy phenomenon exists. The application focuses on the experience of engineers and the
characteristics of the problem mastery.

Grey relational analysis (GRA) provides a powerful method for solving multi-objective
problems, and investigating the relationship between multi-factor and multi-variable
feature optimization problems. GRA not only leaves the importance of multiple factors in
a relatively complex unknown system to be explored, but also provides method results
to determine which specific factors dominate the final quality. This method can usually
be used to analyze the degree of influence of various factors on the results. It can also
be used to solve comprehensive evaluation problems that change with time. The core is
establishing a mother sequence that changes with time, according to certain rules and
dividing each evaluation object over time. As a sub-sequence, find the correlation between
each sub-sequence and the parent sequence, and draw conclusions based on the correlation.
Since the two objectives of this experiment (total warpage and average temperature) are
different physical quantities, it is impossible to compare their correlations and differences
directly. It is necessary to use GRA to convert the S/N value of a total of 36 groups from 18
groups for each of the 2 targets, into a value between 0 and 1 to be consistent and input
into the subsequent fuzzy inference system for the MPCI calculation.

The fuzzy theory is mainly a method of quantifying fuzzy concepts. The fuzzy theory
does not advocate the use of complicated mathematical analysis and models to solve
problems. It extends traditional mathematics from binary logic to continuous multi-value,
and uses the membership function to describe a concept. The membership function is the
basic concept of the fuzzy theory, which can be used to describe the properties of fuzzy
sets. The fuzzy set can be quantified through the attribute function, and only accurate
mathematical methods can be used to analyze and process the fuzzy information. The
value ranges from zero to one, and is a function of the degree of belonging of the element.
The basic structure of a complete fuzzy logic control system consists of five main parts,
including fuzzification, fuzzy inference, data base, rule base, and defuzzification. The
fuzzy inference system converts the input signal of a clear value into a fuzzy value, and the
control rules are established by the user’s operating experience and knowledge. The fuzzy
output value is generated through inference calculations. Finally, the fuzzy output value
will be defuzzified. The system is controlled and optimized. The fuzzy inference system
mainly includes definition variables, fuzzification, knowledge base, fuzzy inference, and
defuzzification.

Based on the experimental results of the L18 (21 × 37) orthogonal table, the S/N ratios
for a single quality characteristic, such as warpage deformation and average temperature,
were first calculated and then normalized using gray correlation generation, as shown in
Equation (2); the normalized value was between zero and one. The normalized data were
then analyzed by gray correlation, to calculate the gray correlation coefficient, as shown in
Equation (3) [28]. The fuzzy inference rules were developed to represent the changes in
the input and output after the gray correlation coefficient was calculated and substituted
into the fuzzy inference system. This study adopted the triangular membership functions
for both the input and output variables, for which the following three levels are defined:
S, M, and L. The output variables can be subdivided into seven levels, which are very
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small (VS), small (S), middle (M), large (L), and very large (VL); thus, a total of nine fuzzy
inference rules can be defined, as shown in Table 4 [29]. The Matlab fuzzy tool was used to
set two input parameters and one output parameter for fuzzy rule substitution. Finally,
multiple quality characteristics were converted into a single measurement index (MPCI,
multiple performance characteristics index), and the MPCI values were compared to select
the optimal parameter combination of multiple quality characteristics.

x∗i (k) =
x(0)i (k)− min all i

[
x(0)i (k)

]
max all i

[
x(0)i (k)

]
− min all i

[
x(0)i (k)

] (2)

where x ∗
i (k) is the generated value after gray correlation, min all i

[
x(0)i ( k)

]
and

min all i

[
x(0)i (k)

]
are the maximum and minimum values in the x ∗

i (k) sequence, respec-
tively, and OB is the target value selected from x ∗

i (k).

γ
(

xi(k) , xj(k)
)
=

∆min + ζ ∆ max

∆ 0 i(k) + ζ ∆ max
(3)

where γ
(

xi(k) , xj(k)
)

is the gray correlation coefficient, ∆min is the minimum difference,
∆max is the maximum difference, ∆0 i(k) represents the series difference between the values
of the parent series x0(k) and the child series xi(k) at corresponding positions, and ζ is the
coefficient of discrimination, which generally takes a value of 0.5. The main function of the
identification coefficient ζ is to compare the reference value and the object to be tested, and
its value range is [0, 1]. The identification coefficient is usually 0.5. If it is to aggravate the
difference in the results, the value can be adjusted appropriately according to the actual
situation. The change in this data will only affect the relative value, and will not change
the analysis result.

Table 4. Fuzzy rules with two inputs and one output.

No.
Input Output

Warpage Average Temperature (MPCI)

1 S S VS
2 S M S
3 S L M
4 M S S
5 M M M
6 M L L
7 L S M
8 L M L
9 L L VL

Input: small (S), middle (M), large (L). Output: very small (VS), small (S), middle (M), large (L), very large (VL).

3. Experiment Results
3.1. Optimization of Process Parameters for Warpage Deflection as a Single Quality Characteristic

The L18 (21 × 37) orthogonal table was used for the experimental simulation of
18 groups of process parameter combinations. This part is the experimental part in (3.1)
and (3.2) of Figure 7. The warpage deformation of each group was simulated, and the
S/N value of each group was calculated, respectively; the results are shown in Table 5.
Table 6 shows the S/N factor response table, and Figure 8 shows the S/N factor response
graph. This part is the experimental calculation result part in (3.3) of Figure 7. The degree
of impact of each factor on the warpage deflection can be known from the factor response
table and graph, which are in the following order: cooling liquid, holding pressure, cooling
temperature, holding time, mold temperature, filling time, plastic temperature, and injec-
tion pressure. The optimized process parameters are A2B1C1D3E3F2G1H1, where A2 is
the cooling liquid (oil), B1 is the holding pressure (190 MPa), C1 is the cooling temperature
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(15 ◦C), D3 is the holding time (2 s), E3 is the mold temperature (60 ◦C), F2 is the filling time
(1.5 s), G1 is the plastic temperature (255 ◦C), and H1 is the injection pressure (110 MPa).
However, this process parameter combination is not found in the L18 (21 × 37) orthogonal
table, suggesting that a confirmation experiment must be conducted in order to compare
with the group comprising the lowest warpage deformation in the L18 (21 × 37) orthogonal
table, as shown in Table 7. The 10th group has the smallest warpage deformation among
the 18 groups, with a warpage deformation of 0.807 mm, while the warpage deformation
of the optimized parameter combination is 0.783 mm. Therefore, A2B1C1D3E3F2G1H1 can
be concluded to be the optimized process parameter combination, with regard to warpage
deformation. This part is the experimental result part in (3.4) of Figure 7.

Table 5. S/N values of warpage deflection groups.

No. Warpage (mm) S/N

1 0.961 0.341
2 0.948 0.553
3 0.945 0.581
4 1.092 −0.761
5 0.944 0.496
6 1.051 −0.434
7 1.108 −0.887
8 1.140 −1.135
9 0.993 0.059
10 0.807 1.861
11 1.011 −0.098
12 0.857 1.341
13 1.036 −0.309
14 1.043 −0.367
15 1.013 −0.116
16 1.032 −0.271
17 1.050 −0.427
18 1.204 −1.612

Table 6. S/N response table of warpage deflection.

Factor A B C D E F G H

Level 1 −0.13 0.76 −0.004 −0.17 −0.51 −0.10 0.27 −0.03
Level 2 0 −0.25 −0.16 −0.07 −0.07 −0.04 0.09 −0.08
Level 3 −0.71 −0.03 0.04 0.38 −0.05 −0.56 −0.09
Effect 0.13 1.48 0.16 0.21 0.89 0.06 0.82 0.06
Rank 6 1 5 4 2 7 3 8

Optimal parameters A2 B1 C1 D3 E3 F2 G1 H1
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Table 7. Confirmation test of warpage deflection.

No. Factor Warpage (mm) S/N (dB)

Original (10) A2B1C1D3E3F2G2H1 0.807 1.861
Optimization A2B1C1D3E3F2G1H1 0.783 2.122

In terms of ANOVA, as shown in Table 8, it can be understood, from the degree of
contribution, that factor B, the holding pressure, will directly cause shrinkage changes
within the product. Thus, the holding pressure is the parameter that has the greatest effect
on the results of warpage deformation among the eight factors, followed by factor E, the
mold temperature; factor G, the plastic temperature; factor D, the holding time; factor C,
the cooling temperature; factor A, the cooling liquid; and factor F, the filling time. Factor
H, the injection pressure, has the smallest contribution, indicating that Factor H has the
smallest effect on the warpage deformation results. In the ANOVA analysis, degree of
freedom (DOF) refers to the number of independent or freely variable data (levels) for each
factor that is controlled by the Taguchi method, called the degree of freedom of the factor.
Generally speaking, the degree of freedom is equal to the independent variable, minus its
derivative quantity. The definition of variance is the sum of the square of the sample minus
the mean, so for N random samples, the degree of freedom is N-1. For example, the control
factor A in this experiment has two levels, so the DOF is one.

Table 8. Variance analysis of warpage deformation.

Factor DOF Seq SS F P Confidence Contribution

A 1 0.08 0.41 0.59 41.2 (%) 0.65 (%)
B 2 6.83 17.74 0.05 94.7 (%) 56.25 (%)
C 2 0.09 0.23 0.82 18.4 (%) 0.72 (%)
D 2 0.13 0.33 0.75 24.9 (%) 1.05 (%)
E 2 2.36 6.12 0.14 86 (%) 19.41 (%)
F 2 0.01 0.03 0.97 3.3 (%) 0.11 (%)
G 2 2.25 5.85 0.15 85.4 (%) 18.54 (%)
H 2 0.01 0.03 0.97 3.3 (%) 0.11 (%)

Error 2 0.39 3.16 (%)
Total 17 12.14 100 (%)

3.2. Optimization of Process Parameters for Average Temperature as a Single
Quality Characteristic

The L18 (21 × 37) orthogonal table was used for the experimental simulation of
18 groups of process parameter combinations. This part is the experimental part in (3.1)
and (3.2) of Figure 7. The average temperature of each group was simulated and the
S/N value of each group was calculated, respectively; the results are shown in Table 9.
Table 10 depicts the S/N factor response, and Figure 9 depicts the S/N factor response
graph. This part is the experimental calculation result part in (3.3) of Figure 7. The degree
of impact of each factor on the average temperature can be known from the factor response
table and graph, which are in the following order: cooling liquid, holding pressure, cool-
ing temperature, holding time, mold temperature, filling time, plastic temperature, and
injection pressure. The optimized process parameter combination is A2B1C2D2E3F3G1H3,
where A2 is the cooling liquid (oil), B1 is the holding pressure (190 MPa), C2 is the cooling
temperature (30 ◦C), D2 is the holding time (1.5 s), E3 is the mold temperature (60 ◦C), F3 is
the filling time (2 s), G1 is the plastic temperature (255 ◦C), and H3 is the injection pressure
(150 MPa). However, this process parameter combination is not found in the L18 (21 × 37)
orthogonal table, suggesting that a confirmation experiment must be conducted to compare
with the group comprising the lowest average temperature in the L18 (21 × 37) orthogonal
table, as shown in Table 11. The 12th group has the lowest average temperature among
the 18 groups, with an average temperature of 239.57 ◦C, while the average temperature
of the optimized parameter combination is 235.23 ◦C. Therefore, we can conclude that
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A2B1C2D2E3F3G1H3 is the optimized process parameter combination with regard to the
average temperature. This part is the experimental result part in (3.4) of Figure 7.

Table 9. S/N values for average temperature groups.

No. Average Temperature (◦C) S/N

1 241.15 −47.655
2 241.88 −47.670
3 242.79 −47.705
4 250.24 −47.967
5 247.17 −47.860
6 249.20 −47.931
7 254.78 −48.123
8 257.91 −48.229
9 254.24 −48.105
10 240.81 −47.634
11 242.71 −47.702
12 239.57 −47.589
13 248.86 −47.919
14 247.09 −47.857
15 247.83 −47.883
16 254.05 −48.099
17 254.83 −48.125
18 257.10 −48.202

Table 10. S/N response table for average temperature.

Factor A B C D E F G H

Level 1 −47.90 −47.66 −47.90 −47.90 −47.91 −47.91 −47.86 −47.91
Level 2 −47.89 −47.90 −47.88 −47.89 −47.91 −47.91 −47.89 −47.90
Level 3 −48.15 −47.90 −47.91 −47.89 −47.90 −47.95 −47.89
Effect 0.03 0.49 0.01 0.02 0.02 0.01 0.09 0.01
Rank 3 1 8 5 4 7 2 6

Optimal parameters A2 B1 C2 D2 E3 F3 G1 H3

In terms of ANOVA, as shown in Table 12, factor B, the holding pressure, will directly
affect the plastic temperature in the filling stage if its value is overly high or low. Thus, the
holding pressure is the parameter that has the greatest effect on the results of the average
temperature among the eight factors, followed by factor G, the plastic temperature; factor
A, the cooling liquid; factor E, the mold temperature; factor D, the holding time; factor H,
the injection pressure; and factor F, the filling time. Factor C, the cooling temperature, has
the smallest contribution, indicating that factor C has the smallest effect on the average
temperature results.
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Table 11. Confirmation experiment for average temperature.

No. Factor Average Temperature (◦C) S/N (dB)

Original (12) A2B1C3D2E2F1G1H3 239.57 −47.589
Optimization A2B1C2D2E3F3G1H3 235.23 −47.430

Table 12. Variance analysis for average temperature.

Factor DOF Seq SS F P Confidence Contribution

A 1 0.00283 12.10 0.074 92.60 (%) 0.38 (%)
B 2 0.71986 1526.4 0.001 99.90 (%) 95.46 (%)
C 2 0.00026 0.55 0.647 35.30 (%) 0.03 (%)
D 2 0.00075 1.59 0.386 61.40 (%) 0.10 (%)
E 2 0.00119 2.52 0.284 71.60 (%) 0.16 (%)
F 2 0.00048 1.01 0.498 50.20 (%) 0.06 (%)
G 2 0.02757 58.46 0.017 98.30 (%) 3.66 (%)
H 2 0.00067 1.41 0.414 58.60 (%) 0.09 (%)

Error 2 0.00047 0.06 (%)
Total 17 0.75408 100 (%)

4. Optimized Process Parameters of Quality Characteristics
4.1. Gray Correlation Generation and Gray Correlation Coefficient of Gray Correlation Analysis

In this section, the S/N values that were obtained in the previous section are gray
correlated with the S/N values (Tables 5 and 9) of the 18 groups of parameter combinations
for the two single quality characteristics. This part is the experimental calculation result part
in (4) of Figure 7. In addition, the S/N values of different intervals are converted to values
between zero and one, i.e., the data are normalized, as shown in Table 13. Since a larger S/N
value is better, the larger-the-better (LTB) in Equation (2) was used for the calculation. The
normalized S/N values for each quality characteristic were then substituted into Equation
(3), to calculate the gray correlation coefficient, as shown in Table 14.

Table 13. Normalized S/N ratio for each quality characteristic.

No. Warpage S/N Ratio Average Temperature S/N Ratio

1 0.562 0.897
2 0.623 0.873
3 0.632 0.819
4 0.245 0.409
5 0.607 0.577
6 0.339 0.466
7 0.209 0.166
8 0.137 0
9 0.481 0.194

10 1.000 0.930
11 0.436 0.823
12 0.850 1.000
13 0.375 0.484
14 0.359 0.581
15 0.431 0.541
16 0.386 0.203
17 0.341 0.163
18 0 0.042
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Table 14. Gray correlation coefficients of quality characteristics.

No. Warpage (mm) Average Temperature (◦C)

1 0.533 0.829
2 0.570 0.798
3 0.576 0.734
4 0.398 0.459
5 0.560 0.542
6 0.431 0.483
7 0.387 0.375
8 0.367 0.333
9 0.491 0.383
10 1.000 0.877
11 0.470 0.739
12 0.770 1.000
13 0.445 0.492
14 0.438 0.544
15 0.468 0.521
16 0.449 0.386
17 0.432 0.374
18 0.333 0.343

4.2. Fuzzy Inference System

In this study, the fuzzy theory method is used to obtain the optimized process pa-
rameters of multiple quality characteristics, by considering the following two quality
characteristics: the warpage deformation and average temperature. This part is the experi-
mental calculation result part in (5) of Figure 7. This method uses the Matlab fuzzy tool
to treat the gray correlation coefficient of the warpage deformation and average tempera-
ture as fuzzy rules for the input and output variables of the fuzzy theory method [30,31].
Triangular membership functions were used herein as fuzzy rules of input and output
variables, as shown in Figures 10 and 11, respectively. Table 4 was imported into the Matlab
fuzzy tool and defined as a fuzzy rule base, as shown in Figure 12. After using Mamdani’s
fuzzy inference method for fuzzy inference, the MPCI was obtained through the center of
gravity (COG) defuzzification method. This part is the part of the experimental calculation
results in (5.1) of Figure 7, as shown in Figure 13. The data input into the fuzzy inference
system are in Table 14, after the calculation of the two respective targets is completed,
and the gray correlation coefficients of quality characteristics. After the Matlab fuzzy is
formulated, the tool defined as a fuzzy rule base passes through the attribution function in
the fuzzy inference system, to map a clear value to the fuzzy attribution degree generated
by other corresponding attribution function graphs. This process is defuzzification. After
defuzzification, the 18 groups of two in Table 15 are used to obtain the MPCI value under
the quality characteristics objectives.

Table 15 presents the MPCI values and S/N ratios that were calculated by the fuzzy
system, Table 16 presents the S/N factor response, and Figure 14 depicts the S/N factor
response graph. The degree of impact of each factor on the MPCI value can be known
from the factor response table and graph, which are in the following order: the holding
pressure, plastic temperature, mold temperature, injection pressure, cooling temperature,
filling time, holding time, and cooling liquid. The multiple quality optimization process
parameter combination is A2B1C1D2E3F2G1H1, where A2 is the cooling liquid (oil), B1 is
the holding pressure (190 MPa), C1 is the cooling temperature (15 ◦C), D2 is the holding
time (1.5 s), E3 is the mold temperature (60 ◦C), F2 is the filling time (1.5 s), G1 is the plastic
temperature (255 ◦C), and H1 is the injection pressure (110 MPa). However, this process
parameter combination is not found in the L18 (21 × 37) orthogonal table, suggesting that
a confirmation experiment must be conducted to compare with the group comprising
the highest MPCI in the L18(21 × 37) orthogonal table, as shown in Table 17. The 10th
group has the highest MPCI among the 18 groups, with a warpage of 0.807 mm and an
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average temperature of 240.81 ◦C, while the warpage and average temperature of the
optimized parameter combination are 0.753 mm and 238.71 ◦C, respectively. Therefore,
A2B1C1D2E3F2G1H1 can be concluded to be the optimized process parameter combination
with regard to MPCI. This part is the experimental result part in (5.2) of Figure 7.
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Table 15. MPCI values and corresponding S/N ratios.

No. MPCI S/N

1 0.688 −3.248
2 0.667 −3.517
3 0.618 −4.180
4 0.439 −7.151
5 0.539 −5.368
6 0.456 −6.821
7 0.429 −7.351
8 0.410 −7.744
9 0.483 −6.321
10 0.882 −1.091
11 0.589 −4.598
12 0.788 −2.069
13 0.464 −6.670
14 0.460 −6.745
15 0.478 −6.411
16 0.463 −6.688
17 0.451 −6.916
18 0.401 −7.937

Table 16. S/N response table of the measurement indicator (MPCI).

Factor A B C D E F G H

Level 1 −5.745 −3.117 −5.366 −5.774 −6.117 −5.578 −5.073 −5.3
Level 2 −5.458 −6.528 −5.815 −5.485 −5.597 −5.46 −5.351 −5.769
Level 3 −7.16 −5.623 −5.545 −5.091 −5.766 −6.38 −5.735
Effect 0.286 4.042 0.448 0.289 1.026 0.306 1.307 0.469
Rank 8 1 5 7 3 6 2 4

Optimal parameters A2 B1 C1 D2 E3 F2 G1 H1

In terms of ANOVA, as shown in Table 18, factor B, the holding pressure, has the
greatest impact on the warpage and average temperature results among the eight factors,
followed by factor G, the plastic temperature; factor E, the mold temperature; factor H, the
injection pressure; factor C, the cooling temperature; factor A, the coolant; and factor F, the
filling time. Factor D, the holding time, has the smallest contribution, indicating that factor
D has the smallest effect on the warpage and average temperature results.
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Table 17. Confirmation experiment of the measurement indicator (MPCI).

No. Factor Warpage (mm) Temperature (◦C)

Original (10) A2B1C1D3E3F2G2H1 0.807 240.81
Optimization A2B1C1D2E3F2G1H1 0.753 238.71

Table 18. Variance analysis of the measurement indicator (MPCI).

Factor DOF Seq SS F P Confidence Contribution

A 1 0.3687 0.54 0.539 46.10 (%) 0.53 (%)
B 2 56.7416 41.50 0.024 97.60 (%) 81.86 (%)
C 2 0.6076 0.44 0.692 30.80 (%) 0.88 (%)
D 2 0.2791 0.20 0.830 17.00 (%) 0.40 (%)
E 2 3.1553 2.31 0.302 69.80 (%) 4.55 (%)
F 2 0.2855 0.21 0.827 17.30 (%) 0.41 (%)
G 2 5.6852 4.16 0.194 80.60 (%) 8.20 (%)
H 2 0.8217 0.60 0.625 37.50 (%) 1.19 (%)

Error 2 1.3674 1.97 (%)
Total 17 69.3121 100 (%)

According to the experimental results, factor B is the factor with the highest contri-
bution of the single target of warpage deflection and average temperature, and MPCI
optimization. The value of the holding pressure for level one is 190 MPa. The pressure
value being smaller is better, but it is not suitable for the holding pressure to be too small.
Otherwise, it will affect the accuracy of the molded product. The holding pressure is to
seal the sprue at the end of injection, and compensate for volume shrinkage. Therefore, the
holding pressure must be higher than the internal residual pressure. When the holding
pressure or holding time increases, although it can reduce the shrinkage of the product and
the surface depression, it will cause excessive pressure near the gate, forming burrs and
stress concentration, resulting in serious warp-age and deformation; the pressure applied
before the plastic solidifies. The larger the volume, the smaller the volume shrinkage there.
The pressure in the mold cavity usually decreases from the gate to the filling end, so the
volume shrinkage from the far end of the gate is usually greater than that near the gate. On
the contrary, if the holding pressure is too low, it will cause the injection pressure to flow
back, causing the molded product to shrink and deform, and affect the precision of the
molded product. Another reason for this study is the industry–academic cooperation plan
with industry manufacturers. The manufacturers hope to redesign and manufacture molds
without increasing operating costs, while maintaining mass production on the existing
production lines to save the most costs. For this reason, the method should be adjusted to
the process parameters, in order to optimize the quality of the process. In the optimization
process, the original process parameters of the manufacturer must be considered. If the
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holding pressure is too small, it will be necessary to adjust the factor levels of other pro-
cess parameters, such as the holding time, filling time, etc. The processing time may be
lengthened as a whole. Generally, injection molding is carried out in mass production. If
the production time of each molded product increases, it may cause a large increase in the
production costs and lower the production benefits.

4.3. Comparison of Different Cooling Circuit System Designs

Herein, the effects of different cooling circuit systems, based on the optimization
process parameters of multi-objective quality characteristics obtained from the above
analysis, are discussed and compared. This part is the experimental result part in (6)
of Figure 7. At the end of the cooling process of injection molding, if the temperature
distribution of the mold is uniform, it means that the cooling circuit is well designed. In
contrast, if the temperature distribution of the mold is highly uneven, the plastic part
will be easily warped and deformed, due to the thermal stress caused by the difference
in temperature. Therefore, if the cooling circuit is not properly designed, the molding
time will increase, and the uneven cooling will also cause the plastic part to warp and
deform. Three different cooling circuit configurations are discussed in this study, including
original cooling, square cooling, and conformal cooling, as shown in Figures 15–17. To
effectively remove the heat from the mold, square cooling has four groups of cooling
circuits surrounding the part, while conformal cooling is designed according to the shape
of the auto lock part to wrap around it, and then the cooling circuits are added to the
part that cools the slowest, according to an analysis to increase the cooling efficiency. A
comparison of the three different cooling circuit designs is shown in Table 19. The analysis
will be used to compare whether the conformal cooling circuits improve the auto lock parts,
and to understand the effect of the conformal cooling circuits on the average temperature
and warpage deformation of the parts.

Table 19. Comparison of three different cooling circuit systems.

Cooling Circuit
Type Number of Inlets Number of

Outlets
Reynolds Number

of a Single Pipe Cooling Liquid Inlet Oil
Temperature

Original Cooling 2 2 6570 Oil 30 °C
Square Cooling 6 6 6570 Oil 30 °C

Conformal Cooling 11 11 6570 Oil 30 °C
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4.4. Effect of Different Cooling Circuit Design Methods on Warpage Deformation

Herein, the effects of three cooling system designs on warpage deformation are dis-
cussed. The experimental cooling systems are original cooling, square cooling, and confor-
mal cooling. The warpage deformation displacement diagrams are shown in Figures 18–20.
According to the results, the conformal cooling design has a better warpage value. As
shown in Figure 21, the warpage is 0.661 mm with the conformal channel, 0.753 mm with
the original channel, and 1.068 mm with the square channel. In square cooling, compared
to original cooling, the warpage value is 41.80% higher. In conformal cooling, the warpage
value of original cooling is reduced by 12.20%. In addition to the original horizontal cooling
circuit configuration, conformal cooling has a ring-shaped configuration in the vertical
direction of the plastic part. Consequently, the plastic parts can be cooled with more
complete coating. The overall temperature difference of the plastic parts during cooling
can be effectively controlled, and the warpage deformation of the plastic parts will not be
affected by the excessive temperature difference.
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4.5. Effect of Different Cooling Circuit Design Methods on Average Temperature

In this section, the effects of three different cooling circuit designs on the average tem-
perature are discussed. The experimental cooling systems are original cooling, square cool-
ing, and conformal cooling. The average temperature diagrams are shown in Figures 22–24.
According to the results, the conformal cooling design has the lowest average tempera-
ture; as shown in Figure 25, the average temperature is 237.62 ◦C with conformal cooling,
238.71 ◦C with original cooling, and 240.83 ◦C with square cooling. In square cooling, the
average temperature is 0.88% higher than that of original cooling. In conformal cooling,
the average temperature of original cooling is reduced by 0.46%. The analysis results show
that the average temperature with square cooling is higher than that with original cooling.
The reason for this may be that the layers are too densely stacked in the design of square
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cooling, which causes the high temperatures between the cooling circuits to affect each
other, resulting in poor heat dissipation. In conformal cooling, on the other hand, the
cooling circuits are closely attached to the plastic parts; thus, they can cool and dissipate
heat in multiple axes to obtain the optimal average temperature value.
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5. Conclusions

The Taguchi method is a reliable design method and concept of statistical experiment
design. It streamlines the number of experiments and improves the method of analyzing
experimental data, thereby stabilizing the quality while reducing the manufacturing costs.
Using the orthogonal table OA, many design variables can be analyzed in a small amount,
which can greatly reduce the number of experiments and improve the accuracy of the
experiment. The fuzzy logic program used in MPCI can reduce the uncertainty caused by
artificiality, and this method does not require complicated mathematical calculations. In
this system simulation study, fuzzy logic is applied in MPCI. Compared with the traditional
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method, the output can meet the requirements of technical engineers and customers more
comprehensively.

The experimental results are summarized and organized as follows:

1. The combination of parameters that optimizes the warpage deformation of auto lock
parts can be obtained from the experimental results of the Taguchi robust design
in combination with optimization analysis, and the injection molding conditions
are A2B1C1D3E3F2G1H1, where A2 is the cooling liquid (oil), B1 is the holding
pressure (190 MPa), C1 is the cooling temperature (15 ◦C), D3 is the holding time (2 s),
E3 is the mold temperature (60 ◦C), F2 is the filling time (1.5 s), G1 is the plastic
temperature (255 ◦C), and H1 is the injection pressure (110 MPa). The best warpage
deformation of the original orthogonal is 0.807 mm, whereas that for the optimized
parameter combination is 0.783 mm. After optimization, the warpage deformation can
be increased by 2.97% compared to the optimal group in the original orthogonal table;

2. The combination of parameters that optimizes the average temperature of auto lock
parts can be obtained from the experimental results of the Taguchi robust design
in combination with optimization analysis, and the injection molding conditions
are A2B1C2D2E3F3G1H3, where A2 is the cooling liquid (oil), B1 is the holding
pressure (190 MPa), C2 is the cooling temperature (30 ◦C), D2 is the holding time
(1.5 s), E3 is the mold temperature (60 ◦C), F3 is the filling time (2 s), G1 is the plastic
temperature (255 ◦C), and H3 is the injection pressure (150 MPa). The best average
temperature of the original orthogonal is 239.57 ◦C, while that of the optimized
parameter combination is 235.23 ◦C. After optimization, the average temperature can
be increased by 1.70% compared to the optimal group in the original orthogonal table;

3. Fuzzy theory analysis is used to obtain a set of optimal process parameters for
multi-objective quality characteristics, which are warpage deformation and average
temperature, and the experimental results show that the optimal process parameters
for multi-objective quality characteristics are A2B1C1D2E3F2G1H1. Here, A2 is
the cooling liquid (oil), B1 is the holding pressure (190 MPa), C1 is the cooling
temperature (15 ◦C), D2 is the holding time (1.5 s), E3 is the mold temperature (60 ◦C),
F2 is the filling time (1.5 s), G1 is the plastic temperature (255 ◦C), and H1 is the
injection pressure (110 MPa). As the best group in the original orthogonal array,
warpage deformation on a single target is 0.807 mm, and the average temperature is
239.57 ◦C. Those that were optimized for the multi-objective parameter combination
are 0.753 mm and 238.71 ◦C, respectively. When both the objectives were considered,
both quality characteristics will increase by 7.17% in warping deformation, and 0.3%
in average temperature;

4. Analysis of the effect of different cooling circuit systems shows the difference be-
tween the traditional channel and the conformal channel. The results show that
the warpage deformation with conformal cooling is smaller than that with original
cooling. Moreover, conformal cooling improves the average temperature. The overall
warpage difference is 0.092 mm, and the average temperature difference is 1.091 ◦C.
Furthermore, it is smaller than the original cooling system; it reduces warpage by
12.2% and the average temperature by 0.46%;

5. The system simulation in this study applied fuzzy logic in MPCI. Compared with
conventional methods, the output can better meet the requirements of technical
engineers and customers. Practical applications can further encourage the transfer
of fuzzy logic-based technology from academia to industry. The research results of
the optimization modeling method that was proposed by this study show that the
injection molding process can be optimized for multiple single goals, and can also be
optimized to consider multiple goals and multi-quality characteristics. Moreover, it
can greatly reduce the number and time of the experiments, and improve the accuracy
of the experiments.
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