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Abstract: Conjugated polymers with narrower bandgaps usually induce higher carrier mobility, which
is vital for the improved thermoelectric performance of polymeric materials. Herein, two indacen-
odithiophene (IDT) based donor–acceptor (D-A) conjugated polymers (PIDT-BBT and PIDTT-BBT)
were designed and synthesized, both of which exhibited low-bandgaps. PIDTT-BBT showed a more pla-
nar backbone and carrier mobility that was two orders of magnitude higher (2.74 × 10−2 cm2V−1s−1)
than that of PIDT-BBT (4.52 × 10−4 cm2V−1s−1). Both exhibited excellent thermoelectric performance
after doping with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, where PIDTT-BBT exhibited
a larger conductivity (0.181 S cm−1) and a higher power factor (1.861 µW m−1 K−2) due to its higher
carrier mobility. The maximum power factor of PIDTT-BBT reached 4.04 µW m−1 K−2 at 382 K.
It is believed that conjugated polymers with a low bandgap are promising in the field of organic
thermoelectric materials.

Keywords: organic thermoelectric materials; conjugated polymers; ultra-small bandgap; carrier
mobility

1. Introduction

The emergence of thermoelectric materials has enabled the possibility of transforming
waste heat into a usable form of energy, whereby thermal energy is directly converted into
electrical energy [1–3]. Currently, inorganic thermoelectric materials have been extensively
developed [4]; however, the toxicity and high cost of the raw materials used to develop
inorganic thermoelectric materials greatly hinder their practical application [5]. In contrast,
organic thermoelectric materials (OTEs) have a variety of advantages, such as facile pro-
cessing, cheap raw materials, environmental friendliness, and mechanical flexibility. OTEs
have developed rapidly as new types of thermoelectric materials [6–8].

The performances of thermoelectric materials are typically evaluated by a dimension-
less figure of merit (ZT = S2σ/κ), where S, σ, and κ are the Seebeck coefficient (µV K−1), elec-
trical conductivity (S cm−1), and thermal conductivity (µW m−1K−1), respectively [9,10].
To obtain a large ZT value, it is necessary to find ways to increase both σ and S, while simul-
taneously reducing κ. However, the three parameters typically show opposing trends [1,11].
For example, an increase in σ often leads to a decrease in S and an increase in κ. Concurrent
fine-tuning of the three parameters remains a challenge. In addition, the κ of OTE is
generally very low [12,13], and the power factor (PF = S2σ) is often used instead of the ZT
value to evaluate the performance of OTEs [14].

Conjugated polymers (CPs) have been widely used in optoelectronic devices, such
as organic solar cells (OSCs) [15], organic light-emitting diodes (OLEDs), and organic
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field-effect transistors (OFETs) [16–21]. However, the application of CPs in OTEs is still
limited because untreated pristine CPs usually exhibit lower σ [22,23]. To optimize the
performance of thermoelectric devices, chemical doping (for example, 2,3,5,6-tetrafluoro-
7,7,8,8-tetracyanoquinodimethane (F4TCNQ), I2, and FeCl3) is typically performed to
adjust the thermoelectric properties of CPs [24–27]. The appropriate dopant is vital to
enhance the performance of OTEs [28–30]. Therefore, exploring the dopant species, the
doping mechanisms, and the influence of different molecular structures on thermoelectric
properties help to better extend the application of CPs in the thermoelectric direction.

In this work, two kinds of donor–acceptor (D-A) conjugated polymers (PIDT-BBT
and PIDTT-BBT, Figure 1) were designed and synthesized with ultra-small band gaps.
With the introduction of an additional thiophene unit, PIDTT-BBT exhibited a relatively
flatter conjugated skeleton, leading to a larger carrier mobility (2.74 × 10−2 cm2 V−1s−1).
Based on the previous studies, a high carrier mobility improves the thermoelectric perfor-
mance. Subsequently, the effects of polymer structures on thermoelectric properties and
the mechanism of molecular doping were extensively investigated.
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2. Experimental
2.1. Materials

M1 and M2 (Figure 1) were purchased from Suna Tech Inc. (Suzhou, China), tris(2-
methylphenyl)phosphine (P(o-tol)3) and tris(dibenzylideneacetone) dipalladium(0)
(Pd2(dba)3) were purchased from Greenchem Technlogy Co., Ltd. (Beijing, China). M3 was
received from Derthon Optoelectronic Materials Science Technology Co., Ltd., (Shenzhen,
China). Anhydrous chlorobenzene (PhCl), 1,2-dichlorobenzene, anhydrous acetonitrile and
F4TCNQ were obtained from Sun Chemical Technology Co., Ltd. (Shanghai, China). Other
chemical reagents (including deionized water, methanol, and acetone) were obtained from
commercial sources. All reagents were in analytic grade and were used without further
treatment unless otherwise noted.

2.2. Synthesis of Monomers and Polymers

The synthetic procedure of PIDT-BBT: The mixture of M1 (0.300 g, 0.243 mmol), M3
(0.857 g, 0.243 mmol), Pd2(dba)3 (0.011 g, 0.012 mmol) and P(o-tol)3 (0.019 g, 0.061 mmol)
was added into a Schlenk flask, then purged with nitrogen and sealed. After adding PhCl
(5 mL) to the flask through a syringe, the solution mixture was stirred at 110 ◦C for 72 h. The
polymer was precipitated by the addition of excess amounts of methanol. The precipitate
was sequentially washed with methanol, acetone, hexane, and deionized water. After
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drying under vacuum, PIDT-BBT was obtained as a black solid (0.251 g, 94.2%). 1H NMR
of PIDT-BBT (400 MHz, C6D6, TMS, r. t.); δ/ppm 1.15 (44H, –CH2–CH3), 2.45 (8H, –CH2),
6.88–7.24 (8H, aromatic), 7.31–7.78 (8H, aromatic), 8.15 (8H, benzene), 9.41 (2H, thiophene).

PIDTT-BBT was synthesized by using similar synthetic routes and was obtained
as a black solid (0.220 g, 97.9%). 1H NMR of PIDTT-BBT (400 MHz, C6D6, TMS, r. t.);
δ/ppm 0.16–0.34 (12H, –CH2–CH3), 0.77–1.39 (32H, –CH2), 2.41 (8H, –CH2), 6.45–6.86 (8H,
aromatic), 6.94–7.27 (8H, aromatic), 7.31–7.52 (4H, aromatic).

2.3. Preparation of Polymer Films

PIDT-BBT and PIDTT-BBT were dissolved in 1,2-dichlorobenzene with concentrations
of 8 and 6 mg mL−1, respectively. The dopant (F4TCNQ) was dissolved in anhydrous
acetonitrile at a concentration of 16.93 mg mL−1, and added into the polymer solution
(the molar ratio of dopant to polymer repeating unit was 1:4). The doped polymer so-
lution was obtained after ultrasonic dispersion for 3 h. Polymer films were obtained by
solvent-casting the doped polymer solution onto glass substrates (15 mm× 15 mm, washed
30 min sequentially with deionized water, acetone, and isopropanol) under ambient con-
ditions. The doped films were used for further testing after the solvent evaporated in
ambient conditions.

2.4. Instruments and Measurements
1H NMR spectra of the polymers were acquired on Agilent Technologies 400 MHz

NMR spectrometer in C6D6. The molecular weights of the polymers and the polymer
dispersity index (PDI) were determined via gel permeation chromatography (GPC) (Wa-
ters, Milford, MA, USA) using THF as an eluent. Thermal gravimetric analysis (TGA)
was performed on TGA-55 (TA Instruments, New Castle, DE, USA) from room tem-
perature to 600 ◦C under a nitrogen flow with a heating rate of 10 ◦C min−1. Differ-
ential scanning calorimetry (DSC) was performed on DSC7020 (Hitachi, Tokyo, Japan).
Ultraviolet–visible (UV–vis) absorption spectra were acquired using a PerkinElmer Lambda
950 spectrophotometer. The morphology and thickness of the polymer films were observed
using a scanning electron microscope (SEM) (Hitachi SU-70 system) and a contact surface
topography-measuring instrument (SURFCORDER ET 4000M). Tapping-mode atomic
force microscopy (AFM) images of the polymer films were obtained by using AFM (Bruker
Dimension ICON) to observe the roughness of the films’ surfaces. The cyclic voltammetry
(CV) was performed on a CHI 660E electrochemical workstation, and a platinum plate was
used as a working electrode, Ag/Ag+ was used as a reference electrode, and a platinum
wire was used as counter electrode in 0.1 M tetrabutylammonium hexafluorophosphate
(Bu4NPF6) acetonitrile solution under a nitrogen atmosphere and scan rate of 50 mV s−1.
The reference electrode was calibrated with the ferrocene/ferrocenium (Fc/Fc+) couple.
Grazing incidence X-ray diffraction (GI-XRD) was measured on an X-ray diffractometer
(SmartLab, Tokyo, Japan) with a copper target (λ = 1.54 Å), and the incident range was
2◦–50◦. X-ray photoelectron spectrometer (XPS) data were obtained using a field emission
auger spectrometer (Thermo Fisher ESCALAB 250X). The σ and S of the polymer films
were collected using an MRS-3 thin-film thermoelectric test system (Wuhan Joule Yacht
Science & Technology Co., Ltd., Wuhan, China).

3. Results and Discussion

PIDT-BBT and PIDTT-BBT were successfully synthesized via Stille coupling of two
monomer units. The two polymer structures were characterized via 1H NMR spectroscopy
(Figure S1), where all peaks were correlated and assigned to the structures of the polymers.
The number-average molecular weight (Mn) values of PIDT-BBT and PIDTT-BBT were
16.85 kDa and 16.76 kDa, respectively, with PDI of 2.63 and 2.38, respectively (Figure S2).
The thermal stabilities of the two polymers were obtained via TGA, as shown in Figure S3.
The 5% weight loss temperatures (Td) of PIDT-BBT and PIDTT-BBT were estimated to
be 411 ◦C and 416 ◦C, respectively. Both polymers showed good thermal stability, and
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the additional thiophene ring on the PIDTT-BBT backbone does not have any significant
effects on the thermal stability of the polymer. From DSC results (Figure S4), neither
endothermic nor exothermic processes were observed in the temperature range from 0 ◦C
to 300 ◦C, indicating that both polymers were amorphous. The molecular weights and
thermal stabilities of the two polymers are summarized in Table S1.

The energy levels of the two conjugated polymers obtained from cyclic voltammetry
(CV) and UV-vis-NIR absorption spectroscopies are described in Figure 2. The onset oxida-
tion and reduction potentials (Eox and Ered) of PIDT-BBT and PIDTT-BBT were estimated
to be 0.21/−0.59 V and 0.32/−0.64 V, respectively. The lowest unoccupied molecular
orbital energy levels (ELUMO) and the highest occupied molecular orbital energy levels
(EHOMO) of PIDT-BBT and PIDTT-BBT were calculated from the onsets of the oxidation
and reduction potentials, respectively. The highest occupied molecular orbital (HOMO)
energy level can be calculated from Eox by EHOMO = −(Eox + 4.8 − E1/2) eV [31], while
the lowest unoccupied molecular orbital (LUMO) energy level can be calculated from Ered
by ELUMO = −(Ered + 4.8 − E1/2) eV. Therefore, the EHOMO and ELUMO levels of PIDT-BBT
and PIDTT-BBT were calculated to be −4.90/−4.11 eV and −4.92/−4.06 eV, respectively.
The electrochemical band gaps (Eg

ec) of PIDT-BBT and PIDTT-BBT were calculated to be
0.80 eV and 0.86 eV, respectively, indicating that both polymers have ultra-small bandgaps
(Table 1).
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Table 1. Electrochemical properties, optical properties, and carrier mobilities of the polymers.

Polymer EHOMO
(eV)

ELUMO
(eV)

Eg
ec

(eV)
Eg

opt

(eV)
λonset
(nm)

Eg
DFT

(eV)
Carrier Mobility
(10−4 cm2/V s)

PIDT-BBT −4.90 −4.11 0.80 0.87 1423 0.60 4.52

PIDTT-BBT −4.92 −4.06 0.86 0.95 1300 0.60 274
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The UV-vis absorption spectra of each polymer from casted film are presented in
Figure 2d. Both polymers showed similar absorption bands at 660–1500 nm in both solution
and casted film. The absorption maximum PIDTT-BBT (1123 nm) was 50 nm red-shifted
compared to that of PIDT-BBT (1073 nm), which was attributed to the planarity of backbone
generated from the additional thiophene ring. According to the onset of absorption maxima
of the films for PIDT-BBT and PIDTT-BBT, the optical band gaps (Eg

opt) were calculated
to be 0.87 eV and 0.95 eV, respectively. The introduction of a thiophene ring onto the
IDT backbone does not have significant effects on the band gap of the polymers. Both
polymers exhibited narrower bandgaps, primarily due to the planarity and stiffness of the
IDT backbone that enabled an effective conjugation length of the polymer. To support this
argument, quantum chemistry calculations were performed on PIDT-BBT and PIDTT-BBT
dimers using density functional theory (DFT) at the B3LYP/6-31G* (d, p) level with Spartan
software model 2016, in which the alkyl chain was replaced with a methyl group for clarity
(Figure S5). The HOMO surface of the PIDT-BBT dimer was generally delocalized on the
benzene ring of the side chain, while the HOMO surface of the PIDTT-BBT dimer was
distributed on both the benzene ring of the side chain and the main chain, mainly due
to the introduction of the strong electron donating group (the thiophene ring) into the
PIDTT-BBT backbone. The bandgaps (Eg) of the PIDT-BBT and PIDTT-BBT dimers from
DFT calculations are the same (0.6 eV). These results indicate that the introduction of a
thiophene ring onto the backbone of PIDTT-BBT does not induce changes in the band
gap of the polymer. To investigate the mobility difference, organic field effect transistor
(OFET) devices (detailed information in the supporting information) were fabricated. The
hole mobility of PIDTT-BBT was two orders of magnitude higher than that of PIDT-BBT
(Table 1), which has been shown to enhance the σ of semiconducting polymers.

As shown in Figure S6, the σ (Figure S6a) and S (Figure S6b) of the polymer films doped
with varying F4TCNQ concentrations were measured. As the F4TCNQ concentration
increased, both polymers showed an increasing trend in σ and a decreasing trend in S,
which were primarily caused by the increased carrier concentration. The polymer film with
25 mol% doping concentration exhibited the largest PF and was used for the subsequent
thermoelectric performance testing (Figure S6c). It should be noted that PIDTT-BBT films
exhibited much larger values of thermoelectric properties as compared to that of the PIDT-
BBT films at a specified concentration of F4TCNQ. Figure 3 describes the temperature-
dependent σ, S, and PF of PIDT-BBT and PIDTT-BBT films doped with F4TCNQ (25 mol%)
in the temperature range of 398–418 K. PIDTT-BBT films exhibited larger thermoelectric
performance than that of PIDT-BBT under F4TCNQ doping conditions. As shown in
Figure 3a, the σ values of PIDT-BBT and PIDTT-BBT films are 0.096 and 0.181 S cm−1 at
room temperature, respectively. With increasing the temperature, the σ reached maximum
values of 0.203 S cm−1 (PIDT-BBT) and 0.367 S cm−1 (PIDTT-BBT) at 382 K, respectively.
Further increases in temperature led to a decrease in σ, while the S values showed an
opposite trend, as the increase in σ is largely due to the increase in carrier concentration.
As shown in Figure 3c, PIDTT-BBT films achieved a maximum PF of 4.04 µW m−1 K−2 at
382 K, and a maximum PF of 1.47 µW m−1 K−2 for PIDT-BBT films was obtained at 400 K.
The main reason is that the pristine PIDTT-BBT films exhibited hole mobility two orders of
magnitude higher than that of the pristine PIDT-BBT films.

Figure 4a,b show the GI-XRD curves of pristine and doped films. The pristine films of
both polymers, PIDT-BBT and PIDTT-BBT, showed broad diffraction peaks at 22.3◦ and
23.7◦, respectively, which can be attributed to the π-π* stacking of the polymer backbones.
The π-π* stacking distances of PIDT-BBT and PIDTT-BBT are calculated to be 3.97 Å and
3.75 Å, respectively. The small stacking distance of PIDTT-BBT should be attributed to the
introduction of the thiophene ring into the backbone of PIDTT-BBT, enabling a more planar
backbone. No characteristic additional peaks appeared after polymer doping, indicating
that the polymers did not undergo structural change after F4TCNQ doping. Elemental
identification in both PIDT-BBT and PIDTT-BBT (C, N, and S) by XPS spectra is shown
in Figure 4c,d. A new characteristic peak of F1s appeared after doping, which is derived
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from the F4TCNQ dopant. Next, the dispersion of the dopant in the polymer film was
observed through the EDS diagram (Figure S7), and it was found that the F4TCNQ was
evenly distributed in the films without any agglomeration.
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UV-vis-NIR spectra can be used as a probe to explore the doping mechanism of poly-
mers. As shown in Figure 5a,b, PIDT-BBT and PIDTT-BBT films exhibited strong absorption
peaks at 650–1330 nm after doping, primarily due to the interactions generated through
π-π* stacking of the polymer backbones [32]. However, after doping with F4TCNQ, both
PIDT-BBT and PIDTT-BBT exhibited new absorption peaks in the long wavelength range,
which indicated that charge transfer occurred to generate polarons [33]. This result demon-
strated that F4TCNQ is an effective dopant for the two polymers. Ultraviolet photoemission
spectroscopy (UPS) measurements were used to investigate valence electrons and extract
work functions of the polymers. The Fermi levels, with respect to vacuum, were obtained
from the difference of the intercept of the trailing edge of the secondary electron onset
for PIDT-BBT and PIDTT-BBT films after doping with F4TCNQ, as shown in Figure 5c
(the He(I) excitation energy is 21.2 eV). The work functions of PIDT-BBT and PIDTT-BBT
pristine films were calculated to be 3.67 and 4.21 eV, respectively, and the work functions of
the two polymers increased significantly to 4.63 and 4.93 eV, respectively, after doping. It
was found that the Fermi level of the polymer was shifted to a lower binding energy after
doping, which is equivalent to the movement of the Fermi level in the HOMO direction
(Figure 5d). These results demonstrated the generation of hole carriers and effective p-type
doping [34]. In addition, the lower Fermi level indicates high band degeneration because
carriers can be distributed into more bands [35], which results in a higher σ.
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As shown in Figure 6, atomic force micrographs (AFM) and scanning electron mi-
croscopy (SEM) (Figure S8) were used to investigate changes in the film morphology and
the aggregation state of the dopant in the film. From the SEM images, the surfaces of the
two pristine polymer films were relatively smooth, indicating that the larger molecular
weight of the polymer also enabled good film processing properties. In addition, due
to the strong π-π* stacking of the polymer backbone [36], the polymer surface exhibited
a regular arrangement of layered structures. This phenomenon was also confirmed via
cross-sectional SEM images of the pristine polymer films (Figure S9). The root mean square
(RMS) of the PIDTT-BBT (6.36 nm) pristine films is larger than that of PIDT-BBT films
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(1.22 nm) because of the more rigid main chain structure of PIDTT-BBT. From the SEM
images, it was found that the dopant did not significantly affect the film morphology.
From the AFM image, no dopant aggregation was found. The RMS of PIDTT-BBT film
became lower after doping, which proved that F4TCNQ showed better doping effects on
PIDTT-BBT than on PIDT-BBT.
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4. Conclusions

In this work, two D-A polymers with ultra-narrow band gaps, PIDT-BBT and PIDTT-
BBT, were synthesized. With the introduction of an additional thiophene ring into
the polymer backbone, the hole mobility increased by two orders of magnitude (from
4.52 × 10−4 to 2.74 × 10−2 cm−2 V−1 s−1), which is important for the σ improvement of
semiconducting polymers. Improved thermoelectric performance was achieved via molec-
ular doping with F4TCNQ via solution mixing, and PIDTT-BBT films exhibited a higher σ
of 0.181 S cm−1 compared to PIDT-BBT (0.096 S cm−1) at room temperature. A maximum
PF of 4.04 µW m−1 K−2 at 382 K was obtained for PIDTT-BBT films, which was signifi-
cantly higher than that of PIDT-BBT films (1.47 µW m−1 K−2 at 400 K). The introduction
of strong electron-donating thiophene units into the polymer backbone showed increased
carrier mobility. It is believed that this work can be a useful guide to design thermoelectric
materials with improved performance.
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