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Abstract: Biodegradable packaging prepared from starch is an alternative to fossil-based plastic
packaging. However, the properties of starch packaging do not comply with the necessary physic-
ochemical properties to preserve food. Hence, in a previous study, we reported the preparation
of a composite polymer material based on starch-chitosan-pluronic F127 that was found to be an
adequate alternative packaging material. In this study, we modified the physicochemical properties
of this material by storing it for 16 months under ambient conditions. The results indicate that the
incorporation of pluronic F127 in the blend polymer can help avoid the retrogradation of starch.
Moreover, at higher concentrations of pluronic F127, wettability is reduced. Finally, after storage,
the materials exhibited surface modification, which is related to a color change and an increase in
solubility, as well as a slight increase in stiffness.

Keywords: biodegradable packaging; biopolymer; starch; storage conditions; thermal properties;
physicochemical properties

1. Introduction

Synthetic-origin plastics have shaped various areas of our life, bringing with them
numerous new and improved applications. However, their advantages, the environmen-
tal pollution resulting from their excessive use, slight or prolonged degradation, and
inadequate waste disposal are critical. Studies have been focused on the development
of polymeric materials of biological and biodegradable origin using biopolymers such as
starch, cellulose, chitosan, and proteins that do not contribute to the accumulation of CO2
at the end of their life cycles but instead promote sustainable development in the face of
any emerging ecological crisis [1–4].

Starch is an excellent choice for developing biodegradable packaging materials, owing
to its abundance in nature and higher economical viability. As a nontoxic polymer, it can
be safely used for food packaging applications; moreover, it does not impart flavor to the
packaged food. Therefore, there is no risk of affecting the organoleptic properties of the
packed foods [5].

However, biodegradable packaging based on starch and other biopolymers, such
as chitosan or gelatin, are susceptible to hydration and thus do not resist high relative
humidity conditions, direct contact with liquid water, or foods with high moisture con-
tent [6–8]. Therefore, through previous research, mixtures of starch with other biopolymers
have been developed with better barrier properties against moisture [9–12]. A mixture of
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cornstarch, chitosan, and different proportions of a poloxamer, known as pluronic F127,
was developed [11]. The study evaluated the effects of the pluronic concentration and its
mechanical and thermal properties, permeability to water vapor, and solubility in water
of its starch-chitosan films. The presence of the poloxamer considerably improved the
moisture resistance of biodegradable packaging materials when made using starch in a
concentration range of 1−5%. The packaging materials are less susceptible to water with a
higher the concentration of poloxamer [11].

Storage time and conditions also significantly affect the properties of starch-based
packaging materials due to the retrogradation exhibited by starch. Starch is composed of
amylose and amylopectin. Amylose is a molecule with a mainly linear structure, whereas
amylopectin is a highly branched molecule. The amylose-to-amylopectin ratio in corn
starch granules is reported to be approximately 25/75 [13]. The proportion, size, and
molecular organization of amylose and amylopectin, as well as the concentration of solids,
significantly affects the retrogradation rate of materials made using starch [14,15]. The
retrogradation of native starch mainly occurs due to the rearrangement of the amylose
chains [16]. After storing for a long time, the amorphous molecules of the gelatinized
starch tend to recrystallize to again form the ordered structures of double-helix crystallites.
Thus, in gelatinized starch, both components, amylose and amylopectin, crystallize to
form double helices generated from the external branches of amylopectin or amylose
molecules [14,17].

The results obtained in a previous study were promising, suggesting this material,
made using starch-chitosan-poloxamer, to be a viable alternative for producing packaging
materials [11]. However, determining the behavior of this material during storage period
is important.

This study hypothesized that new poloxamer-containing starch-chitosan formulations
could maintain their structural integrity for several months, significantly delaying the
starch retrogradation process that typically occurs in short periods. Therefore, in this
study, the thermal, structural, mechanical, and morphological behaviors of corn starch-
chitosan and poloxamer F127 stored for zero and sixteen months at room temperature
were evaluated using differential scanning calorimetry (DSC), X-ray, FTIR-attenuated total
reflection (ATR), tensile stress, wettability by the contact angle, color, and scanning electron
microscopy (SEM) techniques.

2. Materials and Methods
2.1. Materials

The following biopolymers were used: corn starch from KMC (30% amylose; Brande,
Denmark); shrimp shell chitosan (practical grade, deacetylation degree ≥ 75%; Sigma-
Aldrich, Saint Louis, MO, USA); pluronic F127 (70% ethylene oxide; Sigma-Aldrich, Saint
Louis, MO, USA). Glacial acetic acid (Productos Químicos Monterrey SA, Monterrey,
Mexico) and glycerol (reagent grade; Meyer, Mexico City, Mexico) were also used.

2.2. Film Preparation

The methodology proposed by Fonseca-García, Jiménez-Regalado [11] was followed
for producing biodegradable films. The polymers were used in various concentrations:
starch 5% (w/w), chitosan 1% (w/w), and poloxamer (0%, 1%, 3%, and 5% w/w of biopoly-
mers). The polymer solutions were mixed in a ratio of 60:20:20, and glycerol was added as
a plasticizer at 25% (w of glycerol/w of total polymers). Fifty milliliters of each polymer
dispersion was poured into a plastic mold and dried at 60 ◦C (Duo-Vac Oven, Lab-Line
Instruments, Inc., Melrose Park, IL, USA) for four hours. The dried films were peeled off
and stored in airtight storage bags for 16 months in the dark and at ambient conditions
with a relative humidity (RH) of 32.73% and temperature of 25 ◦C.
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2.3. Color

Color was determined using a portable spectrophotometer (Mini Scan EZ 4500L,
HunterLab, Reston, VA, USA) based on the CIELab scale with the coordinates L*, a*, and
b* [18]. The films were placed on a white copy paper used as standard with color coordinate
values of L* = 91.76, a* = 2.14, and b* = −10.64.

2.4. Contact Angle

The contact angle was determined using the video goniometer (Rame-Hart instrument
co., Succasunna, NJ, USA) to determine the hydrophobicity of the films [10]. A 5-µL drop of
deionized water was placed on the opaquest side of a film sample (the side in contact with
the mold) with dimensions of 3 cm × 1.5 cm, using a micropipette, and six measurements
were recorded. Subsequently, with a program created using LabVIEW 2014 software, the
image was captured, and angles formed by the water droplets on the film were calculated
using ImageJ software.

2.5. Scanning Electron Microscopy

To analyze the morphology of the packaging films, SEM (JCM-6000, JEOL, Tokyo,
Japan) was performed with a voltage of 10 kV. The films were coated with a gold-palladium
layer (DESK II coating system, Denton Vacuum Inc., Moorestown, NJ, USA) [11].

2.6. Fourier Transform Infrared Spectroscopy (FTIR)

The vibrational modes of principal functional groups present in the packaging film
were analyzed by FTIR spectrum using a Nicolet iS50 FTIR (Thermo Fisher Scientific,
Madison, WI, USA) by ATR technique [10].

2.7. X-ray Diffraction (XRD) Analysis

The XRD of biodegradable films was determined using an X-ray diffractometer (D500,
Siemens Aktiengesellschaft, Munich, Germany) with a voltage of 35 kV, current of 25 mA,
and Cu Kα radiation of 1.5406 Å over a Bragg angular range (2θ) of 5–35◦ [11].

2.8. Differential Scanning Calorimetry

DSC was used to measure the gelatinization peak (TP), melting temperatures (Tm1
and Tm2), and the melting enthalpy (∆Hm2). The analyses were performed at a temperature
range of 25–300 ◦C under a nitrogen atmosphere (50 cm3 min−1) using a thermogravimetric
analyzer (DSC 2 STAR System, Mettler-Toledo AG, Schwerzenbach, Switzerland), according
to the standard ASTM D3418-15 [19].

2.9. Water Solubility

To determine the susceptibility of biodegradable films in regards to contact with
liquid water at room temperature, the methodology proposed by Fonseca-García, Jiménez-
Regalado [11] was followed without modifications.

2.10. Mechanical Properties

The tensile strength and percentage of elongation at break were determined using the
methodology proposed by Fonseca-García, Jiménez-Regalado [11]. The experimental data
regarding the mechanical properties were analyzed using OriginPro 8.5.0 SR1 software
(OriginLab Corporation, Northampton, MA, USA) through an analysis of variance and the
Tukey test with a significance level of p < 0.05.

3. Results and Discussion
3.1. Appearance and Color

All biodegradable films developed in this study appeared to be homogeneous. Figure 1
shows the starch-chitosan composite films with different proportions of the poloxamer
pluronic F127 stored for 0 and 16 months; the images were captured on a black background
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for contrast. All films presented a translucent white color, as seen in Figure 1, and exhibited
no significant visible changes during the 16-month storage process. They did not become
brittle or more brittle to handle with time in storage. No visibly considerable color change
was noted in the films when compared to the initial time (0) with the samples stored for
16 months. However, when evaluating the film color using a colorimeter, it was observed
that the samples did change their coloration after 16 months of storage when compared to
the initial time, as indicated by the values of the L*, a*, and b* color parameters in Table 1.
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3.2. Morphology by SEM

Figure 2 shows a comparison of the films with different amounts of poloxamer evalu-
ated at time 0 and 16 months of storage. The evaluation of the initial time (zero) showed
that in the biodegradable films formulated from starch and chitosan, the presence of the
poloxamer significantly improved the morphology of the surface of these materials. In
the film formulated without F127, an irregular surface was observed without cracks. This
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appearance was gradually reduced until a smoother surface was obtained with an increase
in the content of F127.
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Figure 2. SEM images for the surface (500×) of composite films of corn starch-chitosan with pluronic
F127 at ratios of 0%, 1%, 3%, and 5% stored for 0 and 16 months.

A significant change was observed in the morphology of all the composite biodegrad-
able films after 16 months of storage under ambient conditions; however, the most notice-
able or drastic changes were observed in the materials containing F127 at concentrations
of 3% and 5% (Figure 2). A less homogeneous morphology was observed in these films,
which may be due to a change in the organizational structure of the starch chains. Garalde,
Thipmanee [20] reported a similar morphology in thermoplastic starch/poly (butylene
adipate-co-terephthalate) (PBAT) films, which occurred when the starch was selectively
removed from the composite film.

3.3. Contact Angle

The wettability of the biodegradable films was evaluated in terms of the contact angle;
Table 1 shows the contact angle values of the starch-chitosan-poloxamer (F127) films. In
films F127 0% and F127 1%, after 16 months of storage, the hydrophilicity increased as the
contact angle decreased from 99.93◦ to 67.66◦ and 33.22◦ to 31.89◦, respectively. In the case
of F127 3% and F127 5%, the hydrophilicity decreased as the contact angle increased from
43.88◦ to 46.09◦ and 46.25◦ to 50.74◦, respectively. The results suggest that pluronic F127
has a considerable effect on the wettability of biodegradable starch-chitosan films.

3.4. FTIR

Figure 3 shows the spectra of the films stored for different durations. After 16 months
of storage, the FTIR-ATR analysis showed modifications in the absorption in the region
of 1300 cm−1 to 900 cm−1 for all materials (F127 0%, F127 1%, F127 3%, and F127 5%);
the bands in this region are sensitive to the gelation of starch because of their association
with C–O stretching of the ring, linkages (C–O–C), and COH groups. Notably, the band at
1017 cm−1 is reported as sensitive to amorphous starch, which is constant in the spectra
after 16 months of storage [21–23]. Casu and Reggiani [24] reported that the band at
3300 cm−1, attenuated after 16 months of storage, can be assigned to the O-H stretching
of the groups in amorphous amylose. Moreover, the molecule of water showed that the
absorption bands at 3300 and 1646 cm−1 are associated with OH stretching and deformation
vibrations, respectively [24]. In addition, the absorption band at 2883 cm−1 was associated
with C-H bond stretching, which did not show a modification in the four materials after
16 months [25]. Finally, another important phenomenon identified in the spectra of all
films after storage was the disappearing of the absorption band at 1150 cm−1, which was
associated with C-O stretching of C–O–C in glycosidic linkage; this result suggests the
depolymerization of the starch molecule [26].
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3.5. X-ray Diffraction

To determine if there was retrogradation or modification in the conformation of
the structural matrix of the biodegradable films, Figure 4 shows the XRD patterns of
biodegradable films F127 0%, F127 1%, F127 3%, and F127 5%. The patterns show that
there was a higher atomic ordering in the biodegradable film in F127 0% after 16 months of
storage. Peaks at 16◦, 19.65◦, and 22◦ were defined after storage; these peaks were related
to the crystalline starch, which indicates the retrogradation of starch in this film. However,
in films F127 1%, F127 3%, and F127 5%, there was no increase in the atomic ordering
after 16 months of storage, as peaks related to starch could not be identified. In F127 3%
and F127 5% films, there were two peaks at 19◦ and 23◦, which were less intense after
16 months; these peaks were associated with pluronic 127 [11]. The X-ray patterns indicate
that pluronic F127 avoided retrogradation after the storage period of 16 months. Mina
Hernandez [27] reported a significant increase in the rearrangement of the polymer chains
of mixtures of thermoplastic starch and polycaprolactone during short storage periods
(5 and 26 days). Furthermore, the author found that the retrogradation of starch-based
polymers occurs more rapidly when the materials are stored in conditions of high RH,
which also negatively impacts their mechanical performance.

3.6. Thermal Behavior by DSC

The results of the thermal behavior of the biodegradable films are presented in Table 2.
DSC experiments have shown that the melting temperature (Tm) of the neat corn starch
film decreases with a significant increase in enthalpy (∆Hm), indicating a gain in the
ordering of the polymeric structures involved. In contrast, chitosan films exhibited an
increase of 15 ◦C after 16 months of storage. The enthalpy values for this biopolymer
decreased as a function of the evaluated time. Notably, the mixture of starch and chitosan
(F127 0%) exhibited a thermal behavior in which starch transitions predominated. The
incorporation of the poloxamer in the starch-chitosan matrix ensured gelatinization, with
the absence of the band at ~62 ◦C (TP, gelatinization peak). A decrease was observed in
the melting temperature (56.1 ◦C) corresponding to neat F127. The increase in poloxamer
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content resulted in an increase in the melting temperature and a decrease in enthalpy after
16 months, with respect to its nonfunctionalized homologous (F127 0%). This allowed for
demonstrating the plasticizing effect generated by the poloxamer due to the destabilization
of the crystalline regions. The fusion of intra- and inter-molecular double helices and
the partial recovery of the crystalline structure of amylopectin (Figure S1, Supplementary
Material) can be observed [28]. The crystals formed during the starch retrogradation
process are less orderly and homogeneous than native starch; this is reflected in their lower
melting temperatures. This effect is similar to that observed in other starches, such as
sago [29]. The DSC parameters of starch in biodegradable films are summarized in Table 2,
and this result is in accordance with that obtained from the XRD analysis.

Polymers 2021, 13, x FOR PEER REVIEW 7 of 10 
 

 

 
Figure 4. X-ray diffraction patterns of biodegradable films of corn starch-chitosan with pluronic 
F127 at ratios of 0%, 1%, 3%, and 5% stored for 0 and 16 months. 

3.6. Thermal Behavior by DSC 
The results of the thermal behavior of the biodegradable films are presented in Table 

2. DSC experiments have shown that the melting temperature (Tm) of the neat corn starch 
film decreases with a significant increase in enthalpy (∆Hm), indicating a gain in the order-
ing of the polymeric structures involved. In contrast, chitosan films exhibited an increase 
of 15 °C after 16 months of storage. The enthalpy values for this biopolymer decreased as 
a function of the evaluated time. Notably, the mixture of starch and chitosan (F127 0%) 
exhibited a thermal behavior in which starch transitions predominated. The incorporation 
of the poloxamer in the starch-chitosan matrix ensured gelatinization, with the absence of 
the band at ~62 °C (TP, gelatinization peak). A decrease was observed in the melting tem-
perature (56.1 °C) corresponding to neat F127. The increase in poloxamer content resulted 
in an increase in the melting temperature and a decrease in enthalpy after 16 months, with 
respect to its nonfunctionalized homologous (F127 0%). This allowed for demonstrating 
the plasticizing effect generated by the poloxamer due to the destabilization of the crys-
talline regions. The fusion of intra- and inter-molecular double helices and the partial re-
covery of the crystalline structure of amylopectin (Figure S1, Supplementary Material) can 
be observed [28]. The crystals formed during the starch retrogradation process are less 
orderly and homogeneous than native starch; this is reflected in their lower melting tem-
peratures. This effect is similar to that observed in other starches, such as sago [29]. The 
DSC parameters of starch in biodegradable films are summarized in Table 2, and this re-
sult is in accordance with that obtained from the XRD analysis. 

Table 2. DSC parameters of biodegradable films of corn starch-chitosan with pluronic F127 at ratios 
of 0%, 1%, 3%, and 5% stored for 0 and 16 months. 

Film Sample 

Tp (°C) Tm1 (°C) Tm2 (°C) ∆Hm2 (J g−1) 

Month 
0 

Month 
0 

Month 
16 

Month 
0 

Month 
16 

Month 
0 

Month 
16 

Corn starch 63.13 -- -- 141.03 117.75 6.0 18.7 

Chitosan -- -- -- 104.68 119.47 28.0 19.6 

F127  56.10 56.10     

F127 0% 62.06 -- -- 138.96 106.63 6.4 10.3 
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Table 2. DSC parameters of biodegradable films of corn starch-chitosan with pluronic F127 at ratios
of 0%, 1%, 3%, and 5% stored for 0 and 16 months.

Film Sample
Tp (◦C) Tm1 (◦C) Tm2 (◦C) ∆Hm2 (J g−1)

Month
0

Month
0

Month
16

Month
0

Month
16

Month
0

Month
16

Corn starch 63.13 – – 141.03 117.75 6.0 18.7
Chitosan – – – 104.68 119.47 28.0 19.6

F127 56.10 56.10
F127 0% 62.06 – – 138.96 106.63 6.4 10.3
F127 1% – 45.52 51.52 137.63 112.94 8.4 9.1
F127 3% – 51.95 51.68 – 108.05 – 6.3
F127 5% – 47.84 51.46 114.36 115.22 8.5 4.0

– negligible.

3.7. Water Solubility (WS)

The WS of biodegradable materials is a crucial parameter because it is important that
they can decompose in both terrestrial and aquatic environments after being discarded,
where they can potentially contaminate the environment on several occasions. A significant
increase in the water solubility capacity of the starch-chitosan-based materials was observed
(Table 1) at all poloxamer contents (1%, 3%, and 5%) after 16 months of storage with water
solubility values of 18%, 24%, and 57%, respectively, compared to the materials evaluated
at time zero [11]. Shaker, Elbadawy [30] found that by using different types of poloxamers,
such as pluronic F127 and F68, the degree of solubility and the dissolution rate of drugs
improved, thus facilitating their usage in pharmaceutical production.
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3.8. Mechanical Properties

The mechanical performance of corn starch and chitosan films with various poloxamer
concentrations was significantly affected with storage time, as shown in Table 1. A slight
increase in the stiffness of the materials was observed, presenting an increase in the tensile
stress values. In comparison, the percentage of elongation of the materials decreased when
the content of poloxamer was >3%. This mechanical behavior may be associated with two
changes in the films. First, SEM micrographs showed that when the poloxamer content was
>3% in the films, a higher superficial modification was observed. Second, based on the FTIR
spectra of the films, the starch contained in these materials was presumed to depolymerize
after storage for 16 months. Furthermore, hydrogen bonds are the predominant ones
in these biodegradable films; however, this type of bond is known to be weak, and the
tenacity is affected in this case. This mechanical property is diminished by lower values of
elongation, without resistance being sacrificed.

4. Conclusions

Storage time can significantly modify the physicochemical, morphological, and struc-
tural properties of biodegradable films comprising starch, chitosan, and poloxamer. This
information is important to ascertain the state of packaging materials of biodegradable ori-
gin when stored at room temperature. Based on physicochemical characterization, there is
evidence suggesting that poloxamer avoids the retrogradation of cornstarch. The biodegrad-
able films showed a slight modification in their surface morphology after 16 months, similar
to erosion, and this phenomenon can modify the color, WS, mechanical behavior, and wet-
tability of films. Lower melting temperatures and enthalpies in the poloxamer films, as
well as storage for 16 months, indicate that the retrogradation of amylopectin only par-
tially recovers the crystalline structure of the native starch. The use in the pharmaceutical,
medical, and packaging industry of a biodegradable material such as the one developed in
this study may be possible, owing to the favorable properties observed in its mechanical
performance and acceptable solubility in liquid water, which can be sufficiently solubilized
in a short period of time with the presence of the poloxamer.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13142341/s1, Figure S1: DSC thermograms of biodegradable films of corn starch-
chitosan with pluronic F127 at ratios of 0%, 1%, 3%, and 5% and stored for 0 and 16 months.
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