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Abstract: Two factors, the crosslinking degree of the matrix (ν) and the size of the filler (Sz), have
significant impact on the Mullins effect of filled elastomers. Herein, the result. of the two factors on
Mullins effect is systematically investigated by adjusting the crosslinking degree of the matrix via
adding maleic anhydride into a rubber matrix and controlling the particle size of the filler via ball
milling. The dissipation ratios (the ratio of energy dissipation to input strain energy) of different
filled natural rubber/butadiene rubber (NR/BR) elastomer composites are evaluated as a function
of the maximum strain in cyclic loading (εm). The dissipation ratios show a linear relationship with
the increase of εm within the test range, and they depend on the composite composition (ν and Sz).
With the increase of ν, the dissipation ratios decrease with similar slope, and this is compared with
the dissipation ratios increase which more steeply with the increase in Sz. This is further confirmed
through a simulation that composites with larger particle size show a higher strain energy density
when the strain level increases from 25% to 35%. The characteristic dependence of the dissipation
ratios on ν and Sz is expected to reflect the Mullins effect with mathematical expression to improve
engineering performance or prevent failure of rubber products.

Keywords: Mullins effect; energy dissipation; composite structure

1. Introduction

Elastomeric materials with fillers have a broad range of industrial applications because
of their unique properties, such as high tensile strength, deformability, and toughness.
However, the addition of fillers also causes significant inelastic behavior [1–3]. When
composites are stretched from their virgin state, unloaded and then reloaded, the stress
required on reloading is lower than that during the initial loading; this stress softening
phenomenon called the Mullins effect [4,5]. The Mullins effect is generally attributed to
a continuous damage process; however, the damage mechanisms under a large cyclic
applied stress are still not fully understood [6]. The Mullins effect is involved in both
the engineering performance and failure of rubber products, therefore, a comprehensive
understanding of the Mullins effect is important [7–9].

The possible physical mechanisms and mathematical models of the Mullins effect
have attracted great attentions from researchers. Mullins et al. [10,11] proposed that filled
elastomers have amorphous micro-structures consisting of hard and soft phases. The hard
phase transformed into the soft phase during the deformation process, which led to the
Mullins effect. This concept has been used to explain the Mullins effect in many filled
elastomers [12–15]. The Mullins effect is also proposed to be based on continuum damage
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mechanics, and strain constitutive equations coupled with damage was used to describe this
effect [16–20]. Other physical mechanisms proposed to explain the Mullins effect include
bond rupture [21–24], molecular slip at the matrix–filler interface [25,26], breakdown of
aggregates and agglomerates of filler particles [27,28], and disentanglement [29,30]. It
is believed that the mechanisms vary with the nature of the filler and polymer of the
filled elastomers [31]. Li et al. divided the energy loss accompanying the Mullins effect
into recovery hysteresis (Erh) and softening parts (Es). They found that both Erh and
Es were dependent on nanocomposite structure (filler volume fraction and crosslinking
degree) [32]. Strain-induced light emission from mechanoluminescent cross-linkers in silica-
filled poly(dimethylsiloxane) has been recently used to reveal the covalent bond scission
which contributes to the Mullins effect [33]. However, the experimental works mentioned
above are complex to achieve in composites, which hinder their wide application. Therefore,
establishing a simple method to evaluate the influence of cross-linking degree of matrix
and filler size on Mullins effect would promote better understanding of the Mullins effect,
and may eventually improve the performance of the products.

Based on Green’s equation (W =
∫ εij

0 σijdεij), it is feasible to quantitatively analyze
the Mullins effect based on the energy change rather than the stress difference. It is worth
noting that the strain interval should be the same when calculating the energy of different
loading paths. There is an energy reduction when a filled elastomeric material is subjected
to cyclic loading with tension from its initial (virgin) natural configuration, whereas the
largest reduction is observed in the first and second cycles. Therefore, it is reasonable to
evaluate the Mullins softening with the energy difference corresponding to the same strain
between the first and the second cycle. It has been reported that the exact mechanisms
of Mullins effect varied with the nature of the polymer and filler of the system. If the
energy difference also varies systematically with the polymer and filler of the system, the
energy difference would provide a criterion for evaluating the degree of Mullins effect in
the experimental range.

In this study, the influence of two key factors, crosslinking degree of matrix and
size of filler, on the Mullins effect were systematically investigated. The two key factors
were purposely controlled, cross-linking degree was adjusted through via adding maleic
anhydride into rubber matrix and particle size of the filler was changed via ball milling.
The dissipation ratios during cyclic uniaxial tensile tests were evaluated as functions of the
maximum strain in cyclic loading and they showed linear relationships with the increase
of the εm within the test range. Crosslinking degree determines the value of the dissipation
ratios, but the size of the filler affects the trend of the dissipation ratios with εm, which
indicates crosslinking degree and size of filler have different contributions to the Mullins
effect. These results provide new insights for designing filled elastomeric materials and
predict their behavior.

2. Materials and Methods
2.1. Materials

Natural rubber (RSS1) consists of cis-1,4-polyisoprene with a Mooney viscosity of 79.9
at ML (1 + 4) at 100 ◦C, and butadiene rubber (BR9000) consists cis-1,4-polybutadiene with
a Mooney viscosity of 50 at ML (1 + 4) at 100 ◦C. Both natural rubber and butadiene rubber
were from Shanghai Dukang Co., Ltd., (Shanghai, China). The pyrolytic rice husk ash
containing biochar and silica (Trade Name as SiCB) were produced by Jilin Kaiyu Biomass
Development and Utilization Co., Ltd. (Changchun, China). Milled SiCB (MSiCB) were
prepared according to reported procedure using the XQM-2 planetary ball mill (Tianchuang
Co., Changsha, China) [34], and the milling parameters of SiCB are described in Table
S1. Maleic anhydride (MA), stearic acid, zinc oxide (ZnO), and sulfur (S) in analytical
grades were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
All the other chemicals including N-1,3-dimethylbutyl-N′-phenyl-P-phenylenediamine
(antioxidant 4020), poly(1,2-dihydro-2,2,4-trimethyl-quinoline) (antioxidant RD), wax, N-
tertbutylbenzothiazole-2-sulphenamide (accelerator NS), dicumyl peroxide (DCP, 98%),
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and aromatic hydrocarbon oil (DAE) in chemical grade were supplied by Beijing Chemical
Works. (Beijing, China) and used without further purification.

2.2. Preparation of Filled Elastomer Composites

Natural rubber/butadiene rubber (NR/BR) were chosen as elastomer matrix due to
activity in chemistry of NR which provides the chance for graft of maleic anhydride and low
thermogenesis of BR which reduces energy loss. Mechanical properties of NR/BR materials
are shown in Table S2. The elastomer composites were prepared using a laboratory-sized
internal mixer (KY-3220C-1L, Dongguan Kaiyan Machinery Equipment Factory, Dongguan,
China) according to the formulations listed in previous work [35]. NR and MA were first
mixed in an internal mixer at 40 rpm and 100 ◦C for 10 min to incorporate MA onto the
main chain of NR. Then pre-weighted filler, BR and rubber additives were added and
blended for another 13 min. Finally, the obtained composites were hot-pressed at 150 ◦C
and 20 MPa. The prepared samples were named as SiCB-MNRx/BR, with the numbers x
representing the corresponding loading of MA with a unit of phr. SiCB was milled under
different conditions (M1SiCB and M2SiCB) and were used as the fillers. The as-prepared
milled SiCB mixed with NR/BR to prepare M1SiCB-NR/BR and M2SiCB-NR/BR. The
detailed sample information is listed in Table 1.

Table 1. Recipes for preparation of SiCB-NR/BR.

Composites Filler NR
(phr)

BR
(phr)

MA
(phr)

SiCB-NR/BR SiCB 45 55 0
M1SiCB-NR/BR M1SiCB 45 55 0
M2SiCB-NR/BR M2SiCB 45 55 0
SiCB-MNR1/BR SiCB 45 55 1
SiCB-MNR2/BR SiCB 45 55 2
SiCB-MNR3/BR SiCB 45 55 3
SiCB-MNR4/BR SiCB 45 55 4

2.3. Characterization

Fourier transform infrared (FTIR) spectra were collected on a Bruker V70 FTIR spec-
trometer (Bruker, Karlsruhe, Germany) using attenuated total reflection (ATR) mode in
order to substantiate the interaction between NR and MA. Particle size distribution of
the fillers were measured by the laser scattering particle size analyzer (BT-9300ST, Baite
Instrument, Dandong, China) using water as the dispersant. The particle morphology
and cryogenic fracture surfaces of composites were observed using scanning electron
microscope (SEM, SU8020, Hitachi & SEM, JSM-6700F, Jeol, Tokyo, Japan). The crosslinking
density [ν]es was determined from equilibrium swelling experiments with toluene. Rubber
samples (around 1 g) were weighed in 50 mL vials (m0) and immersed in 20 mL of solvent
to reach equilibrium swelling (72 h). The solvent was removed from the sample surface
with filter paper and the sample was (m1) and finally dried at 80 ◦C in an oven for 48 h until
a constant weight was reached (m2). The crosslinking density was calculated according to
the Flory–Rehner expression: [36,37]

[ν]es =
ln(1−VR) + VR + χV2

R

2Vs

(
0.5VR −V

1
3

R

) with VR =
m2

m2 + (m1 −m2)
ρR
ρS

(1)

ρR = 0.45ρNR + 0.55ρBR (2)

where VR is the volume fraction of rubber in swollen sample, vs. is the molar volume of
toluene (106.3 mL/mol), χ is the NR/BR–toluene interaction parameter (here, χ = 0.534), ρR
and ρS are the density of rubber (ρNR: 0.930 g/mL; ρBR: 1.930 g/mL) and toluene (toluene:
0.866 g/mL), respectively.
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The crosslinking density [ν]ts was determined from the stress–strain curves via the
Mooney–Rivlin approach [38–40]. The crosslinking density was subsequently calculated
from C1.

σ = 2
(

C1 +
C2

λ

)(
λ− 1

λ2

)
with λ = 1 + Xε (3)

[ν]ts =
2C1

kBT
(4)

where σ is the true stress, which is measured in the strained state, C1 and C2 are charac-
teristic parameters of the vulcanized rubber, representing effects of chemical crosslinking
and entanglements, respectively. λ is the extension ratio, X is the strain amplification
factor (X = 1 for gum rubber), ε is the engineering strain, kB is the Boltzmann constant
(1.38 × 10−23 m2 kg s−2 K−1), and T is the absolute temperature.

Uniaxial cyclic tension test was conducted on the CMT-20 testing machine equipped
with an extensometer (Liangong Testing Technology Co., Ltd., Jinan, China). The rectan-
gular specimens with a dimension of 70 mm × 12.5 mm × 3.5 mm were stretched with a
constant strain rate of 0.025 s−1 (l0 = 40.0 mm).

To investigate the Mullins softening, the specimens were stretched using various the
maximum strain in cyclic loading (εm, εm varied from 0.5 to 3.0 for the samples). The
measurements were repeated at least three times for each specimen to confirm satisfactory
reproducibility.

3. Results and Discussion
3.1. Characterization of the Fillers

The particle size of filler is one of the important factors that substantially affect the
performances of filled rubber composites [41,42]. Figure 1a shows particle size distribution
of fillers of the as-prepared composites. The size distribution of SiCB particles ranged from
tens of nanometers to 70 µm broadly. After ball milling treatment, the obtained M1SiCB
showed a reduced size and a narrower size distribution ranging from a few nanometers to
20 µm. When the milling speed was further increased, the obtained particles shifted to a
smaller size range, and at the same time the particles started to form agglomerates ranged
from 10 to 60 µm due to the excessive surface energy (Figure 1a).

Figure 1. (a) The particle size distribution of fillers, SEM of (b) SiCB, (c) M1SiCB and (d) M2SiCB.

The morphologies of the obtained fillers were observed by SEM. SiCB showed large
irregular shape with bright particles distributed over the surface of the primary particles,
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suggesting the presence of two different materials [43] (Figure 1b). After ball milling,
the as-prepared M1SiCB showed reduced particle size than SiCB (Figure 1c), while big
agglomerates formed in M2SiCBs with uneven surfaces (Figure 1d), which are consistent
with the particle size analyzer result. These three fillers with same composition but different
size range were further used to study filler size effect on viscoelasticity in the following
session.

3.2. Crosslinking Density of SiCB-MNRx/BR Composites

Crosslinking density (number of crosslinking bonds in a crosslinked polymer) is one of
the main variables affecting the properties of vulcanized rubbers. Crosslinking densities of
the SiCB-MNRx/BR composites with various MA contents were determined by equilibrium
swelling (Table 2). With an increasing MA contents, the crosslinking density determined
from equilibrium swelling ([ν]es) increased gradually, indicating changes of the rubber
matrix after adding MA (confirmed by FTIR spectra in Figure S1). The crosslinking density
determined from the stress–strain curve ([ν]ts) was also obtained, which was larger than
[ν]es. This may be because [ν]ts includes both the chemical crosslinking and the temporarily
trapped chain entanglements [44–46].

Table 2. Crosslinking densities determined from both equilibrium swelling and tensile testing.

Composites [ν]es
(10−4 mol/mL)

[ν]ts
(10−4 mol/mL)

SiCB-NR/BR 2.460 2.751
SiCB-MNR1/BR 2.602 2.909
SiCB-MNR2/BR 2.607 3.004
SiCB-MNR3/BR 2.717 3.148
SiCB-MNR4/BR 2.490 2.680

3.3. Properties of the Filled NR/BR Composites

The effect of the filler particle size and crosslinking degree of polymer matrix on the
filler reinforce performance was evaluated in detail. Figure 2a displays stress–strain curves
of NR/BR composites with different crosslinking. Among all the composites, SiCB-NR/BR
showed the lowest stress of 4.9 MPa upon breakage, which could be attributed to the
poor compatibility between filler SiCB and rubber matrix. However, the stress increased
to 6.2 MPa after the inclusion of MA (1 phr). The crosslinking degree of polymer matrix
improved with an increase in the MA content up to 3 phr, leading to increased tensile
strength as shown in Figure 2a.

Stress–strain curves of SiCB-NR/BR composites with different filler particle sizes
are shown in Figure 2b. Compared to SiCB, the milled SiCB has a smaller size with an
enhanced reinforcing performance. This is because the filler with a small size provided a
large contact area with the rubber matrix and offered more sites to share the stress loaded
on the molecular chains. The reinforcing performance of M2SiCB was lower than M1SiCB,
which may be attributed to the non-uniform size distribution of M2SiCB. Compared with
M1SiCB-NR/BR and M2SiCB-NR/BR, the stress of SiCB-NR/BR increased quickly at the
initial stage, which arose from the large particle size of filler acting as hindrance during
tensile testing. The stress–strain curve gradually becomes flattened as further stretching
the SiCB-NR/BR sample due to the rupture of filler clusters [47].

The uniformity of the filler dispersion in the matrix also played an important role in
the composite properties. The fracture surfaces of the composites were observed by SEM
as shown in Figure 3. The aggregation of filler particles and cavities in the matrix were
observed on the fracture surface of SiCB-NR/BR (Figure 3a), which indicated the weak
filler–rubber interaction. In contrast, no obvious phase separation between the filler and
polymer matrix was observed for the M1SiCB-NR/BR (Figure 3b), which indicates that
small particle size and uniform dispersion of M1-SiCB in the rubber matrix could improve
interfacial compatibility. This, in turn, should result in the improved reinforcement in
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the mechanical property of composites, consistent with the previous report [34]. Small
biochar block and rough surface were observed on the fracture surface of SiCB-MNR3/BR
(Figure 3c), which indicated enhanced interfacial adhesion between SiCB and MNR/BR
polymer matrix due to the presence of MA.

Figure 2. Representative stress–strain curves of the filled NR/BR composites: (a) with different crosslinking densities and
(b) with different fillers particle size.

Figure 3. SEM images of the brittle fracture surfaces (a) SiCB-NR/BR, (b) M1SiCB-NR/BR, (c) SiCB-MNR3/BR, and (d)
M2SiCB-NR/BR.
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3.4. Mullins Effect of the Filled NR/BR Composites

To study the Mullins effect of the filled NR/BR composites, uniaxial cyclic tensile tests
were conducted at various strains from 0.5 to 3.0. As shown in Figure 4, a significant stress
softening was observed for SiCB-NR/BR, SiCB-MNR3/BR and M1SiCB-NR/BR in the first
two tensile loop. The stress required on reloading was lower than that during the initial
loading in the regime of ε < εm for all the composites (Figures S2–S8). This result indicates
that all composites exhibited Mullins effect which is considered a damage mechanism of
rubber materials.

Figure 4. Stress–strain response of SiCB-NR/BR (a,d), SiCB-MNR3/BR (b,e) and M1SiCB-NR/BR (c,f) subjected to uniaxial
cyclic tension with different strain (a–c, ε = 0.5; d–f, ε = 3.0).

In order to further investigate the Mullins effect, three basic parameters are defined,
namely, stored elastic energy in loading and reloading processes (W0 and Wr), and the re-
leased energy in the unloading process (Wu) as shown in Figure 5. Four derived parameters
have also been defined based on W0, Wr, and Wu. The list of notations has been showed in
Table A1.

The first two derived parameters, Energy dissipation D is obtained from the area
enclosed by the loading–unloading or loading–reloading curves as shown in Figure 5. Du
and Dr are defined by the following equations.

Du = W0 −Wu (5)

Dr = W0 −Wr (6)

where Du represents the difference between stored elastic energy and released energy in
each loading–unloading cycle. Dr represents the difference of stored elastic energies in
loading–reloading cycles.

Figure 6 shows the energy dissipation of SiCB-MNRx/BR composites with different
crosslinking densities at different strain ε during the unloading (Du) and reloading (Dr)
processes. It can be seen that both Du and Dr increased with the increase of εm for all
composites. Du was larger than Dr at the same strain, which indicates that stress in
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reloading was larger than that in unloading at the same ε. The energy difference is indicative
of the viscoelasticity in the filled elastomers [5]. Li et al. investigated the energy dissipation
accompanying the Mullins effect in virgin loading–unloading process. They divided the
energy dissipation into recovery hysteresis and softening stages, and suggested the energy
loss associated with hysteretic recovery was mainly determined by the microscopic strain
of the rubber phase, while the energy loss associated with softening was involved in both
the rubber and filler phases [32]. Compared with the virgin loading–unloading process,
energy dissipation in loading–reloading processes was defined as the permanent hysteresis
energy, which was regarded as irreversible energy dissipation [33].

Figure 5. Schematics for the evaluations of energy dissipation based on (a) loading–unloading and (b) loading–reloading
curves with the same maximum strain of εm. W and D are the stored and dissipated energies, respectively. The subscripts u
and r denote unloading and reloading, respectively.

Figure 6. Energy dissipation of SiCB-MNRx/BR composites with different crosslinking densities at different ε during the (a)
unloading and (b) reloading processes.

It should be considered that the input energy by loading (W0) increases with the
increase of εm, resulting in increased D at the same time [48]. In order to compare energy
dissipation D with consideration of W0 among the deformations under various degrees
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of strain, a derived parameter ‘dissipation factor’ (∆) can be defined as the ratio of energy
dissipation to the stored elastic energy of loading (input elastic energy):

∆ i =
Di
W0

(i = u, r) (7)

The filled elastomers exhibit a significantly lower stress on reloading than that on
the virgin loading under the previously applied maximum strain. Larger stress difference
indicates more energy dissipation resulting from the damage between the first and the
second loading paths. Therefore, ∆r associated with loading–reloading process could be
as a measure of the degree of softening effect. Large ∆r indicates high energy dissipation,
which could reflect high manifest degree of the Mullins effect. Assuming that the loss
factor under the experimental conditions is a function of elastic matrix crosslink density
(ν), particle size (Sz) and strain (ε), it can be described by the following equation:

∆r = ξ (ν, Sz, ε) (8)

∆r = ϕ(ν) (9)

∆r = φ(Sz) (10)

3.5. Influences of Crosslinking Degree of Polymer Matrix on the Mullins Effect

Figure 7a displays ∆r as a function of εm for SiCB-MNRx/BR composites with different
crosslinking densities. It can be seen that ∆r increased with increasing the strain for SiCB-
MNRx/BR composites. It is worth mentioning that all the SiCB-MNRx/BR composites
showed a very close slope of the fitting curve, which was around 7.6. This result may
suggest that when SiCB-MNRx/BR composite specimens completed the first two stretching
cycles under the same maximum strain, the ratio of the energy dissipation to the total stored
energy of the composite showed a simple linear relationship with the change of the εm.
Since the SiCB-MNRx/BR composites were prepared with the same filler under the same
conditions, the only difference between these composites was the crosslinking degree of
the elastomer. This finding reveals that the softening depends on the crosslinking degrees
of the rubber when the other conditions are the same. Furthermore, higher crosslinking
density resulted in the weaker softening degree, this difference had no correlation with
the change of εm of the specimen. It was also found that higher ν would lead to smaller ∆r,
which could be ascribed to increased chemically crosslinked network; higher molecular
weight polymer network provided more extra reversible deformation, thus there would
be less energy dissipation. Zhong et al. [49,50] proposed that increasing the elastomer
crosslinking degree would result in chain entanglement, slippage, and twisting more likely
to occur, therefore leading to the magnitude of strain energy change. However, this strain
energy change would also be averaged over the different strains. Therefore, for the samples
with the same Sz, ν only affected the value of ∆r, but did not affect the trend of ∆r as a
function of εm

(
d∆r
dε = dϕ(ν)

dε = 0
)

.
On the other hand, ∆u only reflects the energy dissipation in first loading–unloading

process, this is in agreement with the reported theory that the main Mullins effect is
represented by the difference between the first and the second loading–unloading runs.
Therefore, to compare ∆u during the loading–unloading processes among the as-prepared
composites, the difference of the dissipation factors (Ω (1∆ u -2∆ u)) between the first and
second loading–unloading runs was used to reflect the degree of the softening effect.
A larger Ω indicates a higher energy dissipation, which would reflect a higher manifest
degree of the Mullins effect. The Ω value as a function of εm for SiCB-MNRx/BR composites
was shown in Figure 7b. It can be seen that Ω increased with increasing the strain for
SiCB-MNRx/BR composites, which was ν-independent. For SiCB-MNRx/BR composites,
Ω behaves very similarly to ∆r under different strains, as shown in Figure 7c.
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Figure 7. (a) The dissipation factor (∆r), (b) the difference of dissipation factor (Ω) as a function of εm for SiCB-MNRx/BR
composites with different crosslinking densities, and (c) schematic for the effect of crosslinking degree of polymers on
Mullins effect.

3.6. Influences of the Filler Particle Size on the Mullins Effect

The influences of the filler particle size on Mullins effect of the SiCB-NR/BR compos-
ites was also evaluated in detail. As shown in Figure 8, for the same SiCB-NR/BR sample,
∆r and Ω increased with increasing the strain. It was also observed that the slope of the
fitting curve of the three samples follow the order of SiCB-NR/BR > M2SiCB-NR/BR >
M1SiCB-NR/BR, which corresponds to the filler size order of SiCB > M2SiCB > M1SiCB.
Since the samples were prepared under the same conditions, we suggest that the slop
differences of the three samples are ascribed to the particle size of the filler. The reduced
filler particle size resulted in a decreased slope, which indicates that the trend of ∆r as a
function of εm is Sz-dependent d∆r

dε = dφ(Sz)
dε = b, (b is a constant). The average particle size

of the filler SiCB in the composite matrix would result in the molecular network undergoing
a high degree of structural breakdown during the cyclic deformation, which could lead
to increased energy loss and more obvious softening behavior. These results reveal that ν
and Sz have different influence on the Mullins effect, ν determines the intercept of ∆r and
Ω (Figure 7c), while Sz affects the slope of ∆r and Ω (Figure 8c) with εm. Therefore, both
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particle size and crosslinking degree are key factors that determines the Mullins effect in
filled rubber composites.

Varying fillers particle size is limited due to the nature of filler SiCB, therefore, the
particles size effect on strain energy density are further investigated by simulation. The
Mooney–Rivlin model was used to simulate the particle size effect on the strain energy
density of the composite samples via finite element analysis coded with ABAQUS, which
was carried out at the different strain. Uniaxial cyclic test data was used as the input
source to calculate the coefficients. Figure 9 shows the strain energy density distribution
profiles of model NR/BR composites, where fillers are schematized by rigid body balls with
different radii (r = 0.1, 0.2, 0.3 and 0.4 mm) at the strain level of 25% and 35%, respectively.
Composites with larger particle size show a higher strain energy density of composites
when the strain level increases from 25% to 35%.

Figure 8. (a) The dissipation factor (∆r), (b) the difference of dissipation factor (Ω) as a function of εm for SiCB-NR/BR
composites with different fillers particle size, and (c) schematic for the effect of filler size on Mullins effect.
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Figure 9. Contour plots of strain energy density distributions in the uniaxial specimen for model NR/BR composites filled
with different particle size with diameter of (a) r = 0.4 mm, (b) r = 0.3 mm, (c) r = 0.2 mm, (d) r = 0.1 mm, at different strain
level from 25% to 35%.
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4. Conclusions

In summary, ∆r and Ω associated with energy dissipation from different composites
subjected to uniaxial cyclic tensile testing were used for the first time to evaluate the effect
of filler particle size and polymers’ crosslinking degree on the Mullins effect. The study was
performed by evaluating the relationship between ∆r, Ω of the different composites and
the maximum strain. When the particle size of filler was the same, increased crosslinking
degree led to a reduced Mullins effect of the composites. In contrast, filler with larger
particle size promoted the Mullins effect when other conditions were the same. ∆r and
Ω could be the effective factors to describe the Mullins effect, which makes it possible to
understand the softening performance of rubber composites caused by the filler size or
crosslinking degree of matrix in practice.
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Appendix A

Table A1. The list of notations.

Symbol Physical Meaning

ν Crosslinking degree

Sz Size of filler

εm The maximum strain

W0 The stored elastic energy in loading processes

Wu The released energy in the unloading process

Wr The stored elastic energy in reloading processes

D The energy dissipation

∆ The dissipation factors

Ω The difference of the dissipation factors
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