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Abstract: Investigating the large number of various materials now available, some materials scientists
promoted a method of combining existing materials with geometric features. By studying natural
materials, the performance of simple constituent materials is improved by manipulating their internal
geometry; as such, any base material can be used by performing millimeter-scale air channels. The
porous structure obtained utilizes the low thermal conductivity of the gas in the pores. At the same
time, heat radiation and gas convection is hindered by the solid structure. The solution that was
proposed in this research for obtaining a material with porous structure consisted in perforating
extruded polystyrene (XPS) panels, as base material. Perforation was performed horizontally and at
an angle of 45 degrees related to the face panel. The method is simple and cost-effective. Perforated
and simple XPS panels were subjected to three different temperature regimes in order to measure the
thermal conductivity. There was an increase in thermal conductivity with the increase in average
temperature in all studied cases. The presence of air channels reduced the thermal conductivity of
the perforated panels. The reduction was more significant at the panels with inclined channels. The
differences between the thermal conductivity of simple XPS and perforated XPS panels are small,
but the latter can be improved by increasing the number of channels and the air channels’ diameter.
Additionally, the higher the thermal conductivity of the base material, the more significant is the
presence of the channels, reducing the effective thermal conductivity. A base material with low
emissivity may also reduce the thermal conductivity.

Keywords: thermal insulation material; porous structure; perforated extruded polystyrene; ther-
mal conductivity

1. Introduction

Energy conservation by reducing heat losses, the temperature control on walls surfaces
aimed for people’s protection and comfort and the increase of the operating efficiency of
heating/ventilating/cooling systems, steam plants, commercial and industrial processing
and supplying systems are all research directions for sustainable and intelligent develop-
ment, correlated with the climate changes that have occurred in the past decade. [1–4]. The
main factors influencing the heat transfer in a material are the thickness of the material and
its thermal properties: thermal conductivity and specific heat. In thermal insulation, porous
materials are commonly used. The porous structure uses the low thermal conductivity of
the gas in the pores. At the same time, heat radiation and gas convection is hindered by
the solid structure [4]. Materials with thermal insulation properties are divided according
to their inner structure into:

(a) fibrous insulations, which consist in fibers with small diameter and air within the in-
terspaces. The fibers can be in parallel or perpendicular to the surface being insulated
and can be either interconnected or loose. The fibers used are silica, glass, mineral
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wool, slag wool and alumina silica fibers. The most used insulations of this type are
glass fibers and mineral wool [5–7].

(b) cellular insulations that contain small individual cells, separated from each other.
The cellular material can be glass or plastic foam, such as polystyrene (closed cell),
polyurethane, polyisocyanurate, polyolefins or elastomers [8,9].

(c) granular insulations, which are composed of small nodules that contain voids. They
are not really cellular materials, since gases can be transferred between the individual
spaces. This type of insulation can be produced as bulk material or in combination
with a binder and fibers in order to obtain a rigid insulation. Some examples are
calcium silicate, expanded vermiculite, perlite, cellulose, diatomaceous earth and
expanded polystyrene [10–12].

The latest research has been conducted with the aim of inventing and developing new
thermal insulating materials. Jelle et al. [9] proposed innovative and robust highly thermal
insulating materials. Such advanced insulation materials (AIM) are vacuum insulation
materials (VIMs), gas insulation materials (GIMs), nano insulation materials (NIMs) and
dynamic insulation materials (DIMs). These materials have closed pore structures (VIMs
and GIMs) or either open or closed pore structures (NIMs). A vacuum insulation material
(VIM) is basically a homogeneous material with a closed small pore structure filled with a
vacuum with an overall thermal conductivity of less than 4 mW/(mK) in pristine condition.
Maintaining the vacuum inside the pores during a long service life may be the most difficult
or challenging task for the VIMs. A gas insulation material (GIM) is basically the same
as a VIM, except that the vacuum inside the closed pore structure is substituted with
a low-conductance gas. That is, a GIM is a homogeneous material with a closed small-
pore structure filled with a low-conductance gas with an overall thermal conductivity of
less than 4 mW/(mK) in pristine condition [12–14]. Other thermal insulation materials
are vacuum insulation panels (VIPs) which represent evacuated, open-porous materials
that are enveloped into a multilayer film. This is the best material in terms of thermal
conductivity in pristine condition: 3–4 mW/mK. It also has a low thickness compared to
traditional thermal insulation materials, i.e., polystyrene, but it has some disadvantages,
such as being fragile, recording a significant decrease of performance with time and not
being adaptable for construction sites without affecting the thermal conductivity. However,
combining VIPs with other materials is beneficial. Among the core materials applied in
VIPs are fumed silica, silica aerogels, open cell expanded polystyrene, polyurethane foams,
fiberglass and composite materials. A nano-structured core material in combination with
pressure reduction is favorable to be used in VIPs. The use of conventional insulation as a
core material for VIPs results in the necessity of a very high quality of vacuum (~0.1 mbar).
Common organic envelope materials cannot maintain this inner pressure for a long period:
a rapid intake of air through the envelope will occur, resulting in a fast increase of the
thermal conductivity. Solutions to maintain this high quality of pressure almost always go
together with an envelope material with a higher thermal conductivity. However, VIPs are
not in widespread use in buildings because of their high cost, susceptibility to perforation
and the effects that worsen their performance [15,16].

Gas-filled panels (GFPs) try to minimize all parameters of heat transfer by using a low-
conductive gas as the main insulator to influence both the gaseous thermal conductivity
and the thermal conductivity of the solid structure. The thermal conductivity through the
gas is the most important heat transfer in a GFP. As a result of the cellular structure of the
GFP, the total panel has a thermal conductivity close to the still-gas thermal conductivity of
the fill [16]. Some authors [6,17–19] proposed a simple, effective model for predicting the
effective thermal conductivity of VIPs; namely, as a function of the thermal conductivity of
the core materials, the equivalent thermal conductivity of the rarefied gas embraced in the
core and the equivalent thermal conductivity of radiation. The micro structure of the porous
core materials and vacuum degree were taken into consideration. Three VIPs were made
from polyurethane foam materials, fibrous materials and nano-granular silica materials as
the core materials. Surveying the excess of bulk materials now available, some materials
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scientists promoted a method of combining existing materials with geometric features to
create multifunctional hybrid materials. By studying natural materials, the performance
of simple constituent materials is improved by manipulating their internal geometry at
different length scales. Craig and Grinham [6] described a method for designing building
materials as heat exchangers, so that incoming fresh air can be efficiently tempered with
low-grade heat while conduction losses are kept to a minimum. Any base material can
be used in principle, so long as it can be manufactured with millimeter-scale air channels.
Imbabi [18] introduced a new void space dynamic insulation (VSDI) technology that
couples low-cost conventional insulation materials with efficient ventilation to deliver
low-loss building envelopes and high indoor air quality in thin wall construction. VSDI is
a new type of dynamic insulation in which the air flow is confined within a co-planar void
space bounded by one or more layers of insulation material and the wall structure. The
advantages of using VSDI consist in eliminating the risk of interstitial condensation and
that of overheating during extreme summer months.

The research reported in this paper aims at describing a new design of building ma-
terials with improved thermal insulation properties, by applying different geometries of
air channels inside the materials, thus increasing porosity and lowering the density. The
method proposed is simple and cost-effective, as compared to advanced insulation materi-
als that require the small pore structure to be filled with a vacuum or low-conductance gas
and also considering the aforementioned disadvantages of these materials.

2. Materials, Methods and Equipment
2.1. Materials

Starting from extruded polystyrene panels with known thermal and physical charac-
teristics, an equidistant network (regular grids) was drawn on their surface and orifices
(channels) were drilled in the nodes, either perpendicularly to the surface or inclined with
a specific angle [19]. Thus, panels with horizontal or inclined channels were obtained
(Figure 1). Four types of panels were designed, namely panels with perforated horizontal
channels, P1 (Figure 1a), panels with partly perforated symmetric channels, P2 (Figure 1b),
panels with partly perforated alternative channels, P3 (Figure 1c) and panels with perfo-
rated inclined channels with an angle α = 45◦, P4 (Figure 1d). The reference panel was the
extruded polystyrene (XPS) panel without orifices, P0.

The perforation was manually carried out by means of a pin on the surface of the
panels, in the nodes of the grid. The thickness of the panels was g = 30 mm. The diameter
of each orifice was D = 2 mm. The orifices were equally spaced at x = 20 mm distance from
the centers (for the panels with horizontal perforation) and x = 30 mm for the panel with
inclined channels. The distance between the center of a marginal orifice and the border of
the panel was x as well. The lengths of the channels were t = 10 mm for P2 and t = 15 mm
for P3, respectively. Table 1 indicates the physical characteristics of the panels.

Table 1. The physical features of panels.

Code of
Panel

Mass
m (kg)

Density
ρ (kg/m3)

Dimensions

Length (m) Width (m) Thickness (m)

P0 0.311 28.79 0.6 0.6 0.03
P1 0.302 27.96 0.6 0.6 0.03
P2 0.308 28.51 0.6 0.6 0.03
P3 0.303 28.05 0.6 0.6 0.03
P4 0.300 27.77 0.6 0.6 0.03
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Figure 1. Design of thermal insulation materials with different geometries of channels: (a) panel without orifices, P0; (b) 
panel with perforated horizontal channels, P1; (c) panel with partly perforated symmetric channels, P2; (d) panel with 
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g is panel thickness; t is the channel length; x is the distance between two adjacent channels and α is the angle of inclined 
channels. 
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Figure 1. Design of thermal insulation materials with different geometries of channels: (a) panel without orifices, P0; (b)
panel with perforated horizontal channels, P1; (c) panel with partly perforated symmetric channels, P2; (d) panel with partly
perforated alternative channels, P3; (e) panel with perforated inclined channels with an angle α = 45◦, P4. Legend: g is panel
thickness; t is the channel length; x is the distance between two adjacent channels and α is the angle of inclined channels.

2.2. Methods
2.2.1. The Analytical Description of the Thermal Conductivity

The effective thermal conductivity was determined considering the different arrange-
ment of the channels within the panel.

The Mathematical Model Applied to the Panels with Perforated Horizontal Channels

The dimensions of the panel are L× l × g, the number of channels is n and the diameter
of each orifice, D. The distance between the orifices’ centers is x, as shown in Figure 2. The
panel is quadratic, and therefore L = l.

The effective thermal conductivity was obtained by using Equations (1)–(9), consider-
ing that the resistances of XPS and air were combined into parallel circuits [8,19,20].

1
Rt

=
1

RXPS
+

1
Rair

, (1)

where Rt is the total (effective) resistance (the measurement units: K/W); RXPS is the
resistance of polystyrene and Rair is the resistance of air.
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Equation (1) can also be written as:

Rt =
RXPS · Rair

RXPS + Rair
, (2)

The resistances of polystyrene and air are:

RXPS =
g

λXPS · SXPS
, (3)

and
Rair =

g
λair · Sair

, (4)

where g is the thickness of the panel (the measurement unit: m); λXPS is the thermal
conductivity of polystyrene (the measurement unit: W/mK); SXPS is the effective surface
of polystyrene (the measurement unit: m2); λair is the thermal conductivity of air (the
measurement units: W/mK); Sair is the effective surface of channels filled with air (the
measurement units: m2).

The effective surfaces of polystyrene and channels are:

SXPS = l · L − n · π D2

4
, (5)

and

Sair = n · π D2

4
, (6)

The effective resistance can also be expressed as:

Rt =
g

λe f f · S
, (7)

where λe f f is the effective thermal conductivity (the measurement units: W/mK); S is the
surface of the panel (the measurement units: m2). The surface of the panel is:

S = l · L, (8)

By replacing Equations (3) and (4) in Equation (7), the effective thermal conductivity
becomes:

λe f f =
λXPS · SXPS + λair · Sair

S
, (9)

The thermal conductivity of air at the room temperature (20 ◦C) is λair = 0.024 W/mK.
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Since the channels of the panel influence the heat transfer conditions and the physical
characteristics, such as density, porosity and mass, the next step is to calculate the number
of channels of a quadratic panel having the arrangement of the channels indicated in
Figure 2. If the number of channels on a line is nL , the number of channels on the entire
surface of the panel becomes:

n = nL · nL, (10)

while the surface of the panel can be expressed as:

L2 = (nL + 1)2 · x2, (11)

The dimensions of the panel and the distance between channels are known quantities
and thus, the number of channels on a line is:

nL =
L
x
− 1, (12)

The total number of channels is calculated with Equation (10):

n =

(
L
x
− 1

)2
, (13)

The Mathematical Model Applied to the Panels with Partly Perforated Channels

The behavior to the heat transfer of a panel with channels having a length lower than
the thickness of the panel, as indicated in Figure 3, is described by the following relations.
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The resistances of XPS and air were combined into series and parallel circuits [8–12].
The effective resistance can be expressed according to the notations used in Figure 3 as
follows:

Rt = 2R1 + R2, (14)

where the resistance R1 of combined polystyrene and air is:

1
R1

=
1

RXPS
+

1
Rair

, (15)

Resistance R1 can also be written as:

R1 =
g
3

λe f f 1 · S
, (16)



Polymers 2021, 13, 2217 7 of 14

Resistance R2 that corresponds to polystyrene is:

R2 =
g
3

λXPS · S
, (17)

The effective thermal conductivity λe f f 1 has a similar expression in Equation (9):

λe f f 1 =
λXPS · SXPS + λair · Sair

S
, (18)

The effective resistance can be expressed as:

Rt =
g

λe f f · S
, (19)

From Equations (14), (16)–(19), the effective thermal conductivity becomes:

λe f f =
λe f f 1 · λXPS

2
3 λXPS +

1
3 λe f f 1

, (20)

or

λe f f =
3
(
λair · λXPS · Sair + λXPS

2 · SXPS
)

2λXPS · S + λair · Sair + λXPS · SXPS
, (21)

The Mathematical Model Applied to the Panels with Perforated Inclined Channels with an
Angle α

In this case, the model is developed for the determination of the inclination angle,
which depends on the thickness of the panel and the distance between the centers of the
channels on both panel surfaces (Figure 4).
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Figure 4. Panel with perforated inclined channels (g panel thickness, x distance between the centers
of channels, α inclination angle).

The following equations describe the relation between the dimensional quantities:

x = y + z, y ≤ x, (22)

and
x ≥ g · tgα, (23)

Thus:
x ≥ g · tgα, (24)
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If the distance x is selected, the angle can be found from:

tgα ≤ x
g

, (25)

If the distance between the centers of the channels increases, the number of channels
decreases and if the inclination angle decreases, dimensions z and x decrease. The thermal
conductivity is determined using the same mathematical model that was applied to the
panels with perforated horizontal channels [9].

According to the aforementioned equations, the influence of the different variables
(thickness, number of channels, magnitude of the diameter, type of channel–perforated,
partly perforated or inclined at different angles, etc.) on the thermal conductivity can be an-
alyzed [21,22]. The calculation methods are valid as long as the characteristics are uniform
and the material inhomogeneity and technological errors in performing perforations are
neglected (variable diameter, the inclination angle is not maintained constant, the material
breaks on the opposite surface to the perforation side, the distance between the centers
of the channels is variable, the panel is locally pressed, etc.). Therefore, the results of the
analytical methods need experimental validation.

2.2.2. Experimental Setup

The control panel and innovative panels used had overall dimensions of 0.6 m in
length, 0.6 m in width and 0.03 m in thickness, which correspond to the dimensions
required by the heat flow meter (Netzsch HFM 436/6 Lambda—NETZSCH-Gerätebau
GmbH, Selb, Germany), and were subjected to three temperature regimes in order to
measure the thermal conductivity of each panel. The heat flow meter measurement method
was based on the European standards EN 12667 and EN 12939 [23,24].

The measurements consisted in setting the panel between two plates with different
temperatures. The rate of heat flow per unit surface was measured by means of heat flux
transducers. The electrical signal generated by a transducer is proportional to the heat rate
applied to the surface of the sensor. The magnitude of the rate of heat flow depends on
different factors; namely, thermal conductivity, panel thickness, temperature difference,
area of the panel surface. Fourier’s law was applied to express the rate of heat flow.

Experiments were carried out for three temperature regimes, as indicated in Table 2.

Table 2. The input data of HFM controller.

Hot Plate
Temperature (◦C)

Cold Plate
Temperature (◦C)

Average
Temperature (◦C)

The Absolute Value of the
Temperature Difference

between the Two Control
Thermocouples (◦C)

−10 20 5 30
10 20 15 10
35 20 27.5 15

Figure 5 shows the orientation of the panel with inclined channels in the heat flow meter.
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3. Results and Discussion
3.1. Analytical Models

The effective thermal conductivity (λe f f ) of porous materials can be calculated by
using the thermal conductivity of the solid (λs), the thermal conductivity of the air within
the pores (λair), the number of pores (n) and the diameter of a pore (D):

λe f f =
λs · (l · L − n πD2

4 ) + λair · n πD2

4
l · L

, (26)

Equation (26), which is similar to Equation (9), was derived from the steady, one-
dimensional heat transfers by pure conduction in a multilayer panel, considering the heat
flux perpendicular to the panel surface. The diameter of an orifice is limited to a few
millimeters in order that air flow inside channels due to temperature gradients is reduced,
and therefore it can be neglected. The assumption is made that the thermal conductivity of
air depends on the average panel temperature. Equation (26) is similar to that indicated
by Kan et al. [16] for VIPs, where the effective thermal conductivity of a porous medium
is expressed as a function of its porosity (ξ), thermal conductivity of the solid matrix (λs),
thermal conductivity of the rarefied gas (λg), and thermal conductivity of radiation (λr),
as follows:

λe f f = (1 − ξ)λs + ξλg + λr, (27)

They also ignored the thermal convection between the solid wall and the filled gas,
due to the low pressure of air at normal temperature, but they considered the effect of
thermal radiation inside pores.

The equation of the thermal conductivity accounting for the radiation transfer between
internal channel surfaces of the panel is indicated by the same authors [7] as follows:

λr = 4lcσ(T1 + T2)
(

T2
1 + T2

2

)
/3ϕ, (28)

where, lc is the thickness of the core material, ϕ is the attenuation coefficient for porous
media (ϕ = 445), σ is Boltzmann constant (σ = 5.6697 × 10−8 W/m2K4). Jelle et al. [9,25]
applied the Stefan–Boltzmann equation to find the total radiation heat flux through a
material with n air gaps in series with infinite parallel surfaces of equal emissivity, which
may be approximated as n pores along a given horizontal line in the material. Accord-
ingly, the radiation thermal conductivity r in the nano insulation materials’ pores may be
approximately calculated by:

λr =
σd

(
T4

1 − T4
2
)( 2

ε − 1
)
(T1 − T2)

, (29)

where d is the pore diameter, ε is the emissivity of inner pore walls. The emissivity of
polystyrene is 0.9 according to [8].

It was observed from the analytical modeling of the panels with perforated horizontal
channels that the increase of the thermal conductivity of the solid determined the linear
increase of the effective thermal conductivity (Figure 6).

Therefore, the higher the thermal conductivity of the solid, the more significant is the
presence of the channels, thus reducing the effective thermal conductivity of the panel. If
the number of channels increases, the effective thermal conductivity decreases, as shown
in Figure 7. For example, increasing the number of channels 70 times, the effective thermal
conductivity reduces by 2.46%.
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of the number of channels.

In order to analyze the influence of the number of channels and the diameter of the
channels on the effective thermal conductivity of the panel, different cases were analyzed
(Figure 8). It can be observed from Figure 8 that the effective thermal conductivity decreases
when the number of channels increases 4 times and the diameter increases 3.8 times, since
the density is reduced and the porosity is increased. However, it is not indicated to increase
the diameter too much because air flows may occur within the channels due to temperature
gradients, which make possible a heat transfer by convection. A study of optimum channel
diameter may be performed in future research.

3.2. Experimental Results

In all cases of tests the thermal conductivity decreased with an increasing temperature
difference (Table 3). It can be observed that for the first temperature regime, the thermal
conductivity of the panels with partly perforated symmetric channels decreased as com-
pared to the XPS panel. Some condensation may have occurred in the air channels because
of the negative temperature of the cold plate of the experimental device, thus improving
the heat conduction. For the second temperature regime, the thermal conductivity of
the partly perforated symmetric XPS panel and the panel with inclined channels slightly
decreased as compared to the simple XPS panel. The decrease was higher for the XPS panel
with inclined channels. As for the third temperature regime, the thermal conductivity of
all perforated XPS panels decreased, except that of the panel with horizontal perforated
channels. The increase of the thermal conductivity of the panel with horizontal channels
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is explained by the parallel arrangement of the solid and air, as resistive elements, which
enhanced the heat transfer. The decrease was higher for the XPS panels with partly perfo-
rated alternative channels and inclined air channels. Figure 9 indicates the variation of the
thermal conductivity obtained from experiments considering the type of the panel and the
temperature regime.
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Table 3. Thermal conductivity of panels tested at three temperature regimes.

Average
Temperature

(◦C)

The Absolute Value
of the Temperature
Difference ∆t (◦C)

Thermal Conductivity λexp [W/mK]

P0 P1 P2 P3 P4

5 30 0.03363 0.03376 0.03362 0.03364 0.03367
15 10 0.03552 0.03556 0.03550 0.03557 0.03543

27.5 15 0.03818 0.03821 0.03815 0.03807 0.03808

Polymers 2021, 13, x 13 of 15 

 

 

perforated channels. The increase of the thermal conductivity of the panel with horizontal 
channels is explained by the parallel arrangement of the solid and air, as resistive ele-
ments, which enhanced the heat transfer. The decrease was higher for the XPS panels with 
partly perforated alternative channels and inclined air channels. Figure 9 indicates the 
variation of the thermal conductivity obtained from experiments considering the type of 
the panel and the temperature regime. 

Table 3. Thermal conductivity of panels tested at three temperature regimes. 

Average 
Temperature 

(°C) 

The Absolute Value 
of the Temperature 

Difference  
Δt (°C) 

Thermal Conductivity 𝝀𝒆𝒙𝒑 [W/mK] 

P0 P1 P2 P3 P4 

5 30 0.03363 0.03376 0.03362 0.03364 0.03367 
15 10 0.03552 0.03556 0.03550 0.03557 0.03543 

27.5 15 0.03818 0.03821 0.03815 0.03807 0.03808 

The thermal conductivity depends on the average temperature of the panel. The av-
erage temperatures were 5 °C (first regime), 15 C (second regime) and 27.5 C (third re-
gime), respectively, as can be seen from Table 3. Accordingly, the thermal conductivity 
increased with the increase of the average temperature. When the temperature exceeded 
20 °C on both faces of the panel (third regime), the insulation capacity decreased by 13% 
as compared to the first regime. 

The differences between the thermal conductivity of simple XPS and perforated XPS 
panels were small, but the latter could be improved by increasing the number of channels 
and air channels diameter, i.e., increasing the porosity. The mean free path of the air mol-
ecules should be larger than the pore diameter, thus hindering collisions between mole-
cules and decreasing thermal conductivity. 

 
Figure 9. Variation of thermal conductivity of panels obtained from experiments as a function of the 
channels’ arrangement and temperature regime. 

The experimental values include the effect of the radiation heat transfer inside air 
channels. If neglecting this component, a further reduction of the thermal conductivity 
may be achieved (Figure 10), which is the lowest limit of the thermal conductivity that can 
be achieved.  
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channels’ arrangement and temperature regime.

The thermal conductivity depends on the average temperature of the panel. The
average temperatures were 5 ◦C (first regime), 15 ◦C (second regime) and 27.5 ◦C (third
regime), respectively, as can be seen from Table 3. Accordingly, the thermal conductivity
increased with the increase of the average temperature. When the temperature exceeded
20 ◦C on both faces of the panel (third regime), the insulation capacity decreased by 13% as
compared to the first regime.
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The differences between the thermal conductivity of simple XPS and perforated XPS
panels were small, but the latter could be improved by increasing the number of channels
and air channels diameter, i.e., increasing the porosity. The mean free path of the air
molecules should be larger than the pore diameter, thus hindering collisions between
molecules and decreasing thermal conductivity.

The experimental values include the effect of the radiation heat transfer inside air
channels. If neglecting this component, a further reduction of the thermal conductivity
may be achieved (Figure 10), which is the lowest limit of the thermal conductivity that can
be achieved.
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with an angle α = 45◦.

In this case, the thermal conductivity of the panel P4 with inclined orifices decreased
by 1.2, 2.2 and 1.8%, respectively for the three temperature regimes. The radiation thermal
conductivity depended on the dimensions of the pores or panel and emissivity of the
base material. Lowering dimensions and using a base material with low emissivity would
decrease the radiation thermal conductivity. Additionally, a base material with high thermal
conductivity is influenced by the presence of air channels inside the panel, decreasing
significantly its thermal conductivity.

4. Conclusions

A new design of existing building materials by generating air channels inside was
reported in the paper. XPS panels were perforated horizontally or at an angle of 45◦. The
presence of air channels reduced the thermal conductivity, but the reduction was more
significant in the panels with inclined channels, P4.

An optimized design would assume the reduction of the channel diameter and the
increase in the number of channels. A base material with low emissivity may also reduce
the thermal conductivity.

Perforated panels can be included in a multilayer insulation structure. The future
work will continue with implementation of different thicknesses and a sandwich structure
of panels.
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19. Şova, D.; Stanciu, M.D.; Belea, E.; Bidu, V.V. Innovative thermal insulation panels with air channels. In IOP Conference Series:
Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 444, p. 062005.

20. Kosny, J.; Yarbrough, D.W.; Petrie, T.; Mohiuddin, S.A. Performance of thermal insulation containing microencapsulated
phase change material. In Proceedings of the 29th International Thermal Conductivity Conference and the 17th International
Thermal Expansion Symposium, ITCC 29 and ITES 17, Thermal Conductivity 29/Thermal Expansion 17, Birmingham, AL, USA,
24–27 June 2007; pp. 109–119.

http://doi.org/10.1617/s11527-013-0192-4
http://doi.org/10.1177/0143624412450023
https://core.ac.uk/download/pdf/70615476.pdf
https://core.ac.uk/download/pdf/70615476.pdf
http://doi.org/10.3390/nano10081599
http://www.ncbi.nlm.nih.gov/pubmed/32823994
http://doi.org/10.1016/j.enbuild.2017.05.036
http://doi.org/10.1016/j.jcis.2012.06.043
http://www.ncbi.nlm.nih.gov/pubmed/22818793
http://doi.org/10.1177/1744259110372782
http://doi.org/10.1557/jmr.2013.179
http://doi.org/10.1016/j.jmatprotec.2008.01.054
http://doi.org/10.1002/er.3101
http://doi.org/10.1016/j.enbuild.2009.09.005
http://doi.org/10.1186/s40984-015-0001-z
http://doi.org/10.1177/1097196305051792
http://doi.org/10.1016/j.ijsbe.2013.03.002


Polymers 2021, 13, 2217 14 of 14
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