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Abstract: Dielectric elastomers (DEs) are polymer materials consisting of a network of polymer
chains connected by covalent cross-links. This type of structural feature allows DEs to generate
large displacement outputs owing to the nonlinear electromechanical coupling and time-dependent
viscoelastic behavior. The major challenge is to properly actuate the nonlinear soft materials in
applications of robotic manipulations. To characterize the complex time-dependent viscoelasticity
of the DEs, a nonlinear rheological model is proposed to describe the time-dependent viscoelastic
behaviors of DEs by combining the advantages of the Kelvin–Voigt model and the generalized
Maxwell model. We adopt a Monte Carlo statistical simulation method as an auxiliary method, to
the best knowledge of the author which has never reportedly been used in this field, to improve
the quantitative prediction ability of the generalized model. The proposed model can simultane-
ously describe the DE deformation processes under step voltage and alternating voltage excitation.
Comparisons between the numerical simulation results and experimental data demonstrate the
effectiveness of the proposed generalized rheological model with a maximum prediction error of
3.762% and root-mean-square prediction error of 9.03%. The results presented herein can provide
theoretical guidance for the design of viscoelastic DE actuators and serve as a basis for manipulation
control to suppress the viscoelastic creep and increase the speed response of the dielectric elastomer
actuators (DEA).

Keywords: dielectric elastomer; electromechanical coupling; creep; viscoelastic electromechanical
modeling; soft robotics

1. Introduction

Dielectric elastomers (DEs) are a combination of dielectric electroactive polymers. The
DE actuator structure consists of a thin membrane of elastomer sandwiched between two
compliant electrodes. When subjected to a voltage across its thickness, such a material
expands in area and shrinks in thickness based on the effects of Maxwell stress [1,2]. This
behavior can facilitate intriguing muscle-like behavior for the development of soft robots.
Dielectric elastomer actuators (DEAs) are a type of soft material actuator that can deform
in response to voltage [3,4]. Compared to other smart elastomer materials, DEs exhibit
desirable attributes, such as high strain rates (up to 380%), high efficiency (up to 90%),
high energy density (3.4 J/g), low modulus, simple structure, and excellent environmental
compliance [5–7]. Therefore, DEs have artificial muscle properties and are widely used
in robotic fields for the development of jellyfish robots [8], hexapod robots [9], annelid
robots [10], and wall climbing robots [11], and have been extensively used in many scientific
fields for the development of artificial muscles, soft sensors, optical devices, and energy
generators.
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1.1. Background

Although the geometrical structure and working principle of DEs are relatively sim-
ple, the material’s deformation behavior is very complex because of the hyperelastic and
nonlinear electromechanical coupling characteristics of the material [12]. The dissipative
properties of DEs include viscoelasticity, dielectric relaxation, and conductive relaxation.
These nonlinear properties enhance the difficulty of dynamic modeling [13,14]. Experi-
mental results have shown that the stress-strain curves of DEs are closely related to tensile
rates [15], and the strain under-voltage excitation is closely related to time [16,17]. Addi-
tionally, DEs exhibit viscoelasticity, which is a strongly time-dependent behavior. Therefore,
Hook’s law for traditional linear-elastic material models cannot be used to describe the
electromechanical coupling constitutive relationships of DEs. Therefore, the challenge
is how to develop a model that can accurately describe the time-dependent viscoelastic
response behavior of dielectric elastomer materials.

1.2. Related Work

Many researchers have established viscoelastic models for DEs. These models can be
divided into three main groups as follows.

(1) Conventional models are based on the mechanical and physical properties of
the DE materials. Wissler and Mazza [18] used a Prony series to establish a linear vis-
coelastic model. Afterward, linear rheological models were established to describe the
time-dependent viscoelastic properties of the materials [19,20]. The development of these
models represents the start of the DE material modeling revolution. However, such models
may have difficulty describing the complex nonlinear behaviors of DE materials, especially
under large loads. A nonlinear viscoelastic model was developed based on Christensen’s
theory [21] to improve the accuracy of such models. Lochmatter et al. [22] investigated
the viscoelastic properties of a VHB4910 film and used a novel model to describe the
time-dependent mechanical behavior of DEs. Although these models have been able to
describe the nonlinear behavior of DEs, their simplicity can negatively affect the accuracy
of model descriptions.

(2) As a breakthrough in the research history of DEs, by combining the Maxwell
and Kelvin models, Hong [23] reported that DEs could be approximately represented
by rheological models, including an array of springs and dashpots, which constitute the
standard linear solid model. The establishment of this model was a turning point in the
DE research. Many studies have attempted to improve the accuracy of model descriptions.
A spring combined with a damped series system can form a Maxwell rheological model,
and a Kelvin model can be formed in parallel. By combining these two types of models,
Zhang [24] proposed the Kelvin-Voigt-Maxwell model to describe the entire process of DE
deformation under DC voltage excitation. However, these models are relatively simple and
are characterized by a single relaxation time parameter. Therefore, it is difficult to describe
the rheological deformation processes of DE systems under complex loading, and such
models cannot accurately characterize the viscoelastic time characteristics.

(3) The development of generalized rheological models has improved the precision
of viscoelastic behavior evaluation. Generalized models with multiple relaxation times
have also been developed to improve the accuracy of viscoelastic effect prediction. Khan
et al. [25] established a generalized Maxwell (GM) model for viscoelastic DEs, and the
results showed strong agreement with the experimental data. Gu et al. developed a
multi-relaxation time rheological model to predict the viscoelastic effects of materials more
accurately. However, in that study, only alternating voltage loading was considered, and
inertial force was ignored.

1.3. Study Contributions

A high-accuracy rheological model is proposed in this study to improve the prediction
ability of rheological models under complex loading conditions. We combine the Kelvin-
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Voigt model and the GM model to develop the KV-GM model. The main contributions of
this study are summarized as follows.

(1) A generalized rheological KV-GM model is presented. This model combines the
advantages of two classical composite models with multiple relaxation times to describe
the complex nonlinear viscoelastic properties of DEs.

(2) Based on the principles of virtual work and non-equilibrium thermodynamics,
a constitutive model of viscoelastic DEs under-step voltage excitation was established.
Under the excitation of alternating voltage, to improve the physical characteristics of the
system, the work done by inertial forces is considered to form a dynamic model of the
DE system.

(3) Parameter identification of the generalized rheological model adopts a parameter
analysis method combined with Monte Carlo statistical simulation; the latter is used as
an auxiliary method. This type of combinatory analysis has never been adopted to obtain
a set of optimal model parameters to improve the quantitative prediction ability of the
generalized model.

The remainder of this paper is organized as follows. The DE system and the exper-
imental configuration are introduced in Section 2. Section 3 presents the experimental
results under different steps and alternating voltage signal loads. In Section 4, we propose
the theory of viscoelasticity and establish a constitutive model. The Monte Carlo method
and model parameter analysis is applied in Section 5 to obtain quantitative description
parameters to improve the model prediction capabilities. Section 6 concludes the paper.

The course of the technology research of this paper is shown in Figure 1.
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Figure 1. Research Flowchart of dielectric elastomers (DE).

2. Experimental Description
2.1. De Membrane Actuator

In this paper, a square DEA was fabricated as shown in Figure 2, which was able to
provide linear actuation with 2 DOF. In the reference state, the length of the DEA was
L1 = L2 = 10 mm and thickness H was 1 mm. The material used for this actuator was an
acrylic elastomer VHB4910 (3M Company, Saint Paul, MN, USA). The film was subjected to
uniform biaxial pre-stretching λp1 = λp2= 3 and fixed to a rigid frame. In the pre-stretched
state, the length of the DEA was L1pre = L2pre = 30mm. In order for the VHB4910 material
to be incompressible, the thickness of the DEA changed to Hpre = H/λp1λp2. In the
actuated state, subjected to a voltage U through the thickness of the DEA, the electrons
flowed from one electrode to each other, and the two electrodes gained the charge +Q and
−Q, respectively. Due to the Maxwell stress, the DEA deformed to a new configuration of
thickness H = h/λ1λ2 and two dimensions of lengths l1 = L1λ1, l2 = L2λ2, respectively.
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Figure 2. DE membrane in the reference state, pre-stretch state, and actuation state.

2.2. Experimental Setup

Figure 3 presents a block diagram of our experiment setup, which consisted of a
dSPACE_DS1103 control board with 16-bit digital-to-analog converters for generating an
analog control voltage, which was fed into a high-voltage amplifier (10/40A, Trek, Inc.
Waterloo, WI, USA) to amplify the voltage signal with a fixed gain of 4000. A laser sensor
(LK_G4000A, Keyence, Osaka, Japan) measured the real-time displacement of the DEA. The
laser sensor was connected to a set of 16-bit analog-to-digital converters (ADCs). Output
displacement data were recorded and converted into small voltage signals (0 to 1 V) by a
control box, and the experimental data were sent to a computer for display by the ADCs.
Additionally, MATLAB/Simulink software (Natick, MA, USA) was used to implement
the algorithms. This software transmitted control signals to the control board through the
control desk interface to conduct voltage signals and accept output displacement signals in
real-time. Our experiments were all performed at room temperature, so the influence of
temperature variation on the experimental results could be ignored.
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To measure the area deformation of the DEA during the excitation process, as shown
in Figure 3, the CCD external trigger camera (DS-CFST140M-H4, Do3think, Shenzhen,
China), with an accuracy of 1360 × 1024 pixels was used to record the deformation of the
DEA in real-time, and BasedCAM software was used to control the characteristics of the
output images and adjust the time interval. In this experiment, when taking continuous
images with a CCD camera, the minimum time interval for saving two images was set to
1 s. The obtained images were processed by MATLAB Image Processing Toolbox (Natick,
MA, USA), after binarization of the image, the pixel points of the driving region could be
calculated to obtain the area of the target region. To get the area of the actuator, a square
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sample of 1 cm × 1 cm was used as a test for the CCD camera. With the same camera setup
and image processing method, the ratio between the actual area and the image target area
could be obtained.

2.3. Experimental Results

The experimental platform is shown in Figure 4. In this study, we mainly focused
on the square DEA responses under step and alternating voltage excitation. To avoid
instability in the actuator, the step and alternating voltages adopted here were less than
the critical values of Ustep = 4kV and Ualternating = U0 sin(2π f t), respectively, where
U0 = 2kV and f = 0.01, 0.02, and 0.05 Hz. The experimental results demonstrated that
the step response and alternating response were time-dependent deformations under
complex load excitation. For simplicity, the response process can be divided into three
stages. Stage I was a creep stage with a few hundred seconds of step responses [26] and
approximately three periods of alternating responses [27]. Stage II was a relaxation stage
that lasted for a long duration. Stage III was the stable stage.
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As shown in Figure 4a, the response of the system became more complex as the
excitation voltage increased. Additionally, with an increase in the excitation voltage, the re-
laxation response process of the system became more complicated, and it took longer for the
system to reach a stable stage. Figure 4b presents the dynamic responses of the DE system
under the excitation of a sinusoidal alternating voltage with varying frequencies. These re-
sults demonstrated that the response behavior of the DE system was frequency-dependent.
The maximum amplitude of the actuation strain was obtained when f = 0.01 Hz and
tended to decrease as the frequency increased. This phenomenon is explained by the fact
that the frequency of alternating loads was faster than the viscoelastic relaxation time of
the DE material. This fact means that the actuation strain was not completely relaxed in
each cycle, which strongly affected the deformation ability of the DEAs.

The above results demonstrated that electromechanical coupling characteristics of the
DEs when subjected step and alternating voltage presented a nonlinear and nonequilibrium
process and energy was dissipated during the loading procedure. To account for these
nonlinear behaviors of the DEs with an effective model was the main objective of this paper.

3. Constitutive Modeling

The experimental results discussed above demonstrated that a DE system under
voltage excitation exhibited complex, time-dependent, and nonlinear responses. To study
the response characteristics of a DE membrane experiencing in-plane deformation, we
focused on a widely used configuration in which a membrane of DE was sandwiched
between two electrodes. In the reference state with no deformation, the initial length,
width, and thickness of the DE membrane were L1, L2, and H, respectively. Subject to the
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in-plane mechanical forces P1 and P2, the DE membrane was in a pre-stretched state, where
the length and width of the membrane changed to L1pre = L1λ1pre and L2pre = L2λ2pre.
We express the stretching ratio in the thickness direction as λ3 = λ−1

1 λ−1
2 [26], meaning

Hpre = H/λ1preλ2pre. The two in-plane pre-stresses on the DE are defined as follows:

σ1 = P1/L2pre Hpre = P1λ1pre/L2H (1)

σ2 = P2/L1preHpre = P2λ2pre/L1H (2)

where σ1 and σ2 are the two in-plane actuation stresses of the DEs.
As we subjected a voltage U through the thickness of the membrane, a dipole phe-

nomena was produced on the two electrodes. The Maxwell force was generated by the
attraction of charges between the two electrodes. The membrane expanded in area and
shrunk in thickness, and the system reached a new equilibrium state with dimensions
l1 = L1λ1, l2 = L2λ2, and h = H/λ1λ2. Based on the assumption that the DE membrane
acted as a parallel capacitor with compliant electrodes, the relationship between the charges
Q and applied voltage U could be expressed as follows [28–30]:

Q = U
εL1L2

H
λ2

1λ2
2 (3)

where ε is the dielectric permittivity of the DE membrane. When the DE membrane was
subjected to force and voltage, the variables in Equation (3) are λ1, λ2, and U, the variation
in the charge is

δQ =
εL1L2

H
λ2

1λ2
2δU +

εL1L2

H
U
(

2λ1λ2
2δλ1 + 2λ2λ2

1δλ2

)
(4)

In view of the related works, the Kelvin-Voigt model can better describe the initial
creeping behavior [24], and the generalized Maxwell model is usually adopted to character-
ize the relaxation stage [25]. Therefore, in this paper, we parallelly connect both models and
name it the Kelvin-Voigt-Generalized Maxwell model (KV-GM) as illustrated in Figure 5.
In this model, we define λα and λβi as the stretching factors in springs αs and βsi, ξα and
ξβi as the stretching factors in dashpots αd and βdi. By referring to the KV-GM model
shown in Figure 5, the total stretching factor of the DE membrane was λ = λα = ξα. The
corresponding net stretching factors of the two parallel parts were equal; thus, by adopting
the well-established multiplication rule, we have λ = λβξβ [31].
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To describe the free energy density associated with the stretching of the DE, the Gent
model [32] was adopted, which revealed the strain-stiffening performance of the DE. The
strain energy of the DE was stored in the springs αs and βsi, and thus the free energy
density function could be expressed as follows:
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W = −µα Jα

2
log

(
1−

λ2
1 + λ2

2 + λ−2
1 λ−2

2 − 3
Jα

)
−

n

∑
i=1

µ
β
i Jβ

i
2

log

(
1−

λ2
1ξ−2

1i + λ2
2ξ−2

2i + λ−2
1 λ−2

2 ξ2
1iξ

2
2i − 3

Jβ
i

)
+

D2

2e
(5)

where µα and µβ are the shear moduli, and Jα and Jβ are the extension limits of the springs
in parts A and B, respectively.

When the stretching of the DE membrane varied slightly in the two in-plane directions
by δλ1 and δλ2, the tensile forces perform work that could be calculated as P1L1δλ1 +
P2L2δλ2. The corresponding increments in the charges of the two electrodes occurred with
a small magnitude of δQ and the work done by the applied voltage was UδQ. During
system actuation, the dashpot performed negative work and dissipated energy. The work
done by the damping forces in part A is calculated as 1

2 ηαL2
1

dξα1
dt δξα1 and 1

2 ηαL2
2

dξα2
dt δξα2 [32],

where is ηα the viscous damping coefficient of the dashpot αd, and ξα1 are ξα2 the stretching
factors of dashpot αd in the two in-plane directions. The work performed by the dashpot βdi

of in B in the two in-plane directions are ∑
i

1
2 ηβiL2

1
dξβi1

dt δξβi1 and ∑
i

1
2 ηβiL2

2
dξβi2

dt δξβi2, where

ηβi is the viscous damping coefficient of the dashpot βdi, ξβi1 and ξβi2 are the stretching
factors of the dashpot βd in the two in-plane directions. During the actuation process,
the work performed by the inertial force in the two in-plane directions was calculated

as ρL2
1L2 H
3

d2λ1
dt2 δλ1 and ρL1L2

2 H
3

d2λ2
dt2 δλ2 [33], where ρ is the density of VHB4910 elastomer.

Thermodynamic principles state that the arbitrary variation of a viscoelastic DE system
should be equal to the work performed by the applied voltage, tensile force, damping force,
and inertia force. The function of the free energy density is defined in (6).

L1L2HδW = φδQ + σ1L2
1Hδλ1 + σ2L2

2Hδλ2 −
(

1
2 ηαL2

1
dξα1

dt δξα1 +
1
2 ηαL2

2
dξα2

dt δξα2

)
−
(

ρL2
1L2 H
3

d2λ1
dt2 δλ1 +

ρL1L2
2 H

3
d2λ2
dt2 δλ2

)
−
(

n
∑

i=1

1
2 ηβiL2

1
dξβ1i

dt δξβ1i +
n
∑

i=1

1
2 ηβiL2

1
dξβ2i

dt δξβ2i

)
(6)

In the following discussion, we consider a special case in which a DE membrane is
under equal biaxial stress, that is, σ1 = σ2 = σ and L1 = L2 = L. Assuming that the
stretching in the dashpot αd is consistent with the total stretching of the DE, we could
derive λ1 = λ2 = λ, ξα1 = ξα2 = ξα = λ, and ξβi1 = ξβi2 = ξ. Therefore, (5) and (6) could
be rewritten as

W = −µα Jα

2
log
(

1− 2λ2 + λ−4 − 3
Jα

)
−∑

i

µ
β
i Jβ

i
2

log

(
1−

2λ2ξ−2
βi + λ−4ξ4

βi − 3

Jβ

)
+

D2

2e
(7)

L2HδW = φδQ + 2σL2Hδλ− ηαL2 dλ

dt
δλ−∑

i
ηβiL2 dξβi

dt
δξβi −

ρL3H
3

d2λ

dt2 δλ (8)

The effects of the inertial force on the DE system could be ignored under step-voltage
excitation. Based on the standard calculus of variation in (7), we found that:

∂W
∂λ =

2µα(λ−λ5)
1−(2λ2+λ−4−3)/Jα + ∑

i

2µβi(λξ−2
i −λ−5ξ−2

i )
1−(2λ2ξ−2

i +λ−4ξ−2
i −3)/Jβ

i

(a)

∂W
∂ξi

= − 2µβi(λ2ξ−3
i −λ−4ξ3

i )
1−(2λ2ξ2

i +λ−4ξ4
i −3)/Jβ

i

(b)

∂W
∂D = D

ε (c)

(9)

Based on (4), replacing the charge Q with the electrical displacement D yielded

∂W
∂λ = 2φD

H λ + 2σ− ηα
H

dλ
dt (a)

∂W
∂ξ = ∑

i
− ηβi

H
dξ
dt (b)

∂W
∂D = φ

H λ2 (c)

(10)



Polymers 2021, 13, 2203 8 of 18

Considering the work performed by the inertia force, for a DE system under the
excitation of an alternating load, (8) could be rewritten as

δW
δλ

= ε

(
φ

h

)2
λ3 − ηα

H
dλ

dt
− 2ρL2

3
d2λ

dt
+ 2σ (11)

By combining (9) and (10) and eliminating the electrical displacement D, the governing
equations could be expressed as follows:

dλ

dt
=

2H
ηα

(
εφ2

H2 λ3 + σ−
µα

(
λ− λ−5)

1− (2λ2 + λ−4 − 3)/Jα
−∑

i

µβi
(
λξi
−2 − λ−5ξi

4)
1− (2λ2ξi

−2 + λ−4ξi
4 − 3)/Jβ

)
(12)

dξi
dt

=
2Hµβi

ηβi

λ2ξi
−3 − λ−4ξi

3

1− (2λ2ξi
−2 + λ−4ξi

4 − 3)/Jβ
(13)

By substituting (11) into (9), we obtained the following dynamic equations for
the system:

2ρL2

3
d2λ

dt2 +
ηα

H
dλ

dt
− ε

(
φ

H

)2
λ3 +

2µα

(
λ− λ−5)

1− (2λ2 + λ−4 − 3)/Jα
+ ∑

i

2µβ

(
λξ−2

I − λ−5ξ4
I

)
1−

(
2λ2ξ−2 + λ−4ξ4

I − 3
)
/Jβ
− 2σ = 0 (14)

dξi
dt

=
2HµβI

ηβI

λ2ξ−3
I − λ−4ξ3

I
1−

(
2λ2ξ−2 + λ−4ξ4

I − 3
)
/Jβ

(15)

An algorithm for solving the DE equations is shown in Figure 6. The length of the
DE membrane was, L1 = L2 = L = 0.01 m and its thickness was H = 0.001 m. The
density of the VHB4910 elastomer was ρ = 960 kg/m3 [33]. The permittivity of DE was
ε = 4.11 ∗ 10−11 F/m [26]. In the relaxed state, we applied the initial conditions of λ(0) = 3,
dλ(0)/dt = 0, d2λ(0)/dt2 = 0, and dξi(0)/dt = 3. The Dormand-Prince method from the
Runge-Kutta ODE family of solvers family was adopted in this study to solve the ordinary
differential mathematical model. All numerical calculations were conducted using the
ode45 function in MATLAB.
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4. Parameter Identification

To describe the responses of the DE membrane quantitatively under the excitation of
step voltage and alternating voltage, based on a prediction model, we first analyzed the
influence of the model parameters on the system responses. To simplify the analysis process,
the model used in our simulation testing was a single Maxwell unit KV-GM model, and a
Monte Carlo static simulation was used as an auxiliary method for parameter identification.
The Monte Carlo method is a numerical method based on probability and statistical theory.
Random numbers are used to solve many types of computational problems. The unknown
parameters in the model were randomly sampled several times. The sampling centers of
the parameters given in [15] were used as the basic values. The sampling ranges were
adjusted appropriately according to the load applied by the system. Figure 7 presents the
simulation results of the first-order KV-GM rheological constitutive model responses for
20 random samples. The results demonstrated that the effective range of the parameters
could be determined using random sampling. Additionally, one could see that the failure
ranges of the parameters caused the system responses to fall below the initial values. In
the following model parameter identification process, a multi-order rheological model
combined with Monte Carlo multiple sampling was used to obtain an optimal parameter
combination to improve the descriptive ability of the model.
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4.1. Step Voltage Excitation

The responses of the system under a step voltage could be modeled using (12) and (13)
by ignoring the influence of the inertial force. First, we attempted to analyze the influence
of the model parameters on the response process of the DE system. By considering
different stretch limit parameters, it could be concluded that stretch limits do not have a
significant effect on the model responses. The reason for this phenomenon may be that the
material experiences deformation smaller than the stretch limit [25]. To optimize the model
parameters, we set up a prediction model to investigate the response characteristics of
models with different material parameters. The optimal parameters were then determined
by quantitatively comparing the experimental results to describe the step responses of
the system. During this prediction process, the voltage U = 4000 V was used as the step
excitation load, and different material parameters were considered to ensure that the
system responses did not generate distortion phenomena. To simplify the analysis process,
we considered that the step responses of the DE membrane could be divided into three
stages: the first stage of initial rapid deformation, the second stage of slow creeping and
relaxation, and the third stage of a steady-state. The simulation results demonstrated
that the shear modulus µα of the spring αs in part A of the rheological model mainly
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affected the third stage of the system, as shown in Figure 8a. It was remarkable that the
steady-state exhibited greater deformation when the shear modulus was small. This greater
deformation occurred because a decrease in the shear modulus implied that the material
was softer. Therefore, under the same external stress, the softer material experienced a
larger deformation. Subsequently, by considering the influence of the viscous damping
ηα of the dashpot αd in part A, as shown in Figure 8b, we could determine that different
values for ηα mainly affected the rate of increase in the first stage of the initial rapid
deformation. An increase in viscous damping ηα caused the creep deformation to drift
more slowly. This phenomenon was attributed to the fact that greater viscous damping
leads to a large resistance to limited deformation, thereby increasing the creep time. The
influence of part B of the rheological model could be examined with different relaxation
times tv = ηb/µb, as shown in Figure 8c. According to the definition of relaxation time,
it is trivial to conclude that an increase in relaxation time would extend the relaxation
process in the second stage of the model response, meaning that the system would require
more time to reach the steady-state. Figure 8c,d present the comparative model responses
with different shear modulus for part B. The shear modulus directly affected the initial
deformation in the second stage of the response process. This phenomenon was easy
to understand because for a given relaxation time, increasing the shear modulus of the
Maxwell element will limit the deformation of the DE material. According to the model
parameter analysis above, the shear modulus in part A should be set at µα = 35 kPa
to ensure steady deformation of the system in the final stage. Additionally, the viscous
damping in part A ηα = 0.2 kN.s/m should generate a suitable rate of increase in the model
response in the initial creep stage. Based on the comparative results in Figure 9c,d, the shear
modulus of the Maxwell element was µβ = 15 kPa. This calculation was an important step
in determining the initial deformation of the system during the relaxation stage.

Polymers 2021, 13, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 8. The influence of model parameters in step response: (a) the response of the model under 
different shear modulus of the spring sα , (b) the response of the model under different viscous 
damping of the dashpot dα , (c) the response of the model under different relaxation time with 

25kN.s mβμ = , (d) the response of the model under different relaxation time with 50kN.s mβμ =

. 

 
Figure 9. Step quantitative analysis of experimental and simulation results for DE membranes with 
different numbers of Maxwell units: (a) one-unit fitting, (b) two-unit fitting, (c) effective rheological 
model, and (d) effective three-unit fitting. 

Figure 8. The influence of model parameters in step response: (a) the response of the model under
different shear modulus of the spring αs, (b) the response of the model under different viscous
damping of the dashpot αd, (c) the response of the model under different relaxation time with
µβ = 25kN.s/m, (d) the response of the model under different relaxation time with µβ = 50kN.s/m.
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Figure 9. Step quantitative analysis of experimental and simulation results for DE membranes with
different numbers of Maxwell units: (a) one-unit fitting, (b) two-unit fitting, (c) effective rheological
model, and (d) effective three-unit fitting.

Figure 9a,b,d present the prediction results for the rheological model with different
orders of Maxwell units. Figure 9a presents the fitting results for a rheological model
with a single unit and a single-order relaxation time of tv1 = 0.008 s. It could be seen that
there was a notable difference between the simulation and experimental results. Figure 9b
presents the fitting results for the two Maxwell units with tv1 = 0.008 s and tv2 = 0.067 s.
It could be clearly seen that increasing the number of Maxwell units reduced the error
in the fitting results. The three Maxwell units in the rheological model in Figure 9c
accurately describe the response of the DE membrane under a complex step load. The
parameters used for this three-order rheological model were tv1 = 0.008 s, tv2 = 0.067 s,
and tv3 = 0.167 s. Figure 9d shows that the model predictions and experimental results
were in good agreement throughout the step-response process.

4.2. Alternating Voltage Excitation

We now considered excitation by an alternating voltage U = U0 sin 2π f t with
U0 = 2kV(V) and f = 0.05 Hz. By considering the influence of the inertial force, we
obtained a dynamic model for a DE system, as defined in (14) and (15). Figure 10a presents
the system responses with different shear modulus for the spring αs in part A of the rheo-
logical model. The results demonstrated that a smaller shear modulus leads to a smaller
deformation in the model response. This phenomenon could be interpreted as follows. A
lower elastic model indicates that a material is softer, and a softer material experiences a
larger deformation under a given stress. Figure 10b presents the effects of various viscous
damping coefficients for the dashpot αd in part A. It was clear that an increase in viscous
damping could lead to an attenuation of the vibration amplitude. Larger viscous damping
restricted the vibration of the DE membrane. The membrane would not deform because of
this restriction, and it would return to the equilibrium position.
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The influence of a single spring-dashpot unit in part B could be obtained by analyzing
different values of relaxation time, tv = ηb/µb as shown in Figure 10d,e,g. With increasing
relaxation time, the system response exhibited clear creep effects. In a system with very
little creep, equilibrium was achieved very quickly, as shown in Figure 10d. When the
creep process requires a long time, several cycles were required to reach equilibrium, as
shown in Figure 10g. According to the analysis above, the shear modulus and viscous
damping of part A were determined first to obtain a stable positional deformation and
vibration amplitude for the system. Next, we set the relaxation time to adjust the creep
and relaxation processes of the model response. According to the experimental results, the
model parameters for Part A should be µα = 35 kPa and ηα = 0.15 kN.s/m.

The results in Figure 11b indicated that the amplitudes of the model responses were
similar to those of the experimental results in the first several periods. If the shear modulus
of the Maxwell unit remained invariant, the influence of different relaxation times on
the model responses could be obtained by varying the viscous damping. As shown
in Figure 10d,e,g, increasing the viscous damping could lead to the attenuation of the
vibration amplitude. Therefore, to guarantee the amplitude of the model responses, we
maintained ηβ = 6 kN.s/m and varied the shear modulus of the spring-dashpot unit to
adjust the relaxation time.

A simulation experiment was conducted with a single Maxwell unit, as shown in
Figure 11b, and a second-order Maxwell unit, as shown in Figure 12b, to determine the
optimal relaxation time for part B. The results revealed that tv1 = 0.092 s for a single
Maxwell unit and, tv1 = 0.092 s and tv2 = 0.13 s for two Maxwell units. Overall, the model
responses closely fitted the experimental results for the first three cycles of the significant
creep process, but errors occurred in the relaxation stage. However, the error decreased
with an increase in the number of Maxwell units. To reduce the error, a three-order Maxwell
model was applied with, tv1 = 0.092 s, tv2 = 0.13 s, and tv3 = 0.6 s. Figure 12d shows good
agreement between the model predictions and the experimental results throughout the
response process.
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5. Discussion

To further quantify the performance of the KV-GM model, the maximum prediction
error em and the root-mean-square error erms mean are defined as follows:

em = max
|λs − λe|

max(λe)−min(λe)
(16)

erms =

√
1
N

N
∑

i=1
(λs(i)− λe(i))

2

max(λe)−min(λe)
(17)

where λs and λe present predicted results and experimental data, respectively, and N is the
number of measurements.

Figure 13a shows the prediction errors of different numbers of Maxwell units with step
voltage excitation. The initial 50 s prediction error is shown in Figure 13b. It can be found
that the overshot error occurs in the first 5 s, this phenomenon can be explained as prior to
entering the long time relaxation process, the response of displacement mutation and creep
stage is relatively complex, which increases the difficulty of the model prediction. On the
other hand, the prediction at this stage is mainly determined by the two fixed parameters
of Part A of the rheological model as described in Section 4. As shown in Figure 13b, when
the Maxwell element of the model increases, the overshoot values are 8.841%, 10.26%,
8.931%, respectively. These results show that the change of the Maxwell unit basically
does not affect the prediction ability in the initial response state. Therefore, to evaluate the
effectiveness of different Maxwell element models, we only consider the error values after
the overshoot process. The maximum prediction error of the step voltage excitation and
root-mean-square error of the alternating voltage excitation are listed in Table 1. We found
that the increase of Maxwell unit numbers can reduce the prediction error. It should be
noted that a further increase in the numbers of the Maxwell unit (more than 3) causes a
further increase in the accuracy of the model, but it will increase the cost of computing.
Without loss of generality, in this work, we used three Maxwell units as a research object.
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Unit Numbers Step Voltage, em(%) Alternating Voltage, erms(%)

One unit 21.42 15.796
Two unit 9.936 11.553

Three unit 3.762 9.03
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The side lengths of the rectangle DEA are shown in Figure 14a, where L is the side
length of the square calculated by our theoretical model, L1 and L2 are the length and
width of the rectangle measured by two laser displacement sensors. The discrepancy of L1
and L2 indicates that the actuator deforms slightly differently in two in-plane directions.
These discrepancies mainly come from the hand-made pre-stretching process, which leads
to the tensile force of DES film in the two directions is not exactly the same before actuation.
Figure 14b presents an actuation area by CCD camera, the rectangle in red is the shape of
L1 and L2. It is found that the edges of the rectangle are no longer straight, which results in
a distortion of the rectangle. For DEs membrane, a frame is used to hold the membrane
after pre-stretching, the passive region on the film (flexible electrode uncoated) is limited
in area and then results in concentrated stress distribution. During the actuation, it causes
uneven tensile force and varies the boundary conditions of the actuator, and results in
excessive deformation at the corners.
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directions under U = 4kV voltage excitation, (b) Geometrical shape.

To further verify the validity of the proposed model and the shape of the DEA in
the actuation process, we consider the area deformation of the DEA under a different
magnitude of step voltages. The measurement area Smeasure and estimation area Sestimate
and true area Scamera are defined, respectively, as follows:

Smeasure = L1_measure × L2_measure (18)

Sestimate = L1_estimate × L2_estimate (19)

where L1_measure and L2_measure is the length of the actuator detected by the displacement
sensor in the two in-plane directions, L1_estimate and L2_estimate is the length of the actuator
calculated by the proposed model in the two in-plane directions.

To verify the validity of the proposed model, we can define the prediction error of the
actuator area as follows:

Errorm_e =
Smeasure − Sestimate

Smeasure
(20)

Then, to further verify that the actuator whether can maintain a precise rectangu-
lar shape after the pre-stretching and excitation process, we defined Errorc_m error ex-
pressed as:

Errorc_m =
Scamera − Smeasure

Smeasure
(21)

where Scamera is the area recorded by the CCD external trigger camera.
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The prediction area errors Errorm_e of the actuator area under different step voltages
are shown in Figure 15a and the Errorc_m of the planar DEA as shown in Figure 15b. Table 2
shows the maximum value of both errors. In Figure 15a,b, the maximum error mainly
occurs in a few seconds at the initial stage. For the displacement mutation and creeping at
the very beginning, the actuator can not be able to relax completely in time, which leads
to an increase in the prediction area error. When the voltage increases, the velocity of the
deformation grows and the nonlinear viscosity is more significant, the response of the
actuator becomes more complex, thus making the prediction of the model more difficult
and leads to the error in the initial stage increases with the excitation voltage. After entering
the long relaxation phase, the actuator has enough time to relax completely, and the error
is smaller. The maximum area errors were 1.674% and 7.485%, respectively, indicating
that the proposed model agrees well with experimental measurements and the actuator
shape can basically maintain a precise rectangular shape during pre-stretching and high
voltage excitation.
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Table 2. Maximum errors of the effective three units modeled at different excitation voltages.

Voltage Errorm_e, (%) Errorc_m, (%)

2 kV 1.113 6.149
3 kV 1.315 6.349
4 kV 1.674 7.485

6. Conclusions

The complex electromechanical coupling response of the DEs is discussed in this study.
First, different voltage signals are applied to planar DEA to understand strong nonlinear
phenomena coupled with the complex time and frequency-dependent viscoelasticity of
DEs. Then, a generalized rheological model is proposed based on the principle of virtual
work, and non-equilibrium thermodynamics presents a high-precision prediction ability
with three relaxation times. Furthermore, the model parameter identification method
proposed in this paper can identify a set of optimal parameters by combining model
parameter analysis and the Monte Carlo statistical simulation method. The final results
demonstrate that the generalized rheological model can accurately predict the responses of
DE materials under high step voltages with a maximum prediction error of 3.762% and
complex alternating voltages with a maximum root-mean-square prediction error of 9.03%.
To further verify the validity of the proposed model and the shape of the actuator during
the actuation process, under different step voltages excitation, the maximum prediction
area error reached 1.674% and the maximum error obtained by the two measurements
methods is 7.485%. These results have strongly contributed to the high-precision control of
DE material systems and enhanced the field of flexible robotics.
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