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Abstract: In this study, polymer solar cells were synthesized by adding Sb2S3 nanocrystals (NCs) to
thin blended films with polymer poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C61-butyric-acid-
methyl-ester (PCBM) as the p-type material prepared via the spin-coating method. The purpose
of this study is to investigate the dependence of polymer solar cells’ performance on the concen-
tration of Sb2S3 nanocrystals. The effect of the Sb2S3 nanocrystal concentrations (0.01, 0.02, 0.03,
and 0.04 mg/mL) in the polymer’s active layer was determined using different characterization
techniques. X-ray diffraction (XRD) displayed doped ratio dependences of P3HT crystallite ori-
entations of P3HT crystallites inside a block polymer film. Introducing Sb2S3 NCs increased the
light harvesting and regulated the energy levels, improving the electronic parameters. Considerable
photoluminescence quenching was observed due to additional excited electron pathways through
the Sb2S3 NCs. A UV–visible absorption spectra measurement showed the relationship between the
optoelectronic properties and improved surface morphology, and this enhancement was detected by
a red shift in the absorption spectrum. The absorber layer’s doping concentration played a definitive
role in improving the device’s performance. Using a 0.04 mg/mL doping concentration, a solar
cell device with a glass /ITO/PEDOT:PSS/P3HT-PCBM: Sb2S3:NC/MoO3/Ag structure achieved
a maximum power conversion efficiency of 2.72%. These Sb2S3 NCs obtained by solvothermal
fabrication blended with a P3HT: PCBM polymer, would pave the way for a more effective design of
organic photovoltaic devices.

Keywords: solar cells; Sb2S3 nanocrystals; P3HT: PCBM polymer

1. Introduction

Solar cell-based organic semiconductors have many advantages, such as low cost,
lightweight, flexibility, low material consumption, easy fabrication, and large area pro-
duction [1,2].The organic photovoltaic (PV) solar cells continue to find a widespread
application, in particularly in the following areas: solar farms, remote locations, powering
stand-alone devices, powering earth-orbiting satellites and space stations, building struc-
tures such as windows and roof tiles, martial utilizations, and in aviation to power aircrafts
at high altitudes. Polymers are often used as adjustment additives in dye-sensitized solar
cells to provide a desirably resilient substrate, a frame structure of the semi solid state elec-
trolytes, in addition to the pore/film formation in photoanode films. Moreover, polymers
are added to enhance a solar cell device’s performance, such as reinforcing the processes of
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crystallization and nucleation in the perovskite solar cell films. Polymers are applied as
buffer layers or donor layers to improve a device’s efficiency. Polymers are also applied
as electron transmitters, hole transmission materials, as well as interfacial layers, which
improve the carrier separation efficacy and minimize the recombination.

Poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester, P3HT-PCBM
blends are promising organic polymers that have been used as photovoltaic materials [3].
They are considered to be a promising fullerene derivative-based donor-acceptor electron
material for organic solar cells. PCBM polymers are fullerene derivatives as electron accep-
tors for organic photovoltaics because of their high electron mobility. P3HT is a member
of the polythiophene-conducting polymer family, in which excitation of the π-orbit elec-
tron in P3HT produces photovoltaic effects in the blend [4]. The blend’s energy gap is
approximately 1.8 eV and should exhibit a high absorption wavelength around 650 nm.

The lifetimes of organic solar cells remain short due to the degradation mechanisms
that occur in organic compounds and oxidation of the electrode materials. However, strictly
controlling this morphology is severely limited, which will lead to charge carrier recombi-
nations because of incomplete pathways for both types of charge carriers if the films are
thicker than 150 nm [5]. The donor–acceptor morphology can be controlled using the metal
sulfide geometry, which can create good percolation pathways. Using ordered nanostruc-
tures such as nanocrystals or nanoparticles is promising for controlling the final structure,
as electrons can be transported along one-dimensional structures over many micrometers,
which reduces carrier recombinations [5,6]. P3HT forms ordered microcrystalline structures
in the solid state. The presence of ordered crystalline structures in solid thin films helps
to obtain high device performance because of the improved hole mobility from stacking
thiophene rings and forms an enhanced light absorption with ordered structures in longer
wavelength regions. Thus, incorporating inorganic and nanostructure semiconductors has
several advantages, such as high electron mobility and physical and chemical stability [7,8].
However, some disadvantages are present, such as the formation of large aggregates of
nanostructures, which may be effective in active layer morphology charge mobility.

Many nanostructure materials, such as PbS, ZnO, CdS, TiO2, and Sb2S3, have been
used in polymer solar cells due to their high electron mobility. Sb2S3 is a semiconductor
material with a unique one-dimensional crystal structure, higher stability in air, and di-
verse Sb-S bond lengths. Sb2S3 is a non-toxic, abundant material with an indirect band
gap of 1.7–1.8 eV, an absorption coefficient higher than 104 cm−1, and high electric con-
ductivity, which make it a suitable material for use as light harvesters in photovoltaic
applications. Sb2S3 nanocrystals may provide a significant contribution to the absorption
in polymer/Sb2S3 nanocrystal solar cells [9–11]. In a study incorporating semiconductor
P3HT:PCBM nanoparticles, Zhao et al. [12] showed that adding PbS quantum dots (QDs)
to P3HT changed the chemical structure, which improved the active layer via an optimized
phase separation and increased carrier transfers. Kim et al. [13] reported a PCE of approx-
imately 2.98% by combining various concentrations of ZnO nanoparticles grown using
the hydrothermal method with a P3HT: PCBM blend. They suggested that the improved
charge balance and performance may have been due to reducing the charge recombinations
and oxygen vacancies from the cathodes.

In this study, we report the fabrication of Sb2S3 NCs for their application in one of the
most efficient organic solar cells consisting of PTB7: PCBM organic photovoltaic blends.
To the best of our knowledge, the effect of the Sb2S3 NC additive on the properties of
P3HT:PCBM blend solar cells that employ solid hole conductors has not been investigated.
High-quality Sb2S3NPs were synthesized using solvothermal techniques at a hydrothermal
temperature of 180 ◦C. The effect of different Sb2S3 NC concentrations incorporated with
PTB7: PCBM was investigated in detail using different characterization methods. The ex-
perimental results indicated that the self-assembly of the PTB7: PCBM Sb2S3 NC polymer
and intermolecular orientation in the P3HT crystallite was greatly influenced by Sb2S3
nanocrystal doping. By adding Sb2S3 NCs, the electrons and holes transfer in the polymer
active layer enhanced our results, which led to an improved carrier separation efficiency



Polymers 2021, 13, 2152 3 of 15

and a reduced recombination. The absorption spectra of the sample, after adding Sb2S3
NCs, was better attributed to the π-π* transitions. The Sb2S3NPs help to disperse the P3HT
chains in a solution and promote transformation and, thus, improve the crystallization of
P3HT (during film forming process) as well as the device’s efficiency. The solar cell de-
vice in a structure glass/ITO/PEDOT:PSS/P3HT: PCBM:Sb2S3:NCs/MoO3/Ag achieved
a maximum power conversion efficiency of 2.72% using an Sb2S3NC concentration of
0.04 mg/mL. Hence, Sb2S3NC-doped P3HT-PCBM thin films have great potential applica-
tions as active layers in solar cell devices and can be an efficient method to improve thin
film properties.

2. Experiment
2.1. Sb2S3 Nanocrystals Fabrication

For the typical solvothermal fabrication of Sb2S3 nanocrystals, 0.2 mmol of SbCl3 and
4 mmol of I-cystine were dissolved in 10mL of oleylamine. Then, 4 mmol of thiourea was
dissolved in 10 mL of oleylamine in a separate beaker under stirring for 2 h. The antimony
solution was dropped slowly into the latter solution under vigorous magnetic stirring.
The mixed solutions were then transferred into a 50-milliliter Teflon-lined, stainless steel
autoclave and placed in a tubular furnace at 180 ◦C for 24 h. The resulting precipitate
was first centrifuged, and the black product was washed with ethyl alcohol and deionized
water and dried at 70 ◦C for 5 h.

2.2. Device Fabrication

Indium tin oxide (ITO)-coated glass substrates, approximately 120 nm thick with
a sheet resistance of around 15 Ω/sq and a 1.5 × 1.5 cm2 device area were used as an
anode contact in the organic solar cell device. Acetone or isopropanol were soaked in an
ultrasonic bath for 5 min, followed by drying in an N2-filled glove box. A PEDOT:PSS
polymer was deposited at 3500 rpm for 50 s, using spin coating followed by annealing
at 120 ◦C for 15 min in a furnace in air, resulting in a thickness of ∼60 nm. The PE-
DOT:PSS/ITO/glass substrates were moved to a nitrogen-supplied glove box and annealed
again at 130 ◦C for 10 min to avoid humidity. The blended P3HT and PCBM solution was
prepared by dissolving the polymers in 1,2-dichlorobenzene with a ratio of 1:1 and 50
mg of each polymer. The mixed solutions were stirred at 60 ◦C overnight. The Sb2S3
nanocrystals were blended in the P3HT: PCBM in a concentration range of 0.01, 0.02, 0.03,
and 0.04 mg/mL. The P3HT:PCBM:Sb2S3:NC nanocomposites were spin-coated on top
of PEDOT:PSS layers at 1500 rpm for 40 s inside a glove box. The active layer’s average
thickness was 100–120 nm, and the spin-coated layer was annealed at 140 ◦C for 10 min
in a nitrogen-filled glove box. A buffer layer, with approximately 20 nm of MoO3, was
deposited using RF spurting. The thick Ag electrode (70 nm) was thermally evaporated,
and the active area was approximately 0.1 cm2. The final device had the following structure:
ITO/PEDOT:PSS/P3HT:PCBM:Sb2S3:NCs/MoO3/Ag. A schematic illustration of a typical
device structure is shown in Figure 1.
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Figure 1. (a) Schematic configuration of the inverted polymer solar cell showing the glass/ITO/
PEDOT:PSS/P3HT:PCBM:Sb2S3:NCs/MoO3/Ag layers and chemical structure of the (b) P3HT,
PCBM, and (c) Sb2S3 nanocrystals.

2.3. Characterization

The structural properties of the Sb2S3 nanocrystals and P3HT:PCBM:Sb2S3 NCs
were investigated using an X-ray diffractometer (MiniFlex, Rigaku, Tokyo, Japan) with
monochromatic Cu Kα radiation (λ = 1.5405 Å). The UV–visible spectroscopy investigation
was performed using a Varian Cary 100 spectrophotometer (Agilent Technologies, Santa
Clara, California, USA). A transmission electron microscopy (TEM) analysis was obtained
using a JEOL 2010F (JEOL 2010F field emission high resolution scanning/transmission
electron microscope, Akishima, Tokyo, Japan) to examine the Sb2S3 nanocrystal’s prop-
erties. Atomic force microscopy (AFM) measurements were performed on a standard
Keysight 5500 scanning probe microscope (Keysight Technologies Fountain grove Parkway,
Santa Rosa, CA 95403) in the intermittent contact mode in air. The photoluminescence
spectra were collected using a Hitachi F-7000 spectrometer (Hitachi F-7000 fluorescence
spectrophotometer, Toranomo, Minato-ku, Tokyo, Japan) equipped with a red-sensitive
detector. The Fourier-transform infrared spectroscopy (FTIR) of the polymer/NC blended
films was investigated using a Nicolet 8700 (Thermo Fisher Scientific, Madison, WI, USA)
spectrometer. Raman spectroscopy of the active layer was performed using a Renishaw
inVia Raman microscope (Renishaw inVia Raman microscope, Gloucestershire, United
Kingdom) (λ = 514 nm). The current density–voltage (J–V) characteristics of the polymer
device were measured under AM 1.5 G and 100 mW cm2 illumination using a Keithley
2400 (Keithley, Tektronix, Solon, Ohio, USA) for source measurement.

3. Results and Discussion

The crystal sizes and phase information on the Sb2S3 were confirmed using X-ray
diffraction (XRD) patterns from the pure Sb2S3 nanocrystals prepared using the solvother-
mal method as shown in Figure 2a. All of the XRD patterns in Figure 2a present the stibnite
structure of the Sb2S3 (JCPDS No. 42-1393). For example, the diffraction peaks at 2θ = 17.7,
24.4, 32.8, 35.1, 44.1, 54.3, and 46.4◦ corresponded to the (120), (130), (221), (301), and (511)
orientations, respectively, with a preferred orientation along the (130) plane. The sharp
and high-intensity peaks indicated that the product had high crystallinity. No peaks were
associated with other phases, which indicated the sample’s high purity. The lattice parame-
ter identical to the orthorhombic type was a = 11.23 Å, b = 11.28 Å, and c = 3.83 Å. These
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results agreed with previously reported studies of Sb2S3 materials [14,15]. The crystallite
size of the Sb2S3 nanocrystals was 41 nm, as determined using the Scherrer formula [16].
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NC blended films spin-coated with different Sb2S3 NC concentrations.

To assess the crystalline development of the P3HT:PCBM: Sb2S3 NCs’ active layer, the
sample’s XRD patterns were recorded. Figure 2b shows the XRD profiles of P3HT:PCBM:
Sb2S3 NC blended films spin-coated at 1500 rpm for 40 s. The XRD analysis was recorded in
a narrow range (2θ = 3–10◦). The increase in the (100) peak intensity corresponding to P3HT
was observed at 2θ = 5.4◦, which agreed with prior studies [17,18]. The diffraction peak
located at 2θ = 19◦ corresponded to crystalline PCBM [19]. The XRD (100) peaks shifted to
lower angles, from 5.58 to 5.39◦, as the dispersion degree increased. This shift (change in
D spacing) indicated the improved diffusion of the PCBM into the P3HT, decreasing the
distance between them [20]. The diffraction peaks became narrower and sharper as the
Sb2S3NCs’ concentration increased, indicating an increase in the crystallinity, suggesting
orderliness, and increasing the intermolecular π plane. The P3HT:PCBM: Sb2S3 NCs’ blend
displayed a high crystallinity that improved regardless of the presence of fullerene. The
growth of the P3HT aggregate improved the chains’ crystallinity and hole mobility, which
resulted in positive J–V curves [21].

Raman spectroscopy in a range of 250 to 2500 cm−1 was used to investigate the
molecules’ irrational mode in the P3HT:PCBM:Sb2S3 NC blended films. The Raman spectra
of the P3HT:PCBM: Sb2S3 NC blended films shown in Figure 3 features the vibration
modes, as reported in previous studies, including the vibration spectra, and the stretching
and bending modes with different relative intensities varying from high to low values.
The amount of Sb2S3 NCs contributed to the changes in the peak intensity. The peaks at
∼578 to ∼782 cm−1 coincided with C-H out-of-phase bending [22]. As most studies of
polymers suggested, the peak located at 728 cm−1 was related to rocking vibrations in the
C-S-C thiophene ring of the P3HT [22,23]. The peak found at ∼1086 cm−1 was not from
the P3HT molecules; therefore, this vibration peak may have corresponded to interactions
of the P3HT molecules and the Sb2S3 NCs. The peak located at ∼1378 cm−1 was associated
with the asymmetric vibrations of C=C skeletal stretching deformation, and the peak
appearing at∼1518 cm−1 corresponded to stretching vibrations from the P3HT, which
agrees with a previous study [24]. A higher intensity peak at ∼1442 cm−1 was related to
the high P3HT structural order [25]. At this peak, the combined skeletal stretching of the
complete chain, or at least a large part of it, was found. This mode was dominated by the
inter-ring C-C stretching vibration mode and was the origin of the vibronic structure of
the absorption and emission spectra [25,26]. The intensity of the ∼1442 cm−1 peak related
to the phonon features was reduced due to the presence of the Sb2S3 NCs, suggesting an
increased order in the blended system and enhanced conjugation lengths.
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Figure 3. Raman spectra of theP3HT:PCBM:Sb2S3 NC blended thin films prepared using spin coating.

To obtain accurate morphological and size information, TEM images and diffrac-
tion patterns were obtained for the sample. Figure 4a–c show TEM images of the Sb2S3
nanocrystals prepared using the solvothermal method at 230 ◦C. The typical TEM images
shown in Figure 4a confirm that the morphology of the Sb2S3 was a nanocrystalline along
the (001) direction with a diameter of approximately 100 nm. The selected area electron
diffraction SAED images in Figure 4b show the sharp spots of the Sb2S3, where the diffrac-
tion spots indicate the fully crystalline nature of the Sb2S3NCs and the main diffraction
plane matched with the standard XRD patterns shown in Figure 2. The high-resolution
TEM (HRTEM) images are shown in Figure 4c and the lattice spacing of 0.32 nm agrees
well with the (130) diffraction of the Sb2S3. The SAED images and corresponding HRTEM
images demonstrated that the crystalline nature of the Sb2S3 NCs agreed with the XRD
and Raman results.

The optical absorption spectra of the Sb2S3 nanocrystals recorded in a range of 200—
800 nm is shown in Figure 5a. The Sb2S3 nanocrystals had high absorption coefficients
above 5 × 104 cm−1 in a wavelength range of 350–750 nm. The strong absorption intensity
was attributed to the good quality of the Sb2S3 nanocrystals. A large absorption coefficient
is important for solar cell applications, which implies a high short-circuit current density.
The energy gaps of the Sb2S3 NCs were calculated by plotting the αhv1/2 vs. hv and
extrapolating the linear portion of the curve to αhv = 0, as shown in Figure 5a (insert). The
optical bandgap (Eg) determined using the Tauc equation [27] was 1.79 eV.
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Figure 4. (a) TEM images of the Sb2S3 NCs. (b) Selective area electron diffraction (SAED). (c) High-
resolution (HRTEM) image of the fabricated Sb2S3 NCs.

To investigate the photon-gathering ability of the P3HT:PCBM:Sb2S3 NCs’ active layer,
UV–visible absorption spectra of the sample were recorded in a wavelength range of
300–800 nm. Figure 5b shows the UV–visible absorption spectra of the P3HT:PCBM:Sb2S3
NC blended films prepared using different concentrations of Sb2S3 NCs (0.01, 0.02, 0.03,
and 0.04 mg/mL). The absorption spectra in a range of 450–600 nm were attributed to
the main P3HT polymer. The absorption spectra of the P3HT:PCBM:Sb2S3NCs’ active
layer showed an absorption peak of π-π* aggregate formation at a wavelength of 512 nm,
with two small shoulders at 550 and 604 nm. The P3HT polymer displayed an atypical
absorption band at approximately 512 nm that was attributed to the π-π* transitions, this
result is in good agreement with previous studies [28,29]. The π-π* band of the active
layer showed a 3-nanometer red shift corresponding to the P3HT polymer, suggesting
more efficient π stacking. Sb2S3 NCs had absorption spectra below 550 nm in previous
studies. Sb2S3 NC doping may have strongly contributed to the buffer absorbance within a
300–550 nm range. Doping resulted in a clear red shift of the optical absorption, mainly
in the 512 nm band, which shifted from 500 to 512 nm. The red shift in the absorption
band could be attributed to increasing the π electron delocalization, lowering the energy
band of the π and π*, and improving the optical π-π* transitions [30,31]. The increase in
the light-harvesting properties of the P3HT:PCBM:Sb2S3 NC blend improved the photo-
generated carriers and enhanced the charge transport due to the π-π interactions between
the Sb2S3 NCs and the P3HT molecules. The absorption strength was increased, along
with the different concentrations, due to the improved polymer crystallinity. However, the
improved absorption may have been due to the decreased film roughness, which affected
the light scattering in the blended films, resulting in increased absorption in the active layer.

Figure 6 shows a schematic energy level diagram of the energy and charge transfer
effects of the P3HT:PCBM:Sb2S3 NC blend. There are the following three possible reasons
for the electron movement in the P3HT:PCBM:Sb2S3 NC system: electron transport from
the P3HT to the PCBM; electron transfer from the P3HT to the Sb2S3 NCs; and electrons
moving from the P3HT to the Sb2S3 NCs, and then to the PCBM. In these cases, the
electrons transformed into Ag, while the holes transformed out of the P3HT to the ITO layer,
which reduced the chances of carrier recombination. Thus, incorporating the Sb2S3 NCs
with the polymer contributed to more photo-induced charge carrier separations/transfers
that increased the photo-generated exciton dissociation [8,32]. The processes can occur
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depending on the excitation energy. When excitons are formed upon light absorption in
the Sb2S3 NCs, it is expected that the electrons will be transferred to PCBM and holes to
P3HT. When excitations are generated in P3HT, we can predict from the energy levels that
an electron transfer will occur toward the Sb2S3 NCs and/or PCBM [33]. To learn more
about the processes occurring between the blend components, we investigated steady state
and time-resolved PL.
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To study the effect of the Sb2S3 NCs on the exciton dissociation, the PL spectra of
the P3HT:PCBM:Sb2S3 NC thin films with different concentrations of Sb2S3 NCs were
investigated using a PL spectral system, as shown in Figure 7. The PL peak of the
P3HT:PCBM:Sb2S3 NCs was observed at 630 nm, in good agreement with previous studies
for P3HT:PCBM [34,35]. At higher Sb2S3 NC concentrations, the peaks become more in-
tense and emission peaks at 635nm red-shifted to 639 nm, which may have been related
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to band-to-band emission in the P3HT, since it had a narrow band gap of approximately
1.9 eV.

The increased PL intensity indicated the improved phase separation size, which
benefited the charge transport and collection. The size range of the P3HT and PCBM
exceeded the exciton diffusion length because of the increased phase separation between the
PCBM and P3HT after doping. A large increase in the PL intensity was observed, consistent
with the increased diffusion of the PCBM in the P3HT matrix, leading to increased carrier
transfers [36]. Consequently, the exciton-dissociation efficiency decreased, while the PL
efficiency increased. These results indicated that the energy and charge transfer occurred
between the P3HT, PCBM, and Sb2S3 NC material.
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Figure 7. Photoluminescence spectra of the spin-coated P3HT:PCBM:Sb2S3 NCs prepared using
different Sb2S3 NC concentrations.

Atomic force microscopy (AFM) was used to investigate the tapping mode operation
and phase distribution of the blends. Figure 8a–d shows AFM height images of the surface
roughness and grain size of the P3HT:PCBM:Sb2S3 NC thin films prepared with different
Sb2S3 NC concentrations. The images show the network structures of self-organized
P3HT chains similar to the seed-like polymer chains reported in previous studies [37,38].
The bright areas (higher phases) in the phase images can be identified as P3HT-rich regions,
while the dark areas (lower phases) can be identified as PCBM-rich regions. The phase
images of the active layer display a considerable variation in the phase segregation length
scale. The size of the P3HT area and PCBM domains, in a range of 24.3 to 59.27 nm,
depended on the NC concentration. This indicated that two sequential polymer chains
were separated within the exciton diffusion length, with PCBM nanoclusters established
between the chains.

Evidently, the Sb2S3 NC acted as a compatibilizer and modified the average domain
size of the PCBM by the intermolecular hydrogen bonds generated from the C-H-Os bonds;
therefore, the active layer became smoother. The increase in the surface roughness could
also have been due to the improved crystallinity of the P3HT in the film. This occurred
because of the decreased P3HT aggregation size and increased number of P3HT single
chains. The P3HT crystallization degree and effective phase blending had a major influence
on the electron and hole mobility in the photovoltaic blend. The P3HT crystallization degree
and effective phase blending had a major influence on the electron and hole mobility, which
enhanced the carrier recombination and reduced the recombination layer of the solar cell
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device. As reported in prior studies, a high-efficiency photovoltage has a high surface
roughness in P3HT:PCBM blended thin films [39].
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concentrations of (a) 0.01, (b) 0.02, (c) 0.03, and (d) 0.04 mg/mL.

Figure 9 displays the Fourier transform infrared (FT-IR) spectra recorded in the
250–4000 cm−1 spectral regions in the P3HT:PCBM:Sb2S3 NC blended films. In the 2700–
3100 cm−1 spectral region, the methylene and methyl stretching vibration bands from
the hexyl side chains of the thiophene rings were notable. The P3HT polymer exhibited
vibration bands at 2954 and 3054 cm−1 corresponding to the stretching and asymmetric
vibrations of =C-H and C=C [40,41]. The band at 1260 cm−1 corresponded to the dipole-
derivative vector perpendicular to the ring plane, and the band near 1048 cm−1 was due to
C-H in-plane bending [42]. The vibration mode at 1454 cm−1 was due to the deformation
vibrations of the CH and CH3 [41]. The vibration modes in the 1600–1800 cm−1 region,
such as 1715 cm−1, were due to photo-degradation products, including C=O groups [43].
The vibration mode at 1107 cm−1 corresponded to O=S stretching due to sulfonic esters [44].
The band near 820 cm−1 was related to the asymmetric deformation of CH3 vibrations
(aromatic out-of-plain vibrations) [45]. Finally, the band at 1591cm−1 was due to C=C
bands [46].
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Figure 9. FTIR spectra of the P3HT:PCBM:Sb2S3 NC blended films with different Sb2S3 NC concentrations.

Our results were in good agreement with previous studies of FT-IR vibrations of pris-
tine P3HT:PCBM. Very considerable changes suggested chemical degradation, as demon-
strated after doping, leading to an essential increase in the peaks’ intensity in the vibration
bands at 820, 2954, 2363, and 1260 cm−1, features of the hexyl side chains. This indicated
that the hexyl side chains began to separate from the thiophene rings and eventually
volatilized. As a result, as the doping concentration increased, the thiophene rings strength-
ened, affecting the increase in the P3HT band’s intensity, with a small shift related to the
improved polymer chains leading to the phase separation of the P3HT:PCBM blend. The
FT-IR results described the phase separation processes in the blend and vibration modes of
the polymer chemical groups.

To evaluate the influence of the Sb2S3 NCs on the performance of theP3HT:PCBM:Sb2S3
NCs’photovoltage, four polymer devices with different concentrations of Sb2S3 NC-doped
active layers (displayed in Figure 10) were fabricated. Figure 10 shows the current–voltage
(IV) curves of the devices under AM 1.5G simulation and 100 mW/cm2 illumination.
Table 1 summarizes the results of the open-circuit voltage (Voc), short-circuit current (Isc),
fill factor (FF), and solar energy conversion efficiency (η) of the devices obtained with
differentSb2S3 NC concentrations. The IV curves display the increases in the photocur-
rent that corresponded to the presence of theSb2S3 NCs in the active layer. In reference
to the doping concentration of the Sb2S3 NCs shown in Table 1, 0.04 mg/mL was the
optimum weight concentration that produced the highest efficiency η = 2.72% related to
Isc = 10.04 mA/cm2, Voc = 412 mV, and FF = 66%.
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Figure 10. Current density–voltage (J–V) characteristics of the solar cell device with a
glass/ITO/PEDOT:PSS/P3HT:PCBM:Sb2S3:NC/MoO3/Ag configuration.

Table 1. Detailed photovoltaic parameters of the organic solar cell device under AM 1.5 sun illumina-
tion with light power intensity of 100 mW/cm2.

Sample Voc (mV) Jsc (mA/cm2) FF (%) η (%) Rs (Ω cm2) Rsh(Ω cm2)

0.01 mg/mL 423 8.67 59.8 2.18 47.7 489.7
0.02 mg/mL 421 8.91 62.6 2.34 33.6 552.6
0.03 mg/mL 416 9.57 64.4 2.56 26.6 742.1
0.04 mg/mL 412 10.04 66.0 2.72 23.2 945.2

Generally, the increase in the FF and Voc was due to the increase in the Rsh and
decrease in the Rs. The device-resistant reduction was primarily attributed to the improved
morphology in the active layer. The significantly increased Jsc and FF may have been due to
a new network of Sb2S3 NCs that facilitated electron transport in the polymer’s active layer
and a small range of PCBM aggregation that decreased the carrier recombination losses
and increased the current density. In addition, the improved photocurrent corresponded
to enhanced entrapment and light absorption, which were demonstrated by an energetic
disorder or the improved crystallinity of the P3HT. The increase in the Jsc may also have
been due to the increased incorporation of the Sb2S3 NCs in the P3HT, which demonstrated
that the Sb2S3 NCs could work as electron acceptors comparable to the PCBM, which
helped separate the bound photo-generated excitons. The decreases in Voc with a lower
concentration of Sb2S3 may be due to the weak interaction that occurs between the polymer
and the nanocrystals’ interface, which leads to the incomplete charge transfer between the
polymer and the nanocrystals, that could decrease the transport of charge-carriers in the
hybrid solar cell. This mechanism could have caused many free electrical charges, increased
the short-circuit current density, and thus improved the power conversion efficiency. Thus,
Sb2S3 NCs blended in a polymer matrix provide a large interfacial area for fast charge
dissociation at the interface to ensure that a maximum number of charge carriers contribute
to improve the short current density. The performances of fabricated devices can be
improved further by incorporating a thin layer of MoO3 as a hole transport layer between
the hybrid blend and the back electrodes’ Ag.
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4. Conclusions

In conclusion, we successfully synthesized highly crystalline Sb2S3 NCs using the
solvothermal method. We synthesized bulk heterojunction organic solar cells based on
P3HT:PCBM:Sb2S3 NCs by adding Sb2S3 NCs to the active layer. The device’s electrical,
morphological, and optical properties were significantly affected by the Sb2S3 NC con-
centration in the P3HT:PCBM. The doping concentration improved the surface roughness
of the active layer and tapping mode operation. The phase distribution of the blends
was also investigated. The high crystalline polymer enhanced the red shift of the optical
absorption, increased the photoluminescence intensity, and narrowed the full width at
half the maximum of the Raman peaks. The results indicated that the Sb2S3 NCs strongly
affected the flat-on orientation, which increased the charge carrier transport assisted by
the π-π interactions. The increased number of P3HT single chains and the phase separa-
tion increased the free electrons, which effected the absorption and mobility and reduced
the charge recombination in the active layer blend prepared using a concentration of
0.04 mg/mL. Our studies suggest that the charge separation and current generation in
P3HT:PCBM:Sb2S3:NC-based devices result mainly from Sb2S3 NCs’ light absorption and
subsequent hole-transfer from the inorganic semiconductor to the organic hole transporting
material. The best power conversion efficiency (PCE) of the polymer solar cells was 2.72%,
using a glass/ITO/PEDOT:PSS/P3HT:PCBM:Sb2S3:NC/MoO3/Ag device structure, under
AM 1.5 sun, and global irradiation of 1000 W m−2 by blending the Sb2S3 NCs with a
concentration of 0.04 mg/mL in the active layer. An expected mechanism is also proposed
to explain the superior performance of Sb2S3NC-doped P3HT:PCBM at optimal content.
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