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Abstract: 5-hydroxymethylfurfural (HMF) obtained from biomass is an important platform chemical
for the next generation of plastics and biofuel production. Although industrialized, the high yield
of HMF in aqueous systems was rarely achieved. The main problem is that HMF tends to form
byproducts when co-adsorbed with water at acid sites. In this study, the pressure was reduced to
improve the maximum yield of HMF from 9.3 to 35.2% (at 190 ◦C in 60 min) in a glucose aqueous
solution. The mechanism here involved water boiling as caused by pressure reduction, which in
turn promoted the desorption of HMF from the solid catalyst, thereby inhibiting the side reaction of
HMF. Furthermore, the solid catalysts could be reused three times without a significant loss of their
catalytic activity. Overall, this work provides an effective strategy to improve the yield of HMF in
water over heterogeneous catalysts in practice.

Keywords: glucose; 5-hydroxylmethyfurfural; aqueous phase; heterogeneous catalysts; pressure reduction

1. Introduction

Biomass is the most abundant renewable resource in the world, with the advantages
of low pollution, wide distribution, and renewability [1]. The development and utilization
of biomass is an effective way to alleviate global energy problems [2–6]; in addition to this
aspect, some polymers can be prepared from biomass-based platform compounds. The
interest in the preparation of polymeric materials based on biomass resources is growing.
Undoubtedly, polyethylene terephthalate (PET) is the one of the largest volume industrial
polymers. However, PET is not easy to degrade, which in turn causes environmental
pollution and can damage human health. Recently, researchers designed a biodegradable
plastic (PEF) synthesized by replacing terephthalic acid with furan-2,5-dicarboxylic acid
(FDCA) for replacing PET [7–10]. FDCA, the oxidation product of HMF, is the key point to
produce PEF [11–15]. Therefore, it is very necessary to explore HMF in order to produce
FDCA for furthering the polymeric industry.

There are many raw materials for the production of HMF such as glucose, fructose,
sucrose, and cellulose. Literature has indicated that it is easiest to produce HMF for fruc-
tose [16,17], but glucose should be the most suitable raw material to prepare HMF, as it
is a cheaper and more abundant material. The glucose–HMF conversion path involved
isomerizing glucose to fructose over a Lewis acid, followed by dehydrating fructose to
form HMF with Brønsted acid [18–20]. It has been reported in literature that homogeneous
catalysts could effectively catalyze glucose to obtain HMF [21–26]. However, the disad-
vantages of homogeneous catalysts, including corrosion, environmental pollution, and
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difficulty of recycling, limit their application and spur the development of heterogeneous
catalysts [27–30]. Moreover, solvents such as organic solvents, biphasic systems, and ionic
liquid are the focus in the HMF production [31–35], but they have many problems. DMSO,
a typical organic solvent, is hard to separate from HMF because of it having a high boiling
point and it being expensive and environmentally unfriendly. Biphasic systems cannot
avoid the use of toxic solvents, and the viscosity of the bulk of ionic liquids is too high
to mass transfer in reactions. Water has the properties of a low boiling point, low viscos-
ity, and high environmental protection. The use of heterogeneous catalysts to catalyze
biomass to produce HMF in water meets the requirements of industrial production such as
environmental protection and the easy separation of products.

Zirconia (ZrO2) was reported to possess acid properties, which makes it a good choice
as a catalyst and catalyst support [36]. For the first time, ZrO2 was used for catalyzing
glucose to produce HMF in water, with the yield being 10.0% [37]. Chareonlimkun et al. [38]
revealed that the mechanism of using sulfated zirconia (SO4–ZrO2) can obtain a higher
HMF yield than ZrO2. The reason is that ZrO2 acts as Lewis acid sites to promote the
isomerization of glucose to fructose [39], and Brønsted acid sites introduced by acidification
further promote the dehydration of fructose to HMF [40]. It was indicated that the yield
of HMF was less than 30.0% from glucose in water. The main reason is that HMF is an
unstable intermediate that is prone to side reactions [41–43]. Side reactions mainly include
two routes: (a) the rehydration reaction between HMF and water is to produce organic
acids such as levulinic acid and formic acid, and (b) the condensation reaction between
HMF and sugars or other products is to form soluble polymer or insoluble humins. Hence,
suppressing the occurrence of side reactions is an important method for increasing the
yield of HMF.

There are very few reports about inhibiting the unwanted reactions of HMF in water.
Recently, a method to increase the yield of HMF by adding a low-boiling solvent to the
water–ionic liquid system was discovered [34]. The research considered how the bubbles
produced by boiling promoted the rate of interphase mass-transfer of HMF in reactions, which
increased the extraction ratio of HMF in ionic liquid and avoided the side reactions of HMF.

Based on the inspiration of this theory, this work proposes a method for pressure
reduction to promote the production of HMF from glucose with a heterogeneous catalyst
in aqueous solution. Here, a heterogeneous catalyst is designed according to the acid sites
required for the production of HMF from glucose. Then, pressure is reduced as a way to
increase the production of HMF, and its mechanism is discussed. Moreover, the effects of
temperature, time, and the recycling potential of catalysts are investigated.

2. Materials and Methods
2.1. Materials

Glucose (99.5%), levoglucosan (99.0%), and furfural (99.5%) were purchased from
Aladdin Reagent Co. Ltd. (Shanghai, China). HMF (99%, GR), ZrOCl2·8H2O (99.9%),
levulinic acid (99.0%), formic acid (99.0%), and fructose (99.0%) were purchased from
Macklin Reagent Co. Ltd. (Shanghai, China). NaOH (98%) was purchased from Fuchen
Chemical Reagent Co. Ltd. (Tianjin, China). Boric acid (99.5%) was provided by Chinasun
Specialty Products Co. Ltd. (Changshu, China). Sulfuric acid (98%) was supplied from
Chemical Reagent Co. (Guangzhou, China).

2.2. Catalyst Preparation

We followed the typical approach of preparing a SO4
2−/B2O3/ZrO2 catalyst by the

coprecipitation and acidification method. ZrOCl2·8H2O and sodium hydroxide were
dissolved in deionized water. The sodium hydroxide solution was added dropwise to the
ZrOCl2·8H2O solution to adjust the pH to 9–10. Then, the precipitate was left to age for 5 h
before separation and being washed with ethanol until no white precipitate was detected
with 0.1 M AgNO3 (aq). The final sample was obtained after oven-drying at 110 ◦C for
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6 h. After this, 0.7 M boric acid (aq) was added to the obtained ZrO(OH)2 with magnetic
stirring over a period of approximately 6 h.

After five cycles of separation, washing and redispersion with ethanol, the powder
obtained was oven-dried at 80 ◦C for 24 h and then calcined in air at 550 ◦C for 4 h. The
obtained B2O3/ZrO2 was immersed in 1 M H2SO4 with stirring for 6 h. The suspension
was then washed, dried and calcined as above.

2.3. Catalyst Characterization

The sample was ground for XRD. XRD spectra were recorded on a XRD-6000 X-ray
diffractometer (PANalytical B.V., Almelo, The Netherlands) using Cu Kα radiation (40 kV
voltage, 40 mA tube current). Diffraction patterns were recorded within a 2θ range from
20◦ to 60◦. XPS spectra were recorded by an Axis Ultra DLD (Kratos Analytical Shimadzu
Group Company, Manchester, UK) to detect the elements of Zr, S, B, and O. The data were
calibrated by the C1s signal (284.4 eV). The sample was ground with KBr at the ratio of 1:100
and then pressed into disks for FTIR. FTIR spectra in the region of framework vibration
(400–4000 cm−1) were recorded with a Tensor 27 infrared spectrometer (Bruker, Bremen,
Germany). Acid properties were measured by temperature programmed desorption and
pyridine infrared spectroscopy. Temperature programmed desorption of ammonia was
performed on a AutoChem1 II 2920 (Micromeritics, Norcross, GA, USA). About 50 mg of
catalyst was saturated with NH3 at 150 ◦C, flushed with He to remove physisorbed gas
and then ramped to 650 ◦C at a heating rate of 10 ◦C/min under He flow. The pyridine
infrared spectroscopy was determined by Nicolet 6700/TGAQ50 (Thermo Fisher Scientific,
Waltham, MA, USA; TA instruments, New Castle, DE, USA). The catalyst was activated
at 350 ◦C for 30 min. Pyridine was chemisorbed on the catalyst surface at 100 ◦C. Excess
physisorbed pyridine was removed by holding the temperature at 100 ◦C for 15 min.

2.4. Conversion of Glucose to HMF

The experiment without pressure reduction was performed as follows: All reactions
were carried out in 100 mL cylindrical stainless steel batch reactor (SLM 100, Beijing
Century Sen Long experimental apparatus Co., Ltd., Beijing, China). The desired quantity
of glucose (0.40 g), distilled water (40 mL), and catalyst (0.20 g) were introduced into the
autoclave. Reactions were conducted at 150–190 ◦C with a reaction time range of 30–90 min
in 30 min increments. This experiment was taken as the control.

The experiment with pressure reduction was performed as follows: The reaction
conditions are same as above. The steam was taken out by opening the vent valve slightly
every 10 min when the reaction was ongoing (the pressure of the system was reduced due
to the process, which is referred to as pressure reduction). It was condensed through the
condensing tube for collection. For each experiment, a total of 15–25 mL of exact solution
was taken out of the reactor, as shown in Table 1. The reactor monitored the reaction
time, removed the vial from the heating board, and quenched the reaction in a cool board
immediately after reaching the designed time.

2.5. Product Analysis

Before the tests, the product was filtered with a 0.22 µm filter. The evaporated sub-
stance, products, and residual glucose were determined by Agilent 1100 liquid chromatog-
raphy (HPLC). The specific conditions were as follows: chromatographic column, Bio-Rad
Aminex HPX-87H column; detector, differential refractive detector (RID); mobile phase,
5 mM sulfuric acid; flow rate, 0.5 mL/min; column temperature, 50 ◦C; detector tempera-
ture, 40 ◦C. Figure 1 shows the HPLC chromatograph. The yield of products (HMF) and
byproducts (levulinic acid, formic acid, levoglucosan, furfural), the conversion of glucose,
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extraction efficiency, and yield of humins were calculated by the external standard method.
The formulas are as follows:

Yield o f products in the solution (mol%) =
mol o f product produced in solution

mol o f glucose initially charged
× 100%

(1)

Conversion o f glucose (mol%) =
mol o f glucose reacted

mol o f glucose initially charged
× 100% (2)

electivety o f products (mol%) = Yield o f products × conversion o f glucose (3)

Yield o f humins (mol%) = (1 − Selectivity o f products)× Conversion o f glucose × 100%
(4)

Table 1. The volume of solution in the vessel.

Temperature (◦C) Time (min) Volume (mL)

150

30 23

60 21.5

90 25

160

30 21

60 17

90 22

170

30 22

60 22

90 22.5

180

30 21

60 20

90 20

190

30 20

60 21.5

90 22.5
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3. Results
3.1. Catalyst Characterization

Figure 2a shows the XRD pattern of SO4
2−/B2O3/ZrO2. From this, it can be seen

that the XRD pattern of the catalysts exhibited characteristic diffraction peaks of tetrag-
onal zirconia (t-ZrO2) and monoclinic zirconia (m-ZrO2). The typical diffraction peaks
corresponded to the (111), (002), (200) crystal planes of t-ZrO2, which were consistent
with the PDF card (JCPDS No. 414-0534). The following crystal planes, i.e., (110), (−111),
(−102), (−112), (202), (220), and (−202), confirmed m-ZrO2, which were consistent with
the PDF card (JCPDS No. 07-0343). There was no characteristic peak of B2O3 in the sample,
indicating that B2O3 may be highly dispersed or amorphous [44].
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Figure 2. Acid properties and structure characterization of catalysts. (a) XRD pattern; (b) FTIR spectra; (c) temperature
programmed desorption; (d) FTIR spectra of pyridine chemisorption; (e) XPS pattern.

Figure 2b shows the FT-IR spectra of SO4
2−/B2O3/ZrO2. It can be seen from the

figure that there were typical characteristic absorption peaks at 3403 cm−1, 1623 cm−1,
1450–1400 cm−1, 1150–1050 cm−1, 866 cm−1, and 501 cm−1. Among them, the bands at
1623 cm−1 and 3403 cm−1 were attributable to the O–H tensile vibration of adsorbed water on
the surface and the H–O–H flexural vibration of bound water [45,46]. The band at 501 cm−1

belonged to the Zr–O vibration. The characteristic peaks at 1150–1050 cm−1 represented the
formation of BO4 units [46], while the band at 1450–1400 cm−1 and 866 cm−1 represented
the formation of BO3 units [44]. The absorption peak at 987–1137 cm−1 was attributed to the
stretching vibration peak of S=O. Figure 2e shows the XPS of SO4

2−/B2O3/ZrO2. The binding
energies at 163.9, 179.7, and 527.1 eV corresponded to S 2p, B 1s, and O 1s, respectively. The
Zr spectrum showed two peaks at 178.9 and 181.2 eV, which belonged to the Zr 3d5/2 and
Zr 3d3/2 spin-orbitals of Zr4+, respectively. All the above results indicated that the required
SO4

2−/B2O3/ZrO2 was successfully prepared.
Generally, the adsorption of base molecules (e.g., pyridine or ammonia) combined

with binding spectroscopy is a common technique, which was used to determine the
nature of the surface active sites in solid acids [47]. The acidity on the surface of catalysts
were determined by means of temperature programmed desorption (NH3-TPD) (shown in
Figure 2c). The acid sites based on desorption temperature were divided into two categories:
weak acid (150–250 ◦C), and medium acid (250–400 ◦C). The amount of surface acid was
1.78 mmol/g. Among them, the amount of weak acid and medium strong acid reached
0.74 mmol/g and 1.04 mmol/g, respectively. The acidic properties of SO4

2−/B2O3/ZrO2
were investigated by FTIR spectra after pyridine chemisorption, as shown in Figure 2d.
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There were three bands in 1550–1400 cm−1. The peak at 1440 cm−1 indicated the presence
of a Lewis acid. The one at 1530 cm−1 was attributed to the C-C stretching vibration of
pyridium ion and has been used for the identification of desorption of a Brønsted acid.
Another peak at 1512 cm−1 was assigned to the characteristic peak of the co-adsorption of
pyridine molecules at the Brønsted acid sites and the Lewis acid sites [48,49].

3.2. Conversion of Glucose to HMF by SO−-/B2O3/ZrO2

Figure 3 showed the results that the influence of various temperature and time on the
transformation of glucose to HMF over SO4

2−/B2O3/ZrO2. The conversion of glucose was
greatly affected by temperature. Glucose conversion increased from 45.9 to 60.3% with
an increase in the temperature from 150 to 190 ◦C in 30 min. However, the production
of HMF was not sensitive to reaction temperature: HMF yield increased little bit from
0.0 to 7.7%. The maximum yield of HMF reached 9.3% at 190 ◦C in 90 min when the
conversion rate of glucose reached 64.6%. The reason for the low selectivity was that there
are a large number of byproducts generated. With an increase of reaction time from 30 to
90 min, the HMF conversion increased slowly, but the conversion of glucose did not follow
this trend. Previously, B2O3/ZrO2–Al2O2 containing Brønsted and Lewis acid sites was
conducted to produce HMF in DMSO [44]. The yield was 41.2%, much higher than that of
SO4

2-/B2O3/ZrO2. The main reason was that many side-reactions may happen in water,
while HMF was more stable in DMSO [50].
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Figure 3. The effect of temperature and time on conversion of glucose to HMF over SO4
2−/B2O3/ZrO2.

According to previous reports [51] (as shown in the Figure 4), the side-reaction in-
cluded into four paths: (1) isomerization of glucose to fructose; (2) dehydration of glucose
to levoglucosan (LGA), furfural (FF); (3) hydration of HMF to levulinic acid (LA) and
formic acid (FA); and (4) condensation of HMF to humins. Soluble byproducts such as
LGA, FF, LA, FA, and fructose can be detected by HPLC. It turns out that in addition
to unreacted glucose and HMF, there was a small amount of fructose that was less than
10%. As can be seen in Table 2, other byproducts were thought to be insoluble humins
produced by HMF condensation, where the yield was 46.2%. However, there is no means
to qualitatively analyze the main components of humins.

3.3. Conversion of Glucose to HMF by SO4
2−/B2O3/ZrO2 with Pressure Reduction

3.3.1. The Possible Mechanism of Pressure Reduction

According to Table 2, HMF was not detected by HPLC in the vapor, which meant that
HMF remained in the liquid product in a high content. Compared to the experimental
pressure with vapor pressure (as can be seen in Figure 5), the phenomenon that only water
was evaporated can be explained. If the extracted vapor was 1 or 2 mL, the temperature
and pressure in the kettle would reduce due to the removal of steam. Obviously, the
experimental pressure was between the saturated vapor pressure of water and HMF. In
other words, releasing vapor pressure could promote water to boil.
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Table 2. Concentration of HMF in the vapor.

Temperature (◦C) Time (min) Yield of HMF (%)

150

30 0.062

60 0.069

90 0.075

160

30 0.100

60 0.152

90 0.150

170

30 0.140

60 0.185

90 0.243

180

30 0.239

60 0.284

90 0.336

190

30 0.405

60 0.447

90 0.389
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3.3.2. Conversion of Glucose to HMF with Pressure Reduction

As can be seen in the Figure 6, the reaction temperature had a certain influence on the
yield of HMF and the conversion of glucose with reducing the pressure. As temperature
rose, the glucose conversion gradually increased. For example, it rose from 36.1 to 67.3%
rapidly when the temperature elevated from 150 to 190 ◦C in 30 min, which indicates that
a high reaction temperature could improve the mass transfer and heat transfer between the
substrate and the catalyst. The acid sites of the catalyst in the reaction system contacted
with the substrate more fully, which promoted the conversion of glucose. The trend of
HMF yield was consistent with glucose conversion when it reacted for 30 min and 60 min.
At 90 min, however, the yield of HMF increased and then decreased. For example, the
yield of HMF was 4.2% at 150 ◦C in 30 min. When the temperature rose to 190 ◦C, the
yield of HMF increased to 31.5%. With the reaction time increasing to 90 min at 190 ◦C, the
yield of HMF decreased to 24.0%. The maximum yield reached within 60 min at 190 ◦C
was 35.2%. These results indicate that the formation of polymers species hinder the active
sites with prolonging the reaction time. The byproducts in the reaction solution were also
quantified. Although the catalyst prepared for the selective production of HMF was not
very effective, this method of pressure reduction greatly improved its yield. The result
was better than that of HCl [43], ZnCl2 [52], and cellulose-derived carbonaceous [53] in the
aqueous phase. Therefore, this method can be widely used for the production of HMF in
the aqueous phase on a solid catalyst.
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over SO4

2−/B2O3/ZrO2.

The occurrence of side reactions is inevitable in water. However, the soluble byprod-
ucts such as LGA, FF, LA, FA, and fructose were not detected by HPLC, as shown in Table 3.
Nevertheless, the yield of humin decreased from 46.2 to 36.3%. The indexes were much
better than that without pressure reduction, which indicates that pressure reduction can
effectively promoted the production of HMF. To this extent, by reducing pressure, it not
only improved the yield of HMF and the conversion of fructose, but it also reduced the
condensation products of HMF. Based on this result, the method of pressure reduction
have remarkably unique and environmentally friendly benefits, including that the fact
that the isolation and purification of intermediate compounds can be avoided. Firstly,
the catalyst and humins were filtrated by 0.22 µm. Since there are no other byproducts
(e.g., LA, FA, LGA, FF, and fructose), HMF only need to be purified by distillation from
unreacted glucose and water. The HMF and water are distillation from glucose. Finally, the
purified HMF is obtained from the solution above through a rotary evaporator.

Zhou’s research [34] showed that the low boiling solvent produced bubbles when
boiling: bubbles rose from the bottom to the upper area, promoting the upward movement
of HMF to ionic liquid for inhibiting its side reactions; this process also causes the reaction
system to be agitated, promoting the ionic liquid with high viscosity to mass transfer. In
this paper, the main reason for using pressure reduction to promote the dehydration of
glucose to HMF is that pressure reduction promoted the boiling of water caused by the
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reduced pressure (as shown in Figure 7). The bubbles produced by boiling causes the
disturbance of the reaction system, which promoted the rapid desorption of HMF from the
acid sites of solid catalyst and further promoted the adsorption of glucose with more acid
sites, which improves the conversion of glucose and the yield of HMF. Both methods are to
promote the production of HMF by solvent boiling, and the yield of HMF is increased by
more than three times. However, the methods used in this study are more environmentally
friendly and economical. This is an efficient method to produce HMF by avoiding the use
of organic solvents.

Table 3. The byproducts in the solution at a temperature of 190 ◦C and time of 60 min.

Controls-Yield (%) Pressure Reduction -Yield (%)

Soluble Products Insoluble Products Soluble Products Insoluble Products

LA FA LGA FF Fructose Humins LA FA LGA FF Fructose Humins

0.0 0.0 0.0 0.0 0.0 36.3 0.0 0.0 0.0 0.0 4.2 46.2
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3.4. Reuse Potential of Catalysts

The stability of SO4
2−−B2O3/ZrO2 catalyst was investigated with pressure reduction.

The results are shown in Figure 8. In the second reuse, HMF yield decreased slightly from 35.2
to 34.1%. In the third reuse, the yield of HMF decreased to 24.5%, which may be due to the
pore structure of the catalyst, which blocked byproduct humus and other solid substances.
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4. Conclusions

The method of using pressure reduction in the procedure of catalytic conversion with
solid acid in aqueous system is an effective strategy to increase HMF yield. The possible
mechanism is to use the bubbles produced by boiling, as these bubbles can cause turbulence
in the solution, in turn promoting the diffusion and transfer of HMF from the solid catalyst
and avoiding further side reactions at acid sites. Under the same conditions, the yield of
HMF can be increased from 9.3 to 35.2% (at 190 ◦C for 60 min) when reducing pressure. In
addition, the SO4

2−−B2O3/ZrO2 catalysts can also keep stable, and the yield of HMF with
the third recycling of this catalyst can also reach 24.5%.
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