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Abstract: Nanocomposites with polymer matrix offer excellent opportunities to explore new func-
tionalities beyond those of conventional materials. TiO2, as a reinforcement agent in polymeric
nanocomposites, is a viable strategy that significantly enhanced their mechanical properties. The size
of the filler plays an essential role in determining the mechanical properties of the nanocomposite. A
defining feature of polymer nanocomposites is that the small size of the fillers leads to an increase in
the interfacial area compared to traditional composites. The interfacial area generates a significant
volume fraction of interfacial polymer, with properties different from the bulk polymer even at low
loadings of the nanofiller. This review aims to provide specific guidelines on the correlations between
the structures of TiO2 nanocomposites with polymeric matrix and their mechanical properties. The
correlations will be established and explained based on interfaces realized between the polymer
matrix and inorganic filler. The paper focuses on the influence of the composition parameters (type
of polymeric matrix, TiO2 filler with surface modified/unmodified, additives) and technological
parameters (processing methods, temperature, time, pressure) on the mechanical strength of TiO2

nanocomposites with the polymeric matrix.

Keywords: polymer nanocomposites; TiO2 nanoparticle; organic–inorganic interfaces; surface modi-
fication of TiO2 nanoparticles

1. Introduction

Polymer nanocomposites represent a new class of composite materials that gener-
ally exhibit better properties than traditional microcomposites, in terms of mechanical
properties, thermal and dimensional stability, fire and chemical resistance, optical and elec-
trical properties, etc. Polymer nanocomposites with inorganic fillers attracted significant
an attention due to their unique properties and their numerous applications in modern
technology. The properties of polymer nanocomposites are mostly a simple combination of
incorporated inorganic nanoparticles and polymeric matrix.

Polymeric materials can be used as matrices in nanocomposites due to their good
thermal stability, environmental resistance (durability), and electrical, chemical and me-
chanical properties [1]. However, it is well known that some polymers (e.g., epoxy resin)
are highly brittle. This disadvantage limits the application of these polymers in products
that require high impact and fracture strength. Inorganic filler added into polymer matrix
improved the mechanical performance of the polymeric nanocomposites. Nanofillers have
large surface areas, making them chemically active, and making them interact more easily
with the matrix [2]. There are many methods to reinforce polymers with rigid fillers to
reduce the cost of production, alleviate some of the polymers limitations and expand their
applications [3]. How fillers influence the characteristics of these polymers depends on the
polymer nature and the proportion of the filler. Fillers are used to modify many properties

Polymers 2021, 13, 2017. https://doi.org/10.3390/polym13122017 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-6937-6685
https://orcid.org/0000-0002-3764-7313
https://doi.org/10.3390/polym13122017
https://doi.org/10.3390/polym13122017
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13122017
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym13122017?type=check_update&version=2


Polymers 2021, 13, 2017 2 of 24

of polymers, such as mechanical [4] (flexural strength, tensile modulus, tensile strength,
fracture toughness and impact energy), thermal, electrical, and magnetic properties [5,6].

The polymer mass, chemical structure, semi-crystallinity, chemical solubility, and
thermal stability, and the nanoparticle surface area, chemical structure, and dispersion are
essential for obtaining polymer nanocomposites and understanding their behavior. There
are several methods to obtain polymeric nanocomposites, such as modified emulsion poly-
merization [7], in situ polymerizations [8,9], via direct blending (mechanical mixing) [10,11],
solution dispersion [12–14], the sol-gel method and melt compounding [15,16], selective
laser sintering process [17], and melt extrusion and injection molding [18,19]. Each process
is specific, but the final morphology of the nanocomposites plays an important role. The
morphology depends not only on the method of obtaining the nanocomposites, but also on
the polymer–nanoparticle interactions that promote good dispersion and distribution of
the nanoparticles in the polymer matrix [20,21].

Polymer nanocomposites have superior mechanical and physical properties over host
polymers, due to the large interfacial area between the polymer matrix and nano-fillers.

Among the different fillers used, such as clays, silicas, nanotubes, inorganics, etc.,
titanium dioxide (TiO2) play a special role in polymeric matrices, to synthesize high-
performance and malleable polymer networks (e.g., improving viscosity, obtaining fil-
aments for 3D printing) [22–24]. TiO2 is found in many applications due to its good
photocatalytic properties, hence it is used in antiseptic and antibacterial compositions,
degrading organic contaminants and germs, as a UV-resistant material; this is due to
its chemical inertness properties, non-toxicity, low cost, high refractive index, and other
advantageous surface properties. In these applications, TiO2 is used as a component of
various types of nanocomposite materials with special properties, which open up opportu-
nities in the following various fields of applicability: in the production of pharmaceuticals,
cosmetics or paints [25], drug delivery systems with controlled release [26], solar cell [27],
chemical sensing, luminescent material, and photocatalyst [28]. For example, as materials
for obtaining membranes for integration in environmental applications, including water
treatment or reducing humidification [29,30]. Polymer nanocomposites find applications
in the development of optical and electronic devices, sensors, and bio-sensors [31,32].

The incorporation of TiO2 nanoparticles into different types of the polymeric matrix
could produce synergistic effects. Studies have been performed on the TiO2 nanoparticle
effect on several properties of polymeric composite, mainly to figure out whether the appli-
cation of nanoparticles can enhance the mechanical performance of polymeric composites
for applications in various fields.

This paper comprehensively reviews some essential aspects, such as the processing,
characterization, and mechanical properties of various nanocomposites with a polymeric
matrix and TiO2 fillers.

2. Polymeric Matrix
2.1. Matrix

The main component in the nanocomposite of the polymer matrix is the polymer
itself. There are many varieties of polymers used in the preparation of polymeric matrix
nanocomposites. These polymers can be thermoplastics, thermosetting, elastomers, natural,
and biodegradable polymers. The choice of filler depends on the nature of the polymer,
thus obtaining materials with the following specific properties: mechanical, electrical,
magnetic, optical biocompatibility, chemical stability, and functionalization. Thermosetting
polymer nanocomposites are usually the most common nanocomposites. They are used
in many applications, but recently thermoplastic polymer nanocomposites have attracted
much of the research interest in industry and academia. The properties of polymers depend
mainly on the polymer structure, which in turn depends on the chemical composition,
surface morphology, and processing parameters. Polymers are a source of a wide variety
of low-priced raw materials, which offer many advantages, such as the following [10]: low
specific weight, high material stability against corrosion, good electrical and thermal insu-
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lation, ease of shaping and economical mass production, and attractive optical properties.
However, they have some deficiencies in strength and stiffness. Fillers are integrated into
polymer materials to make up for those deficiencies. These polymers can be epoxy resins,
polyester fibreglass resins systems, PURs, PIs, urea, etc.

Theoretically, the associations that can be made between different polymers and the
wide range of fillers are infinite. In practice, however, although numerous, the polymer–
filler associations are limited. Among the thermoplastic polymers for the processing of
which fillers can be introduced, the most important are as follows: polyolefin, polyamides,
ABS polymers, polyesters, polycarbonates, and PVC. Elastomers are flexible polymers
that comprise a low crosslink density and generally have low Young’s modulus, and by
incorporating the fillers, these matrices can be more resistant [11].

2.2. Matrix–Filler Interface

The nature of the interface between the matrix and filler is an essential factor influenc-
ing the nanocomposite properties. According to Sharpe [33], the interface is defined as an
intermediate region of two phases in contact, whose composition, structure, and properties
vary throughout the area and are generally different from the two phases. Such phases
are rarely devoid of chemical interaction. The volume of material affected by the interface
interaction forms a a three-dimensional zone, called the interphase. The term interphase
is widely used in the adhesion community to indicate the presence of a chemically or me-
chanically altered zone between adjacent phases [34,35]. The interphase concept, according
to Drzal [36], is schematically represented in Figure 1.
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Figure 1. Representation of the interphase between matrix and fillers.

Knowledge of the relationship between microstructure and properties in the interface
region is essential for the correct use of composite materials. There is no simple quantitative
relationship for interface optimization that combines polymeric matrix and fillers [16]; the
physicochemical variation and the thermodynamic–mechanical principles are sources
of information for the qualitative assessment of the interface phenomena. Numerous
researches have been carried out to improve the properties of the composites, particularly
the interface when the filling is inorganic, for example, TiO2 [17].

Studies have shown [37,38] that the interface has different properties from both the ma-
trix and the filler material. This consists of several layers that can each affect the adhesion
of the components. The filler–matrix bonding depends on the following physicochemical
aspects of the interfaces of the composite: atomic arrangement, molecular conformation,
the chemical constitution of the fillers, matrix and fillers morphological properties, and
the diffusivity of the elements in each constituent. The adhesion between the polymeric
matrix and the dispersed phase particles was explained in mechanical and thermodynamic
adhesion, chemical compatibility, chemical reactions with new bonds, electrostatic attrac-
tion forces, and macromolecular interdiffusion, adsorption and watering, as shown in
Figure 2 [39]. The mechanical coupling or interlocking adhesion mechanism is based on the
adhesive keying into the surface of the substrate [40] and locking the rough irregularities
on the surface of the nanocomposites. In many studies, it was shown that the adhesion
mechanism was due to interchain entanglement and not chemical bonding between the
components of the composites. The mechanical adhesion primarily depends on the forces
in the transition region between the non-contacting areas [41,42]. The thermodynamic
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mechanism assumes that it does not require a molecular interaction for good adhesion,
only an equilibrium process at the interface [43]. In neutral environments, such as air, the
thermodynamics of the polymer system will attempt to minimize the surface free energy
by orientating the surface into the non-polar region of the polymer. When the polymer
surface is in contact with a polar substance, such as water, good adhesion requires that the
interfacial tension be minimized [44]. The other theories mentioned above are explained
based on the physico–chemical interactions between the components of the composites.
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2.3. Fillers and Surface Modifications

Composite materials with optimal performances are obtained if an optimal adhesion
between the matrix and the filler is achieved. Optimal adhesion is realized between
materials of close chemical nature. It is weak between very different materials, from a
chemical point of view, such as between the polymer matrix and inorganic fillers. Thus, the
adhesion can be improved by treating the surface of the dispersed particles with coupling
agents. Surface modification of fillers is becoming more important because of its adhesion
improvement on the stress transfer between polymer and filler, which leads to an increase
in the dispersion degree [45]. The coupling agent diffusion and adsorption processes at the
surface of the filler particles occur at the interface. The properties of the interface and the
adhesion of the components can be modified by treating the surface of the fillers before
introduction into the polymer matrix. These treatments either remove the weaker layers
related to the filler surface of the material or introduce new functional groups capable of
influencing the adhesion between the materials.

Surface treatment of the fillers can be achieved by [46,47] the following:

− The chemical interaction of the fillers with compounds that possess functional groups;
− Chemical absorption on the surface of the particles of the filling material of some

modifying agents;
− Coating the filler particles with a suitable coupling agent.

These processes are generally laborious and increase the cost of the fillers, but they
offer the possibility of considerably increasing the fillers content in mixtures without
worsening their characteristics.

Modification of the surface of fillers is becoming more important because of its im-
provement in adhesion [48]. Hence, it is on the stress transfer between the polymer and
filler, leading to an increase in the dispersion degree.
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3. Titanium Dioxide Nanoparticles
3.1. Size, Shape and Specific Surface Area of the Nanoparticles

Titanium dioxide (TiO2) is the natural oxide of the element titanium. Titanium dioxide
adopts four structures polymorphs found in nature rutile, anatase, brookite, and TiO2 (B).
An additional four high-pressure forms have been synthesized, as follows: TiO2 (II) with
the α-PbO2 structure, TiO2 (H) with hollandite, baddeleyite with ZrO2, and cotunnite with
PdCl2 [49]. Among the eight structures, rutile and anatase are mostly manufactured in the
chemical industry as microcrystalline materials. Thermodynamically, rutile is the most
stable phase at all temperatures and pressures below 60 kbar, when TiO2 (II) becomes the
favourable phase. Particle size influences surface energy and phase stability. Thus, anatase
is most stable at sizes less than 11 nm, brookite at sizes between 11 and 35 nm, and rutile at
sizes greater than 35 nm. Anatase and brookite are more stable than rutile at nano-size, due
to the differences in surface energy. Anatase is more stable than brookite at even smaller
sizes [50]. From a commercial point of view, titanium dioxide can be found in the following
two common forms that differ in crystal structure: anatase and rutile [51–53].

Titanium dioxide can be prepared in the following various morphologies: nanopar-
ticles, nanowires, nanotubes, and mesoporous structures. There are physical and chem-
ical methods for synthesizing TiO2 nanoparticles in the liquid phase, as follows: hy-
drothermal/solvothermal method, sonochemical method, electrochemical synthesis, sol-
gel method, microwave field synthesis, and vapor phase, which includes spraying, atomic
deposition of layers, pulsed laser deposition, chemical vapor deposition, physical vapor
deposition, and pyrolysis spray [54,55]. The controllable synthesis of TiO2 with unusual
morphologies and dimensions can give the polymeric matrices with particular features
and qualities.

The specific surface area of TiO2 increases as the particle size decreases, meaning
nanoparticles are attracted due to van der Waal electrostatic forces. With the decreasing
particle size, the ratio of surface/volume increases. Therefore, the smaller the particles
are, the more important the surface properties will be, influencing agglomeration behavior
and interfacial properties as a result of interaction with the polymer matrix [56,57]. The
formation of particle agglomerates and non-uniform dispersion has motivated research to
better process polymer–TiO2 nanocomposites. Several methods have been approached to
minimize agglomeration and ensure better distribution. Such methods may be as follows:
melt mixing, solution mixing in aqueous media or polymer matrices, particle surface
modification involving polymer surfactant molecules or other modifiers, which must
generate a strong repulsion between nanoparticles, mechanical stirring, and ultrasonic
irradiation.

3.2. Surface Modification of TiO2 Nanoparticles

TiO2 nanoparticles can be directly added to the organic matrix, but due to the high
surface area and high polarity, there is a strong tendency for them to aggregate. TiO2
nanoparticles form agglomerates at higher concentrations due to their high surface energy.
Surface modification of TiO2 nanoparticles effectively reduces their surface energy and
improves their dispersion properties in the organic matrix. Therefore, to improve the
homogeneous dispersion of nanoparticles, many researchers have focused on the surface
modification of nanoparticles and a new method for incorporating inorganic nanofiller
into an organic matrix [58–60]. Several ways have been employed to modify the surface of
nanoparticles [61,62].

The surface modification of TiO2 nanoparticles is often conducted by either a phys-
ical or chemical method. The chemical method has attracted the attention of many re-
searchers because the interactions between inorganic nanoparticles and the matrix are
much stronger [63]. The surface modification of nanoparticles by chemical treatments is a
useful method to improve the dispersion stability of TiO2 nanoparticles and the develop-
ment of interfaces between the organic and inorganic phase. In this regard, the concept of
silane coupling agent was reported by Plueddemann and et al. [64]. Researchers found that
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organofunctional silanes are silicon chemicals that contain both organic and inorganic reac-
tivity in the same molecule, and which can be used as coupling agents [65,66]. Coupling
agents connect resin and fillers, and improve the physical, mechanical and electrical proper-
ties of composites. Moreover, they enhance the wetting of inorganic substrates, decrease the
viscosity of the resin during mixing, and ensure smoother surfaces of composites [67,68].

The general formulation of the coupling agent molecule is as X–R, where X interacts
with the filler and R is compatible with the polymer. Organosilanes are of the form
R–Si–(OR’)3, where OR’ can be methoxy, ethoxy, acetoxy, and R can be alkyl, aryl or
organofunctional group [56]. According to this structure, the following steps may take
place, as shown in Figure 3:

X Hydrolyzation of alkoxy groups obtaining silanol, which reacts with the mineral
surface;

X The condensation reaction between silanol molecules;
X Bond formation between TiO2 nanoparticles and the organofunctional group.
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The choice of organosilane is established, taking into account the polymers chemical
structure to be compatible. For example: for a phenolic and epoxy resin an epoxy silane, or
an amino silane is recommended and for an unsaturated polyester resin a methacrylsilane.
The reactivity of the thermosetting polymers should be close to that of organosilane. For
a thermoplastic matrix, bonding occurs by diffusion of the organosilane network in the
interphase region of the composite [66].

There were silane coupling agents used, such as 3-methacryloxypropyl-trimethoxysilane
(MPS) [68], 3-aminopropyltriethoxysiane (APTES) [69], γ-glycidoxypropyltrimethoxysilane
(GPS) [70], n-propyltriethoxysilane and 3-methacryloxypropyltrimethoxysilane [71], which
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change the hydrophilic particles into a hydrophobic surface by providing some molecules
with certain hydrophobicity.

Some coupling agent recommendations for the surface modification of TiO2 nanopar-
ticles is given in Table 1.

Table 1. Surface modification of TiO2 nanoparticles.

Modification Agent of TiO2
Surface Chemical Structure Polymer–TiO2 Nanocomposite Ref

3-(trimethoxysilyl)propyl
methacrylate, KH–570
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Table 1. Cont.

Modification Agent of TiO2
Surface Chemical Structure Polymer–TiO2 Nanocomposite Ref
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Silane coupling agents are usually employed to realize chemical modification. These
can offer hydrolyzable groups bonding with the inorganic particles. After bond formation,
the organosilane functional groups of silane coupling agents form a hydrophobic layer
on the surface of the inorganic nanoparticles. Different coupling agents have been used
to modify the surface of TiO2 and improve the interfacial interactions necessary for the
successful incorporation of these hydrophilic nanoparticles into hydrophobic polymer
matrices.

The surface modification of TiO2 has been reported using different silane coupling
agents, such as 3-aminopropyltriethoxysilane (APTES). The photocatalytic activity of TiO2
has been shown to increase with increasing the concentration of APTES used [87]. For ex-
ample, Mallakpour and Barati [88] reported the surface modification of TiO2 nanoparticles
by the reaction with APTES. The silane coupling agent was adsorbed on the surface of the
nanoparticles at its hydrophilic end and interacted with the hydroxyl groups pre-existing
on the surface of the nanoparticles. Thus, it was confirmed that the heat stability of the
nanocomposite was improved. Shakeri et al. [89] studied the self-cleaning capability of
surfaces covered TiO2 nanoparticles, modified by APTES. They concluded that the surface
could degrade the dye used as an organic pollutant due to the obtained coating being
stable. Klaysri et al. [90] proposed a one-step synthesis method of APTES-functionalized
TiO2 surface. They showed that obtained nanomaterials are capable of the photocatalytic
decolonization of methylene blue.

Modification of the surface of TiO2 nanoparticles with silane coupling agents was
obtained via reflux in an aqueous solution [75,91]. Chen et al. investigated the interactions
between 3-aminopropyltrimethoxysilane (APTMS) and phenyltrimethoxysilane with com-
mercially available TiO2 nanoparticles (Degussa P-25) [91]. They obtained results showing
that the silane coupling agents used bind covalently on the surface of the TiO2 nanoparticles.
In another study, Zhao et al. reported the cross-linking and chemical bonding mechanisms
of APTMS and 3-isocyanatopropyltrimethoxysilane on TiO2 nanoparticles [75].

To improve TiO2 nanoparticles dispersion and enhance the interactions between the
nanoparticles and polymeric matrix (polyamide/modified–TiO2 nanocomposites), the
surface of TiO2 was modified with a 1,3,5-triazine based silane coupling agent [92].
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Caris et al. [93] used conventional emulsion polymerization to encapsulate TiO2 in
poly(methyl methacrylate) (PMMA). Sidorenko et al. [84] investigated the radical polymer-
ization of styrene and methyl methacrylate (MMA). This reaction was initiated at the surface
of TiO2 particles by adsorbed hydroperoxide macroinitiators. Erdem et al. [94] encapsulated
the TiO2 nanoparticles by miniemulsion polymerization of styrene, polybutene-succinimide
pentamine being used as the stabilizer at the oil/water interface. Rong et al. [95] used the
TiO2 nanoparticles modified by 3-(trimethoxysilyl) propylmethacrylate (MPS) to copoly-
merize styrene with the methacrylate group of MPS, by free-radical polymerization. Yang
and Dan [96] used a similar approach by graft polymerized MMA on the modified surface
of the TiO2 nanoparticles.

Milanesi et al. used a mixture of isomeric octyltriethoxysilanes (OTES), highlighting
the hydrophobic layer structure. They concluded that the cross-linking (via Si–O–Si bonds)
and chemical bonding (via Ti–O–Si bonds) of silanes onto TiO2 nanoparticles occurred [97].
Xiang et al. used 3-methacryloxypropyl-trimethoxysilane (MPS) to modify the TiO2 sur-
face to enhance the compatibility of TiO2 nanoparticles in the poly(butyl acrylate) (PBA)
matrix. The modified TiO2 presented good compatibility in the PBA matrix [98]. In an-
other study [83], Xiang showed the hydrophobic surface modification of TiO2 to produce
acrylonitrile-styrene-acrylate (ASA) terpolymer–TiO2 composites for cool materials. Wang
et al. [99] functionalized the commercial TiO2 nanoparticles in an aqueous solution via
ultrasonic treatment at room temperature with 3-(trimethoxysilyl)propyl methacrylate.

Godnjavec et al. have coated TiO2 nanoparticles by 3-glycidyloxypropyltrimethoxysilane
(GLYMO) as an additive in a clear polyacrylic coating. According to their results, grafting
GLYMO on the nanoparticles surface improved the dispersion, transparency, and UV
protection of the clear acrylic coating [100].

Yang et al. [101] reported silanization of TiO2 particles through a sol-gel method.
Based on their results, vinyl triethoxysilane (VTES) as a surface modifier improved the
stability of dispersion and suspension in tetrachloroethylene. Dalod et al. [50] modified
TiO2 nanoparticles with amino silane groups using a hydrothermal method and found that
the nanoparticles shape and structure depends on the type of silane coupling groups.

Tangchantra et al. [102] investigated the effect of different silane coupling agents on
the surface grafting of TiO2 with hexadecyl trimethoxysilane (HTMS), triethoxyvinylsilane
(TEVS), and aminopropyl trimethoxysilane (APS). The results showed that silane coupling
agents could modify the surface of TiO2 nanoparticles via the hydrolytic condensation of
titanium isopropoxide. The TEVS agent improved the dispersibility of TiO2 particles and
showed optimum mechanical properties.

The appropriate surface modification on nanoparticles leads to better dispersion and
compatibility in the polymer matrix. The formation of chemical and physical interactions
with the polymer matrix could guarantee remarkable mechanical properties of polymeric
nanocomposites.

3.3. Properties, Commercial Products and Applications

At the nanoscale size, the material properties may dramatically change and differ
significantly from their bulk counterparts.

Particular attention has been paid, in recent years, to obtaining TiO2 with photocat-
alytic properties [103–106], optical properties [107], with applications related to the degra-
dation of pollutants [108–110], and the realization of the photoelectrochemical cells [111].
Also of interest are titanium dioxide films deposited on various substrates to obtain special
characteristics, such as surfaces with self-cleaning properties [112,113].

All applications of TiO2 nanoparticles depend on their crystal structure, morphology,
specific surface area, particle size, and form. TiO2 has been widely used in the industry for
many years for its numerous and diverse applications, as shown in Table 2.
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Table 2. Some properties of TiO2 and applications.

Application Properties

Photocatalysis Particularly in anatase from under ultraviolet
light

Self-cleaning and anti-fogging glass Spiked with nitrogen ions or droplet with
metal oxides under UV–visible light

Hydrolysis catalyst Super hydrophilicity, deodorizing, sterilizing,
anti-fouling; chemical resistance

Dye-sensitized solar cells Strong oxidative potential for develop OH
radicals

Pigments, opacifiers, cosmetic, UV absorber
Brightness, high reflective index, high

reflective optical, perfect white, opacity,
nontoxic to human life

The applications that can be mentioned are sensors, photo-conductors, additives in
plastics, catalysts, photo-/electrochromics and photovoltaics applications, dye-sensitized
solar cells, sunscreens, paints, antimicrobial applications, water purification by photocatal-
ysis processes, biosensing, and drug delivery [114]. TiO2 nanoparticles incorporated into
outdoor building materials, such as paving stones or paints, can reduce volatile organic
compounds and nitrogen oxide concentrations.

TiO2 is a material with multifunctional properties that can be incorporated in poly-
meric matrices as a filler to develop new nanocomposites with enhanced properties [115].

4. Polymeric Nanocomposites with TiO2 Filler
4.1. Preparation Methods

Polymeric matrix nanocomposites can be obtained using injection molding, compres-
sion molding, in situ polymerization, sol-gel, melt mixing and sintering.

In situ polymerization involves the dispersion of inorganic nanoparticles in a monomer
phase as a first step, followed by bulk phase polymerization. This process is mainly used
for thermosetting polymers. As a result, unstable nanocomposites can be transform into a
different morphology than expected. The in situ polymerization method is a simple and
inexpensive method. The nanocomposites with the polymer matrix, and inorganic filler
with good filler distribution in the polymer matrix, can be obtained [116].

Most compression molding techniques require pre-treatment of the nanoparticles with
curing, but injection molding is the most widely used process for obtaining nanocomposite
materials. Injection molding can be used in a variety of applications, in both commercial
and research fields [117]. Sintering, powder compaction and sol-gel are all alternative tech-
niques to produce polymeric composites. However, the operating conditions (temperature,
pressure, time, etc.) are far more than those of injection molding [118]. Some reports were
found in the literature focusing on obtaining TiO2 nanocomposites with the polymeric
matrix, as shown in Table 3.

Studies on polymer–TiO2 nanocomposites prepared by melt mixing have shown a
slight improvement or no change in mechanical properties [119,120]. Somani et al. [121]
received highly piezoresistive conducting polyaniline/TiO2 composite by in situ deposition
technique at a low temperature. Feng et al. [122] synthesized a composite of polyaniline-
encapsulating TiO2 nanoparticles by in situ emulsion polymerization. They investigated
and explained the interaction between polyaniline and nano-TiO2 particles, and the nature
of chain growth according to Fourier transform infrared (FTIR) spectra. Xia and Wang [123]
prepared a polyaniline/nanocrystalline TiO2 composite by ultrasonic irradiation. They
think that ultrasonic irradiation provides a new way to prepare 0–3-dimensional conducting
polymer/nanocrystalline composites.

Titanium dioxide has been used to reinforce polypropylene (PP) via extrusion, fol-
lowed by injection molding, by Alghamdi [124]. There were presented to the mechanical
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and structural aspects of PP for different loading of TiO2 filler (up to 30 wt. %). As the
TiO2 weight percent increases, the impact strength decreases. This behaviour is expected
because the PP is incompatible with TiO2. The PP phase is non-polar, hydrophobic and has
low surface energy, while TiO2 represent the polar phase, hydrophilic and high surface
energy for TiO2. The highest resilience value was recorded for the sample with 20% TiO2
(37.09 ± 5.3 J/m).

Mourad et al. [117] studied HDPE nanocomposites with 5% TiO2, obtained by injection
molding under the following different processing parameters: temperature, pressure,
injection velocity, and injection time. The results showed the influence of processing
parameters on the mechanical and thermal properties of HDPE–TiO2 nanocomposites.
Mechanical testing revealed that the tensile strength varied from 22.5 to 26.3 MPa, while
the Young modulus increased by 8.6% as the molding temperature increased.

Vladuta et al. [125] investigated the effect of the TiO2 nanoparticles on the PET–
rubber interface in nanocomposites obtained from waste by compression molding. The
modifications in surface energy, morphology and crystalline structure were discussed
for samples kept under visible light and UV radiation. TiO2 develops new physical
interactions in the composite, but induces, even in visible light, oxidation processes. The
results indicated that the optimum concentration for TiO2 to the composites, for obtaining
better interface properties, is 0.25 wt. %.

Regardless of the method of obtaining nanocomposites with the polymeric matrix, it
is found that the nature of filler has a significant influence on mechanical properties.

4.2. Mechanical Properties

Titanium dioxide is used as a filler in many polymeric matrices because of the im-
proved physical and mechanical properties it yields. Many studies showed improvements
in the mechanical strength and modulus of TiO2-filled polymeric nanocomposites com-
pared to the pristine-base matrix. The mechanical properties of the TiO2 nanocomposites
depend significantly on their internal structure. The poor compatibility of hydrophilic
TiO2 nanoparticles with a hydrophobic polymer matrix may lead to particle aggregates
and/or agglomerates. The aggregates create defect sites in the nanocomposites, and
the improvement in mechanical properties is not observed. More uniform dispersion
of nanoparticles is recommended, using one-dimensional nanoparticles, i.e., nanorods,
nanotubes or nanoribbons, particles with a high aspect ratio [46]. Several factors that may
influence the mechanical properties of composites with a polymer matrix and inorganic
fillers are presented in Figure 4.
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4.2.1. The Nature of the Filler

TiO2 fillers affect the basic mechanical properties of the polymer. The effect of TiO2
fillers on composites properties depends on the particle size and shape, concentration and
the interaction with the matrix, as shown in Table 3. For example, to increase the modulus
and hardness of polymers, micrometre-sized inorganic particles are frequently applied.
However, a reduction in the material ductility may take place. By diminishing the particle
size or by enhancing the particle volume fraction, the strength can be improved. Still, in
some cases, the fracture toughness and modulus remain relatively independent of the
particle size. The properties of TiO2 that make it a good filler for composite materials are
good dispersibility in the polymer system and good heat stability. Titanium dioxide has a
relatively high elastic modulus, which can be frequently combined into various polymers
to obtain the composites mechanical gain.

Mikešová and et al. [126] studied the effects of nanoparticles and the properties of the
nanocomposites of polypropylene and filler TiO2. They used isotactic polypropylene (PP)
as a matrix, and as fillers they used TiO2 in the following different shapes: a commercial
titanium dioxide micropowder (mTiO2; a mixture of anatase and rutile), a commercial
titanium dioxide nanopowder (nTiO2; anatase modification), and titanate nanotubes (TiNT).
More series of samples were obtained with PP unmodified and with PP modified by electron
beam irradiation (PP*), resulting in PP*/TiX composites (i.e., PP*/mTiO2, PP*/nTiO2, and
PP*/TiNT). These were prepared by melt mixing of PP* with 5 wt. % of TiX. The stiffness
and microhardness properties of PP*/TiX systems are improved in the order PP*/mTiO2,
PP*/nTiO2, PP*/TiNT, due to the specific surface of the TiX particles.

Nano-sized TiO2 was further studied in starch/(poly[vinyl alcohol]) blends by Sreeku-
mar et al. [127]. The nano-sized TiO2 could provide the composite with superior mechanical
properties because of good interfacial adhesion between the polymer matrix and filler.

Bora et al. [128] studied the effect of TiO2 particle concentrations (up to 25 wt. %)
on the properties of polyphenylenesulphide (PPS)–TiO2 composites. The increase in TiO2
particle concentrations in the PPS matrix improves the stiffness of the composite. High
values of flexural and residual flexural strength were obtained at 10 wt. % TiO2 particle con-
centrations. Saluja et al. [129] obtained polyester composites filled with TiO2 concentrations
up to 25 wt. %. This study shows that the addition of TiO2 particles improves the effective
thermal conductivity of polyester–TiO2 composites, the glass transition temperature (Tg),
and the reduction in the coefficient of thermal expansion (CTE).

The mechanical properties of nanocomposites depend significantly on their internal
structure. In the nanocomposite, TiO2 nanoparticles can appear as agglomerations due to
their low compatibility with the hydrophobic polymer matrix.

In this case, the large surface area of the nanowires decreases rapidly, the aggregates
create defect sites in the nanocomposites, and no improvement in the mechanical properties
is observed. A more uniform dispersion of nanoparticles, using one-dimensional (1D)
nanoparticles, i.e., nanorods, nanotubes, or nanoribbons, would improve these properties.
Compared with the isometric nanoparticles, a large surface-to-volume ratio of the 1D
nanoparticle generally improves the nanocomposites properties. Contrary to the anatase
polymer nanocomposites, only a few papers concerning polymers filled with titanate
nanotubes have been found in the literature [130–132].

The majority of nanoparticle fillers added in the polymer matrix improve mechanical
properties such as flexibility, ductility, hardness, and strength and stiffness, even in small
amounts.

4.2.2. The Nature of the Polymer Matrix

Polymer–TiO2 nanocomposites have been successfully synthesized in different poly-
mer matrices such as the following thermoplastic polymers: polyacrylate, poly (methyl
methacrylate), polyimide, polystyrene, and polyolefines; the following thermosetting
polymers: polycarbonate, polyamide 6, epoxy, unsaturated polyester; and silicone elas-
tomer [77,132].
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Saritha et al. [133] studied the incorporation of TiO2 in rubber composites. The
tensile strength, modulus, and tear strength increased with increasing TiO2 loading. More
recently, processing techniques were developed to allow the size of TiO2 to decrease to the
nanoscale. Manap et al. [134] demonstrated that TiO2 and multi-walled carbon nanotubes
(MWCNT) as filler reinforcements could address the agglomeration issue, by exhibiting
even distribution of particles in the TPU matrix. The combination of MWCNT and TiO2 in
the TPU matrix enhanced the mechanical and thermal properties significantly, this being a
good heat insulator.

In the function of the matrix nature, the percentage by weight of the inorganic filler
introduced can remain very low (on the order of 0.5% to 5%) due to the incredibly high
surface area-to-volume ratio of the particles. This area can generate a new material behavior,
which is widely determined by interfacial interactions, offering unique properties and
an entirely new class of materials. Several important types of research in this regard are
presented in Table 3.

When designing new polymer–TiO2 nanoparticle composites, the following aspects
should be considered:

− Nature of filler and polymer matrix;
− Amount of filler;
− The distribution of filler, this should not form agglomerates in the samples;
− Concentration of coupling agent for modifying of filler surface;
− The method of obtaining, which is an essential factor.

The impact resistance of polymer matrices with TiO2 filled is of particular interest to
researchers, as long as it represents the weak point of most composite materials. Hardening
of thermoplastics by modification with elastomers could be a new way to solve this problem.
It is recommended to study new cheaper and more efficient polymer matrices to produce
composites with predetermined properties. In this case, we recommend using of polymeric
waste as a matrix for obtaining nanocomposites with TiO2 filler.

Polymer nanocomposites give a new way to overcome the limitations of pure polymers
or their traditional composites. Nowadays, polymer nanocomposites with TiO2 filled
represent an area of interest for many researchers. This article contains information on
the nature of the polymer matrix (thermoplastic, thermosetting, elastomeric) and the type
of TiO2 filler, processing methods, possible surface modifications of the filler and how
they influence the mechanical properties of nanocomposites, thus completing the areas of
knowledge for many researchers.

4.3. Advantages, Limits and Applications

Polymeric materials can be used as matrices in TiO2 nanocomposites due to their
good thermal stability, environmental resistance (durability), and electrical, chemical
and mechanical properties. However, it is well known that some polymers (e.g., epoxy
resin, polyamides) are highly brittle. This disadvantage limits the application of these
polymers in products that require high impact and fracture strength. TiO2 filler added in the
polymer matrix improves the mechanical performance of the polymeric nanocomposites
over conventional polymer composites, as shown in Table 4. Finally, typical existing and
potential applications are shown in Figure 5.
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Table 3. Types of nanocomposites with polymeric matrix and TiO2 filler.

Composites Materials Methods Results-Mechanical Properties Ref.
Thermoplastic matrix

Polystyrene (PS)–TiO2

Matrix: polystyrene.
Filler: TiO2 (0.19 µm)

Coupling agent: 3-amino ethoxy silane (0.1,
0.5 and 1 wt. %.).

Obtaining: mixing of matrix with
TiO2-coupling agent

Characterization: mechanical tests, SEM
analysis.

Values of Young’s modulus, tensile strength, elongation at break,
flexural strength increase with linearly filler concentration

followed by a decrease beyond 15 wt. %.
[45]

Polyphenylene sulfide
(PPS)–TiO2

Matrix: polyphenylenesulphide (PPS)
Filler: TiO2 (200 nm; 0, 5, 10, 15, 20, and 25

wt. %)

Obtaining: injection molding.
Characterization: solid particle erosion
test, three-point bending test, thermal

analyzing methods.

The flexural modulus of composites increased with the increase
in TiO2 concentration up to 10 wt. %, and then it decreases.

TiO2 filler caused to reduce the erosion resistance of the PPS
composites.

[128]

Polypropylene (PP)–TiO2
Matrix: PP pellets;

Filler: TiO2 (0, 10, 20 and 30 wt. %)

Obtaining: injection molding
Characterization: mechanical properties:

tensile stress, impact tests; TGA

The highest resilience value recorded for the sample with 20%
TiO2 (37.09 ± 5.3 J/m). Tensile stress shows a decrease and the

E modulus increase as the weight percent of TiO2 increases.
[124]

Polypropylene (PP)–TiO2

Matrix: polypropylene (PP)
Filler: TiO2 micropowder; TiO2

nanopowder titanate nanotubes (TiNT)

Obtaining: melt mixing; samples types
PP*/TiX (PP*/mTiO2, PP*/nTiO2,
PP*/TiNT) and samples with PP

unmodified.
Characterization: SEM analysis, TEM

analysis, mechanical properties

The stiffness and microhardness of the PP–TiNT
nanocomposites increase by 27% and, respectively, 33%. In the

PP–nTiO2 nanocomposites, the increase in these mechanical
characteristics is lower.

[126]

Polypropylene (PP)–TiO2
Matrix: PP homopolymer

Filler: TiO2 (0–3 wt. %)

Obtaining: melt compounding;
Characterization: mechanical properties,
thermogravimetric analysis, DSC, SEM

analysis

The addition of TiO2 nanoparticles increases the mechanical
properties of PP fibres. Tenacity is increased by 72.69% for the
PP–TiO2 (3 wt. %) nanoparticle. Elongation at break of the PP
fibres with TiO2 (1.5 wt. %) indicated an increase of 15.79%.

[135]

Polypropylene (PP)-rice
husk–TiO2

Matrix: polypropylene (PP)
Filler: rice husk and TiO2

Obtaining: injection molding
Characterization: mechanical properties,

SEM, TGA

Incorporating inorganic filler TiO2 into PP/RH significantly
enhanced the green hybrid PP/RH/TiO2 composites

mechanical properties and thermal stabilities. The maximum
values of tensile strength and Young modulus were 41.2 MPa for
PP/RH (10wt. %)/TiO2 (3wt. %), respectively, for PP/RH (40wt.

%)/TiO2 (3wt. %)

[136]

polyurethane (TPU)–TiO2

Matrix: polyurethane (TPU) matrix with
multi-walled carbon nanotube (MWCNT);
Filler: TiO2 (particle diameter—0.19 µm).

Obtaining: injection molding.
Characterization: mechanical properties:

tensile test, DMA, TGA,

The composites have good mechanical properties: tensile stress
was 4.46 MPa, elongation at the break—49%, and Young’s

Modulus— 9.17 MPa.
[134]
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Table 3. Cont.

Composites Materials Methods Results-Mechanical Properties Ref.

thermoplastic polyurethane
(TPU)–TiO2

Matrix: thermoplastic polyurethane
Filler: TiO2 nano-particles

Coupling agent: aminopropyl trimethoxy
silane (APS)

Obtaining: mixing of matrix with filler;
Characterization: elemental analysis,

FTIR spectroscopy, TGA, mechanical
properties.

For composite with TiO2 (3 wt.%), tensile strength and Young’s
modulus were increased by 72% and 48.9, respectively. Higher

values were obtained when modified TiO2 was used, at low
percentages (1 wt.%).

[77]

polybutylene succinate
(PBS)–TiO2

Matrix: polybutylene succinate (PBS);
Filler: TiO2 (20 nm; 0, 0.5, 1, 2, 5, and 10

wt. %)

Obtaining: vane extruder.
Characterization: SEM, TEM, XRD, DSC,

TGA, DMA; mechanical test, UV
transmittance.

TiO2 has little effect on the impact strength of the composite
material. The flexural modulus of composites improved by

36.3% with TiO2 (10 wt. %) addition. The tensile modulus of
PBS–TiO2 (10 wt. %) was higher by 15.5% than that of pristine

PBS.

[137]

polyetheretherketone
(PEEK)–TiO2

Matrix: PEEK.
Filler: TiO2 powder (1, 3, 5 wt.%)

Obtaining: mixing and extrusion
forming;

Characterization: density and Melt Flow
Index (MFI) measurement, DSC, UV

thermal, mechanical test

E modulus increase with TiO2 content. The PEEK-1% TiO2
sample has a tensile strength higher than that of pristine PEEK.
TiO2 (5% vol.) particles act effectively as UV blocker retarding

the photo-degradation of PEEK.

[138]

poly(ethylene terephthalate)
(PET)–TiO2

Poly(lactic acid) (PLA)–TiO2

Matrix: poly(ethylene terephthalate) (PET)
and poly(lactic acid) (PLA);

Filler: TiO2 (20 nm);

Obtaining: extrusion forming;
Characterization: analysis—DSC, XRD,

SEM, DMTA, UV–Visible test,
mechanical test.

The mechanical properties of PET–TiO2 and PLA–TiO2
composites have maximum values at a loading level of 3% TiO2. [139]

poly(L-lactide-co-ε-
caprolactone) (PLCL)–TiO2

nanocomposites

Matrix: PLCL;
Filler: TiO2 (20 nm)

Coupling agent: silane coupling agent
NH2(CH2)3Si(OC2H5)3

Obtaining: solution casting method.
Characterization: analysis—FTIR, DSC,

TEM, tensile test, shape memory;

For composite with TiO2 (5%) the ultimate tensile strength and
the elongation at break increase to 35.4 MPa and 444.6%, which

are 113% and 11% higher than that of pure PLCL.
[140]

Poly(L-Lactide) (PLLA)–TiO2

Matrix: poly(L-Lactide) (PLLA)
Filler: TiO2 (<25 nm particle size) and

Halloysite nanoclay (HNT)
(Al2Si2O5(OH)4.2H2O);

Obtaining: compression molding.
Characterization: mechanical test

Young modulus had a significant increase (p ≤ 0.05) with the
addition of TiO2 up to 2.5 g TiO2/100 g PLLA. Regarding the

tensile strength, better results were also achieved when adding
2.5 g TiO2/100g PLLA.

[141]

Poly(lactic acid) (PLA)–TiO2

Matrix: PLA (4032D, 1.2–1.6% D-isomer
lactide)

Filler: TiO2 (20 nm);

Obtaining: injection molding;
Characterization: SEM, TEM, dynamic
rheological measurements, DSC, TGA,

tensile testing, UV transmittance

Samples show a higher elongation at break, except for 15 wt. %
TiO2. Elongations of nanocomposites with 1–2% TiO2 are about

19.1% and 24% higher than the pristine PLA.
[142]
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Table 3. Cont.

Composites Materials Methods Results-Mechanical Properties Ref.

Poly(lactic acid) (PLA)–TiO2

Matrix: poly(lactic acid) (PLA)
Filler: TiO2 (1, 3, 5, 10 wt.%)

Coupling agent: c-methacryloxy
propyltrimethoxy-silane)

Obtaining: in situ polymerization,
Characterization: DSC, TGA, XDR, SEM,

thermal and mechanical properties

The tensile strength, elongation at break, and Young’s modulus
of PLA–TiO2 (3 wt.%) composites are improved to a certain

degree compared with those of pristine PLA.
[143]

Thermosetting matrix

epoxy–TiO2 nanocomposites
Matrix: mixture (resin + hardener);

Filler: TiO2 (0.5, 1, 2, 3, 4, 5, 8 and 10%
vol.);

Obtaining: mixing of resin + hardener
and filler;

Characterization: tensile test, dynamic
mechanical analysis;

The incorporation of TiO2 nanoparticles into the epoxy resin
improved flexural stiffness, flexural strength, and fracture

toughness of the polymer.
[144]

epoxy–TiO2 nanocomposites Matrix: epoxy resin
Filler: TiO2 (5–40 nm, 0.5–2 wt.%);

Obtaining: mixing of matrix with filler;
Characterization: thermal properties,
mechanical properties, morphology,

viscoelastic properties.

TiO2 composites with dimensions between 5–10 nm showed
better properties than those with larger dimensions (20–50 nm). [145]

epoxy–TiO2 nanocomposites

Matrix: mixture (resin+hardener);
Filler: TiO2 (1, 3, 5, 10 wt.%)

Coupling agent: methyl isobutyl-ketone;
dodecylbenzene-sulfonic acid

Obtaining: mixing of matrix, filler and
coupling agent;

Characterization: FTIR, SEM, XRD, TGA,
mechanical tests

The mechanical properties of materials are found to improve
with TiO2, but degrade if the nano-TiO2 exceeds 3%. [146]

epoxy–TiO2 nanocomposites

Matrix: epoxy resin (DER 331TM)
Filler: TiO2 (220 nm, 50 nm and 17 nm

crystal diameter);
Coupling agent: isophorone diamine

(IPDA) + salicylic acid.

Obtaining: mixing of matrix, filler and
coupling agent;

Characterization: mechanical test, XPS,
SEM

The highest tensile stress values were found at 3 wt. % TiO2 (17
nm and 50 nm) and 5 wt. % TiO2 (220 nm). The maximum

flexural properties were found at a lower TiO2 fraction of 1 wt.%
only.

[147]

epoxy–TiO2 micro and
nanocomposites

Matrix: epoxy resin:curing agent = 2:1 (wt.
%)

Filler: TiO2 (0.2 µm; 1, 5, 10, 15 wt. %);
TiO2 (21 nm; 0.5, 1, 3 wt. %).

Obtaining: mixing with an electrical
stirrer,

Characterization: tensile test, tensile
creep-recovery test, tensile stress

relaxation tests, SEM.

TiO2 nanocomposites have better strength properties than TiO2
microcomposites due to the size of the particle. [148]

vinyl ester resins–TiO2
nanocomposites

Matrix: vinyl ester:styrene monomers
(55:45 wt. %)

Filler: TiO2 (21 nm; 50 m2/g; 1, 2.5, and 5
wt. %).

Coupling agent: polymeric coupling
BYK-C 8000

Obtaining: shear mixing and
ultrasonication;

Characterization: tensile test, flexural test,
impact test, SEM

For nanocomposite with 0–2.5 wt. % TiO2, the tensile strength
exhibits increasing tendency, while loading more than 2.5 wt. %

leads to its decline.
[149]
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Table 3. Cont.

Composites Materials Methods Results-Mechanical Properties Ref.

epoxy resin–polyurethane
(EP-PU)–TiO2

Matrix: EP-PU epoxy resin;
Filler: TiO2 (0.42 g/cm3; 25 nm)

Coupling agent: isopropyl
tri(dioctylpyrophosphate) titanate

(TCA201)

Obtaining: mixing EP–PU and
TCA201–TiO2

Characterization: FT-IR spectroscopy,
SEM analysis, TGA analysis,

mechanical properties, dielectric
constant

The shear strength reached the maximum value (27.14 MPa) for
EP–PU/TiO2 (3 wt. %) and its thermal decomposition

temperature increase by 17.48 º C more than that of EP–PU
matrix. The dielectric constant and dielectric loss showed 4.27

and 0.02, respectively.

[85]

Elastomeric matrix

TiO2–natural rubber
composites

Matrix: natural rubber (NR)
Filler: TiO2 (KEMOX RC 800 PG) and the

surface-modified nanosilica

Obtaining: hydraulic press under a
pressure

Characterization: stress relaxation
measurements, SEM, AFM, effect of

strain level, effect of ageing

The rate of stress relaxation was higher for silica-filled NR than
TiO2-filled NR. This is due to the high degree of agglomeration
in silica compared to TiO2. The relaxation rate increased with

increasing TiO2 loading.

[150]

TiO2–natural rubber
composite

Matrix: natural rubber stabilised with
ammonia;

Filler: TiO2 dispersion (2, 4 and 6 pphr)

Obtaining: TiO2 dispersions added in
matrix;

Characterisation: tesnsile test

The results showed improvement in both elongations at break
and tensile strength data at low filler concentration (2 phr). [151]

TiO2–natural rubber
composites

Matrix: natural rubber latex centrifuged
with ammonia;

Filler: TiO2 (3 mm;.13 g/mL); TiO2 (15–40
nm; 4.26 g/mL);

aditives: zinc oxide, stearic acid, N-
cyclohexyl-benzothiazyl-sulphenamide,
N2′-propyl-N-phenylenediamine, and S

Obtaining: TiO2 dispersion was
immersed in natural rubber latex.

Characterization: tensile test, SEM, TEM,
XRD

The tensile strength of nano-sized TiO2-filled natural rubber
composites (23.04 MPa) is superior to micro-sized TiO2-filled

natural rubber composites (19.62 MPa) (for 6 phr of micro- and
nano-s)

[152]

TiO2–natural rubber
composites

Matrix: natural rubber;
Filler: TiO2-15, 25, 45, 85 wt. %

aditives: stearic acid, sulfur powder and
zinc oxide;

Obtaining: compression molding;
Characterization: mechanical properties;

dynamic mechanical properties;
thermal stability

TiO2 as filler allows obtaining materials with improved
mechanical properties and thermal stability compared to the

pristine natural rubber vulcanizates.
[153]

TiO2–chlorobutyl rubber
composites

Matrix: chlorobutyl rubber (CBK 150)
with 1.2% Cl;

Filler: TiO2 (10–30 phr.)
Additives: stearic acid, zinc oxide, sulfur,

and zinc

Obtaining: mixing in a two-roll mill
Characterization: mechanical properties,

morphology (SEM, AFM),
thermophysical measurements,

diffusion experiments

The tensile strength of the composites increases by 250% when
the filler loading goes to 40 phr (tensile modulus the same). [133]

Acrylonitrile–Butadiene–
Styrene–TiO2

nanocomposites

Matrix: acrylonitrile butadiene styrene
(ABS)

Fillers: TiO2 (25–50 nm; 0.5, 2.5, 5 and 10
wt. %) and ATO (size < 50 nm)

Obtaining: mechanical homogeniser.
Characterization: SEM, AFM and Raman
analysis, thermal properties, tensile test,

flexural tests, micro-hardness tests.

The tensile strength of ABS/TiO2 and ABS/ATO
nanocomposites increased by 7% at the 2.5 wt. % TiO2 filler,

respectively, by 9.2% at 0.50 wt. % ATO filler. The modulus of
elasticity increases up to 5 TiO2 wt. % and then decreases.

[31]
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Table 4. Advantages of polymer nanocomposites over conventional polymer composites.

Polymer Nanocomposites Conventional Polymer Composites

X Fillers separation are in nm, and
properties will be affected by size effects
of nanofiller;

X Small amounts of TiO2 filler are enough
(less than 10%) to achieve desired
properties;

X Properties are obtained without
sacrificing the inherent properties of the
polymer or adding excessive weight;

X Improvements in properties even in low
amount is due to nanosized of TiO2 filler
and interphase region;

X Using nanosized particles can reduce the
likelihood of finding defects, such as
grain boundaries, voids, dislocations,
and imperfections.

X Fillers are separated in µm, and there is
not that much of size effect;

X High concentrations should be needed as
compared to nanofiller case;

X Fillers can unfavorably impact other
benefits of polymers, such as appearance,
ductility and toughness;

X There is not that much improvement in
properties even for a large amount of
fillers;

X It is difficult even observed in
conventional polymer composites.
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5. Conclusions

An essential characteristic of polymers is modifying their inherent physical properties
by adding fillers, while retaining their characteristic processing ease. By adding inorganic
fillers into the polymers matrix, composite materials become stronger, stiffer, electronically
conductive, magnetically permeable, flame retardant, more challenging, and more wear-
resistant.

After reviewing part of the existing literature on polymeric composites with TiO2
fillers, it is found that the interfacial connection between the filler and polymer matrix is an
important element for determining the mechanical properties of the composite.

The addition of TiO2 nanoparticles into the polymeric matrix demonstrates their ability
to significantly improve important mechanical properties (tensile modulus, tensile strength,
toughness and fracture toughness, fracture energies, flexural modulus, flexural strength,
elongation at break, fatigue crack propagation resistance, abrasion, pull-off strength, and
fracture surface properties), even at low filler contents.

From the literature, one can conclude that the mechanical properties of the composites
with the polymer matrix depend on the particle size, and particle–matrix interface adhesion
and loading (type, quantity, filler distribution and orientation, and void content). Along
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with those properties, the interfacial bonds and the interphase load mechanisms also play
an essential role.

Studies performed on polymeric matrix nanocomposites filled with TiO2 nanoparticles
were performed to verify the influence of several variables (shape, size, % loading, surface
change, etc.) and also to propose various areas of applicability of these nanocomposites.
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