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Abstract: Transparent, conductive hydrogels with good mechanical strength and toughness are in
great demand of the fields of biomedical and future wearable smart electronics. We reported a car-
boxymethyl chitosan (CMCS)–calcium chloride (CaCl2)/polyacrylamide (PAAm)/poly(N-methylol
acrylamide (PNMA) transparent, tough and conductive hydrogel containing a bi-physical crosslink-
ing network through in situ free radical polymerization. It showed excellent light transmittance
(>90%), excellent toughness (10.72 MJ/m3), good tensile strength (at break, 2.65 MPa), breaking
strain (707%), and high elastic modulus (0.30 MPa). The strain sensing performance is found with
high sensitivity (maximum gauge factor 9.18, 0.5% detection limit), wide strain response range,
fast response and recovery time, nearly zero hysteresis and good repeatability. This study extends
the transparent, tough, conductive hydrogels to provide body-surface wearable devices that can
accurately and repeatedly monitor the movement of body joints, including the movements of wrists,
elbows and knee joints. This study provided a broad development potential for tough, transparent
and conductive hydrogels as body-surface intelligent health monitoring systems and implantable
soft electronics.

Keywords: transparent hydrogels; toughness; wearable sensors

1. Introduction

Due to their softness, wetness, biocompatibility, permeability, conductivity etc., 3D-
network structure conductive hydrogels have attracted extensive interest [1,2]. There-
fore, researchers have explored many promising applications of hydrogels with unique
structures and properties, including wound healing [3], extracellular matrix [4], tissue
engineering [5], implantable neural electrodes [6–9], wearable electronics [10,11] and other
aspects [12–16]. Transparency is also an important requirement for future wearable elec-
tronics, as well as implantable electronics where see-through optical monitoring or surgical
operations are needed [17,18]. Moreover, due to the mechanical properties of hydrogels,
their practical application is often greatly restricted [19]. Generally, hydrogels with good
stretch go with poor toughness and large hysteresis. That is because the traditional hydro-
gels lack an effective energy dissipation mechanism due to the uneven network structure.
Much progress has been achieved in improving their mechanical properties by adding
reversible sacrificial bonds to the hydrogels. For example, Peng and co-workers utilized
a crosslinked hydrogel with Fe3+ as the ion coordination, elongation of which was about
700%, tensile strength reached 6 MPa and toughness reached 27 MJ/m3 [20]. Lei and co-
workers reported a crosslinked hydrogel from cellulose nanocrystals to form hydrophobic
forces with the polymers. Its tensile strength was about 0.3 MPa with elongation around
4000% [21]. However, either the incorporation of Fe3+ or cellulose nanocrystals above
leads to a totally black or milky white non-transparency hydrogel. To this end, it is still
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challenging to design a hydrogel that combines mechanical strength and toughness with
high transparency, high conductivity and long elongation.

Here, we introduced the cross-linking agent hydroxymethyl acrylamide (NMA) with
an active hydroxyl group, used polyacrylamide (PAAM) as a matrix, and combined this
with strong coordination of carboxymethyl chitosan (CMCS) and metal ions Ca2+ to suc-
cessfully prepare a CMCS-Ca2+/PAAm/PNMA transparent conductive hydrogel (water
content ~74.29%), containing a bi-physical crosslinking network with both high toughness
and strength, rapid response and recovery, and good fatigue resistance. The as-prepared
hydrogel utilized NMA to form the main skeleton of the hydrogel with PAAm through
strong hydrogen bond interactions. Moreover, when it is subjected to external forces,
there are non-covalent bonds between PAAm, CMCS and Ca2+, which effectively act as
sacrificial bonds. Transient non-covalent bonds cross-linking networks were formed inside
the hydrogel through the hydrogen bonds between CMCS and PAAm molecules, as well
as the metal-ligand coordination bonds between Ca2+ and CMCS, thereby improving the
density and mechanical properties of the hydrogel crosslinked network.

Owing to the existence of the dual physical cross-linking network, CMCS-Ca2+/PAAm/
PNMA conductive hydrogel showed good resilience and fatigue resistance. Moreover,
the conductive hydrogel showed good strain sensing performance with high sensitivity
(Maximum GF = 9.1802, lowest detection limit was 0.5% strain), wide strain response range,
fast response and recovery time, nearly zero hysteresis and high repeatability. We also
demonstrated the as-prepared hydrogel to monitor the movement of body joints, including
the movements of wrists, elbows and knee joints. This study provided an effective strategy
for the design and manufacture of a new generation of body-surface intelligent health
monitoring systems and implantable soft electronic devices.

2. Materials and Methods

Firstly, 5.00 g water and 1.00 g acrylamide monomer (AAm, 99.00%, Aladdin Bio-
Chem Technology Co., Shanghai, China) were weighed in a clean glass bottle and stirred
until the AAm was completely dissolved. Subsequently, 0.50 g of carboxymethyl chitosan
(CMCS, Aladdin Bio-Chem Technology Co., Shanghai, China) was added to the AAm
aqueous solution, the temperature was increased to 80 ◦C, and the mixture was stirred
and dissolved for 3 h. Then, different masses (0.01, 0.10, 0.30 g) of calcium chloride (CaCl2,
99.0%, Aladdin Bio-Chem Technology Co., Shanghai, China) were added. After CaCl2 was
dissolved, the temperature was lowered down to room temperature. Subsequently, 0.10 g of
N-methylol acrylamide (NMA, 98%, Aladdin Bio-Chem Technology Co., Shanghai, China)
crosslinking agent and 0.03 g of ammonium persulfate (APS, 98%, Aladdin Bio-Chem
Technology Co., Shanghai, China) were weighed in sequence, stirred and dissolved evenly.
Afterwards, it was centrifuged for 7 min (7800 rad/min) to remove air bubbles. After
centrifugation, the uniform solution was poured into the template. Finally, it was allowed
to stand for 2 min and cured at 50 ◦C for 200 min. The prepared conductive hydrogel was
rinsed to wash away the unreacted monomers or other chemical substances.

The visible light transmittance of the conductive hydrogel samples was measured by
using an Ultraviolet, visible and near-infrared spectrophotometer (Lambda 950, PerkinElmer,
Waltham, MA, USA). The chemical structure of the conductive hydrogel samples was ana-
lyzed by a Fourier transform infrared (FT-IR) spectrometer (Nicolet 6700, Thermo Fisher
Scientific, Waltham, MA, USA) with total reflection infrared spectroscopy (ATR-IR).

The tensile test was performed by the INSTRON E1000 (Instron, Norwood, MA, USA),
with samples diameter of 17 mm × 6 mm × 0.3 mm, and at a tensile speed of 100 mm/min.
The elastic modulus was calculated based on the slope of the linear part in the stress–
strain curve of the samples. The toughness was calculated by integrating the area of the
stress–strain curve.

The tensile machine (INSTRON E1000, USA) and digital multimeter (Keysight Tech-
nologies, Santa-Rosa, CA, USA) were used to test the strain sensing performance of conduc-
tive hydrogel samples. First, the hydrogel was fixed on the tensile machine. Meanwhile,
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the two ends of the hydrogel were connected to the digital multimeter and used the digital
multimeter to record the resistance change curve of the hydrogels with strain.

3. Results and Discussion

3.1. Characterazation of CMCS-Ca2+/PAAm/PNMA Transparent Conductive Hydrogels

Here, we used the crosslinking agent N-methylol acrylamide (NMA) with an active
methylol group, which can form a strong hydrogen with the -NH2 group of acrylamide
and the -COOH group of carboxymethyl chitosan (CMCS) (Figure 1a). In addition, CaCl2
was introduced into the gel as conductive ions, which can also form metal ion bonds with
carboxymethyl of CMCS (Figure 1b) to increase the strength and toughness of the hydrogel.
Finally, a double-network CMCS-Ca2+/PAAm/PNMA transparent hydrogel with strong
hydrogen bonds crosslinking and Ca2+-COOH metal ions interaction was prepared by ther-
mally initiating in-situ polymerization. It is worth noting that we recommend dissolving
NMA at room temperature, and thermally initiated in situ polymerization at about 50 ◦C
due to the strong reactivity of NMA.
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Figure 1. Illustration of the internal crosslinked networks of the as-prepared CMCS-Ca2+/PAAm/
PNMA hydrogels of (a) strong hydrogen bond crosslinking from poly(N-methylol acrylamide)
(PNMA) and (b) weak hydrogen bond and metal coordination interaction between carboxymethyl
chitosan (CMCS) and Ca2+; (c) ultraviolet–visible (UV–vis) transmittance spectra of the as-prepared
CMCS-Ca2+/PAAm/PNMA hydrogels; (d) Fourier transform infrared spectoscopy (FT-IR) spectra
of CMCS, PAAm/PNMA and CMCS-Ca2+/PAAm/PNMA hydrogels.
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The CMCS-Ca2+/PAAm/PNMA conductive hydrogel showed excellent light trans-
mittance (Figure 1c). The light transmittance of the conductive hydrogel in the 500–700 nm
wavelength range was about 90%, measured by an ultraviolet, visible and near-infrared
spectrophotometer (Lambda 950, PerkinElmer, Waltham, MA, USA). Figure 1d showed the
Fourier Transform Infrared Spectroscopy (FT-IR) spectra of different samples characterized
by a FT-IR spectrometer (Nicolet 6700, Thermo Fisher Scientific, Waltham, MA, USA).
–C=O in the amide group was found at 1649 cm−1. Bands at 1450 cm−1 and 3356 cm−1

are assigned to -CH2-CH2- stretching vibration peak and the –NH2 in the amide group
stretching vibration. Moreover, the –OH hydrogen bond crosslinking with NMA and the
–OH stretching vibration peak of NMA were found at 1036 cm−1 and 3217 cm−1, respec-
tively [22,23]. These results indicated that there were hydrogen bonds in PAAm-PNMA
framework, and the physical crosslinking network was formed. In addition, The N–H
and C=O stretching vibration absorption peaks of carboxymethyl chitosan were found at
1601 cm−1 and 1062 cm−1 respectively [24,25]. It indicated that carboxymethyl chitosan
was successfully introduced into the conductive hydrogel.

3.2. Mechanical Properties of CMCS-Ca2+/PAAm/PNMA Transparent Conductive Hydrogels

To verify the mechanical properties of CMCS-Ca2+/PAAm/PNMA conductive hydro-
gels, we first performed uniaxial tensile experiments on hydrogels with different NMA con-
tent. It should be noted that the contents of the component mentioned here were the mass
fraction of the component if there is no additional explanation. As shown in Figure 2a, as the
NMA content increased, the elongation at break of the CMCS-Ca2+/PAAm/PNMA conduc-
tive hydrogels gradually decreased, while the tensile strength gradually increased. In addi-
tion, as the NMA content increased, the elastic modulus of the CMCS-Ca2+/PAAm/PNMA
hydrogel increased from 0.08 MPa to 0.34 MPa, while its toughness increased from
114.7 kJ/m3 at 0.91 wt.% NMA to 130.2 kJ/m3 with 1.50 wt.% of NMA, and then decreased
to 56.50 kJ/m3 with 2.97 wt.% of NMA (Figure 2b).
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Meanwhile, we also explored the influence of different CaCl2 content on the me-
chanical properties of CMCS-Ca2+/PAAm/PNMA conductive hydrogels. It can be seen
from Figure 2c that as the content of CaCl2 increased, the fracture strain of the hydrogel
gradually decreased from 935% to 319%, while the tensile strength increased from 0.70 MPa
to 2.65 MPa, and then decreased to 1.61 MPa. This was because too much CaCl2 cannot
form stable metal coordination bonds with CMCS [26,27]. In addition, the toughness and
elastic modulus of the hydrogel also increased first and then decreased (Figure 2d). When
the CaCl2 content was 1.49 wt.%, the CMCS-Ca2+/PAAm/PNMA conductive hydrogel
had the best mechanical properties with tensile strength of 2.65 MPa, breaking strain of
707%, toughness of 1071.9 kJ/m3 and elastic modulus of 0.30 MPa.

The excellent mechanical performance of the CMCS-Ca2+/PAAm/PNMA can be
explained as follows: first, the introduction of NMA increased the cross-linking degree
of the hydrogel network, and an effective Ca2+ and –COOH metal coordination bond
was formed due to the addition of CaCl2, further improving the strength of the CMCS-
Ca2+/PAAm/PNMA conductive hydrogel. Secondly, due to the formation of strong
hydrogen bond crosslinks in the hydrogel and the Ca2+ and –COOH metal ions interac-
tion, there was an excellent bi-physical crosslinking network formed, thereby effectively
improving the energy dissipation of the conductive hydrogel under large strains, resulting
in higher toughness.

In order to further explore the toughness enhancement mechanism of CMCS-Ca2+/
PAAm/PNMA conductive hydrogels, we performed cyclic loading/unloading measure-
ments on CMCS-Ca2+/PAAm/PNMA conductive hydrogels under different stretching
strains to evaluate the energy dissipation capacity. As shown in Figure 3a,b, during the
load–unload tensile measuring of the as-prepared hydrogels under different stretching
strains, an obvious hysteresis circle and slight deformation after it released the load was
observed, due to the overcoming of consumption work caused by frictional resistance
of internal polymer segments. In addition, as the tensile strain increased from 100% to
500%, the hysteresis behaviour became more pronounced. The energy dissipated was
always equal to the area of the hysteresis loop surrounded by the stretching–relaxation
curves [28–30]. When the CMCS-Ca2+/PAAm/PNMA conductive hydrogel was stretched
to a larger strain, it can effectively dissipate more energy and increase the mechanical
strength of the hydrogel. As shown in Figure 3b, when the tensile strain was 500%, the
energy dissipated by the CMCS-Ca2+/PAAm/PNMA hydrogel can reach 19.67 kJ/m3,
the energy dissipation rate was 27.25%, while the energy dissipation of the hydrogel was
only 1.37 kJ/m3, and the energy dissipation rate was 26.58% at 100% tensile strain. This
phenomenon may be due to the synergy of multiple dynamic reversible non-covalent
interactions among PAAm, CMCS and Ca2+. With the gradual increase of the tensile strain
and the increase of the applied deformation, the dynamic hydrogen bonds and the metal
coordination bonds as the reversible sacrifices were gradually destroyed to consume much
energy. These destroyed non-covalent bonds can be reversibly linked after the external
forces were removed. These results once again proved that the breaking of reversible non-
covalent bonds can effectively dissipate energy, and also explained the excellent mechanical
properties of CMCS-Ca2+/PAAm/PNMA hydrogels.
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In addition, CMCS-Ca2+/PAAm/PNMA transparent conductive hydrogels had good
self-recovery performance and fatigue resistance capacity. The hydrogel samples were
subjected to cyclic stretching-relaxation cycle experiments under 500% strain at 25 ◦C
with different relaxation time intervals (0 min, 5 min, 10 min and 25 min) to evaluate
the self-recovery performance of the as-prepared CMCS-Ca2+/PAAm/PNMA samples.
Figure 3c shows there is obvious hysteresis behaviour during the loading–unloading cycle.
As the relaxation time interval increased, the hysteresis area of the hydrogel after self-
recovery gradually approaches the original area of the hydrogel. Figure 3d showed that
the CMCS-Ca2+/PAAm/PNMA hydrogel can recover 83.08% of its dissipated energy after
standing for 5 min. When the resting time was 10 min, the energy dissipated recovered
to 98.69%. Then the resting time increased to 25 min, and the energy dissipation returned
to its original state (the energy dissipated recovered to 113.09%). As mentioned above,
non-covalent bonds broke and effectively dissipated energy. These broken reversible bonds
could be partially recovered within a certain relaxation time interval after the load was
released and had good self-recovery properties. The longer the relaxation time interval,
the more broken hydrogen bonds and coordination bonds will be restored, so the energy
dissipation and self-recovery ability of the hydrogel will be greater.

In order to further evaluate the anti-fatigue performance of CMCS-Ca2+/PAAm/
PNMA transparent conductive hydrogel, 10 cycles of load-unload tensile tests at 300%
applied strain were carried out with no relaxation time between each cycle. As shown in
Figure 3e,f, the tensile stress at break in the following cycles declined slightly, compared to
the first cyclic tensile test. The hysteresis loop of the first cycle stretching was more obvious,
and the energy dissipation was 8.8 kJ/m3. Starting from the second cycle, the loading–
unloading cycle stretching hysteresis area of the hydrogel has been significantly reduced,
which is mainly due to the fact that part of the hydrogel’s double physical cross-linking
network cannot be recovered quickly after being subjected to tensile force. The cross-linked
network of polymer chains became relaxed, resulting in a slight decrease in the maximum
tensile stress of the hydrogel. Subsequently, the dissipation energy and tensile stress of the
hydrogel stabilized. The results showed that the CMCS-Ca2+/PAAm/PNMA transparent
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conductive hydrogel had good mechanical properties, elastic properties, self-recovery and
fatigue resistance.

3.3. Electro-Mechanical Properties and Strain-Sensing Performance of CMCS-Ca2+/PAAm/PNMA
Transparent Conductive Hydrogels

The presence of CaCl2 benefits the as-prepared CMCS-Ca2+/PAAm/PNMA hydrogels
with good ionic conductivity without adding additional conductive agents. As the increase
of the concentration of CaCl2, the conductivity of CMCS-Ca2+/PAAm/PNMA hydrogel
increased (Figure 4a). When the concentration of CaCl2 was 4.35 wt.%, the conductivity
of the hydrogel reached the maximum, which was 0.02688 S/cm. The relative resistance
changing rates of the hydrogel changed significantly as the increasing of strain, indicating
an excellent strain sensitivity (Figure 4b). Gauge factor (GF) is an important parameter to
evaluate the sensitivity of strain sensors. According to the linear fitting results (Figure 4b),
the strain response curve of CMCS-Ca2+/PAAm/PNMA conductive hydrogel can be
divided into four regions, including 0–230%, 230–590%, 590–640%, 640–700%, and the
GF of these four regions were 0.21, 0.69, 2.82, and 9.18, respectively [31,32]. Moreover, as
shown in Figure 4c, the hydrogel can even detect a small deformation of 0.5%, showing
excellent strain-sensing sensitivity. In addition, the responsiveness of the hydrogel under
multiple strains was tested. Figure 4c,d showed that the hydrogel exhibited stable strain
response in a wide strain range. Due to the double physical cross-linking network of CMCS-
Ca2+/PAAm/PNMA hydrogel, the hydrogel showed a negligible response hysteresis at
500% strain (Figure 4e), which was one of the necessary properties of the strain sensor.
Figure 4f showed that the hydrogel also exhibited faster strain response with response time
and recovery time of 62.24 ms and 101.57 ms, respectively. In order to further explore the
stability, the CMCS-Ca2+/PAAm/PNMA hydrogel was tested for >11,000 cycles under a
strain of 100%, and the results are shown in Figure 4g. The relative resistance changing rate
of the hydrogel showed excellent stability, which was of great significance for the long-term
use of wearable sensors. Here, we compare our as-prepared conductive hydrogel with
the reported works about the properties of transparency, fracture strain, tensile strength,
toughness and conductivity (Table 1) [33–38].

Table 1. Brief summary of results reported on conductive hydrogels.

Hydrogels Transparency Fracture Strain Tensile Strength Toughness Conductivity

(%) (%) (MPa) (MJ/m3) (S/m)

PVA/cellulose
nanofibrils/DMSO/H2O [33] 90% 660 2.1 5.25 3.2

PAAm/GE/Na3Cit [34] non-transparent
(milky white) 849 1.66 4.37 1.5

Cellulose/benzyltrimethyl
ammonium
hydroxide/epichlorohydrin [35]

non-transparent
(black) 219 2 1.8 2.37

Fe3+/SL/PAA [36] 82% (red) 1680 0.052 0.59 7.0 × 10−2

PVA/GE/GL/NaCl [37]
Semi-

transparent
(N/A)

715 1.044 3.605 0.4

Adenosine
monophosphate/quaternized
chitosan/NaCl/PAAm [38]

92% 1731 0.347 2.8 1.45

This work 90% 707 2.65 10.72 2.688

PVA: polyvinyl alcohol; DMSO: dimethyl sulfoxide; GE: gelatin; SL: sulfonated lignin; PAA: polyacrylic acid; GL: glycerin.
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Figure 4. Electromechanical performances of CMCS-Ca2+/PAAm/PNMA hydrogels and their strain sensors. (a) Con-
ductivity value as a function of different CaCl2 addition content; (b) relative resistance change and linear fit of the strain
sensors made of CMCS-Ca2+/PAAm/PNMA hydrogels as a function of strain; (c,d) plots of ∆R/R0 vs. time with stretching–
relaxation under different strains from 0.5% to 500%. (e) The ∆R/R0 curves of CMCS-Ca2+/PAAm/PNMA hydrogel
under the 0% to 500% applied strain at the stretching rate of 100 mm/min. (f) Response and recovery time of the CMCS-
Ca2+/PAAm/PNMA hydrogel sensors. (g) The resistance response of the CMCS-Ca2+/PAAm/PNMA hydrogel sensors
over 11,000 stretching–relaxation cycles at 100% strain under 2000 mm/s tensile speed.

Due to the excellent electro-mechanical properties of the CMCS-Ca2+/PAAm/PNMA
conductive hydrogel, we used very high bond (VHB) tape to attach the hydrogel to the
fingers to monitor joint movements. When the fingers were bent to different angles
(from initial, 30 degree, 60 degree and 90 degree), the resistance change rate of the as-
prepared hydrogels gradually increased and showed a step-like trend (Figure 5a). Moreover,
when the fingers were repeatedly bent and straightened, the resistance change rate of the
conductive hydrogel can also be monitored in real time (Figure 5b). In addition, we also
adhered the CMCS-Ca2+/PAAm/PNMA conductive hydrogel to the knee (Figure 5c),
elbow (Figure 5d) and wrist (Figure 5e) joints to monitor the movement of these joints
and obtained the corresponding resistance change rate curve. It can be observed that the
conductive hydrogel can obtain stable electrical signal output in different joint motions,
which indicated that it can be used to monitor physiological signals and human movement.
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Figure 5. Body movement monitoring applications with the as-prepared CMCS-Ca2+/PAAm/PNMA hydrogels by attaching
it to different parts of a human body. (a) and (b) fingers; (c) knees; (d) elbows; and (e) wrists.

4. Conclusions

In summary, we successfully prepared a CMCS-Ca2+/PAAm/PNMA transparent,
tough, conductive hydrogel containing a bi-physical crosslinking network through in situ
free radical polymerization. The CMCS-Ca2+/PAAm/PNMA conductive hydrogel had
excellent light transmittance (>90%), high ionic conductivity, excellent tensile strength
(2.65 MPa), good facture strain (707%), high elastic modulus (0.30 MPa), and excellent
toughness (10.72 MJ/m3). In addition, due to the existence of the dual physical cross-
linking network, the conductive hydrogel had good resilience, self-recovery and fatigue
resistance. In addition, the conductive hydrogel had outstanding strain sensing perfor-
mance with high sensitivity (maximum GF = 9.18, lowest detection limit was 0.5%), wide
strain response range, faster response time and recovery time, negligible response hystere-
sis and excellent durability.
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