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Abstract: Due to reasons of sustainability and conservation of resources, polyurethane (PU)-based
systems with preferably neutral carbon footprints are in increased focus of research and develop-
ment. The proper design and development of bio-based polyols are of particular interest since such
polyols may have special property profiles that allow the novel products to enter new applications.
Sophorolipids (SL) represent a bio-based toolbox for polyol building blocks to yield diverse chemical
products. For a reasonable evaluation of the potential for PU chemistry, however, further inves-
tigations in terms of synthesis, derivatization, reproducibility, and reactivity towards isocyanates
are required. It was demonstrated that SL can act as crosslinker or as plasticizer in PU systems
depending on employed stoichiometry. (ω-1)-hydroxyl fatty acids can be derived from SL and
converted successively to polyester polyols and PU. Additionally, (ω-1)-hydroxyl fatty acid azides
can be prepared indirectly from SL and converted to A/B type PU by Curtius rearrangement.

Keywords: polyurethane; polyol; bio-based; sophorolipid-based polyols; hydroxyl fatty acid based
polyols; platform chemicals

1. Introduction

The main components of well-known and very versatile polyurethanes (PU) [1,2]
are polyisocyanates and polyols [3,4]. The morphology and thus the properties of PU
are mainly determined by the intrinsic structure of the polyol component(s) since their
content exceeds typically 60 wt.% of the PU [5–7]. The polyols most commonly utilized
are polyether, polyester, and polycarbonate polyols [5,8]. All types of polyols are usually
produced by means of petrochemical resources. Considering the need for a sustainable
economic activity [9], the development of polyols based on renewable resources and the
research on their applicability for PU systems are of increased significance [10–18]. Among
bio-based polyol platforms, sophorolipids (SL) are well documented and show high poten-
tial to provide a versatile toolbox for polyol building blocks [19–26]. Specific advantages of
SL are their non-pathogenic production organisms, possessing high productivity and an
efficient rate of substrate conversion [21]. SL consist of sophorose, a hydrophilic di-glucose,
coupled to a hydrophobic hydroxyl fatty acid (HFA) by a glycosidic bond (Figure 1(1B)).
The resulting SL is amphiphilic and thus readily utilized as bio-based surfactant in, e.g.,
surface technology [24,27,28]. The most effective organism to produce SL is bombicola,
which is capable of precipitating up to 400 g L−1 SL into the fermentation medium [20].
Moreover, structural variation is feasible by feeding different lipid derivatives with C16 and
C18 fatty acids, which incorporate in particularly good yields [29,30]. The most common
SL derivatives are lactonic SL (LSL) and acidic SL (ASL), as depicted in Figure 1 [24,31].
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Figure 1. Examples for common types of sophorolipids (SL) comprising unsaturated C18 fatty acid 
moieties. (1A): Acetylated lactonic form (LSL). (1B): Deacetylated acidic form (ASL). The number of 
carbon atoms of the fatty acid chain is usually 16 or 18. The sophorose unit is typically attached to 
the fatty acid moiety at its second last carbon atom (ω-1) or at its terminal carbon atom (ω, structure 
not shown). 

Dihydroxyl alkyl glycosides are structurally similar to SL and were already 
converted successfully to PU by reaction with diisocyanates [14,32]. In these procedures, 
the double bond of the fatty acid moiety is transformed into a vicinal diol structure, which 
is subsequently converted to PU by reaction with the isocyanate (NCO) groups of 
isophorone diisocyanate (IPDI). Consequently, SL should perform similarly to give PU. 
Moreover, LSL has six hydroxyl (OH) groups (two acetylated primary OH groups and 
four secondary OH groups) and ASL seven OH groups (two acetylated primary OH 
groups and five secondary OH groups) per molecule. This means that a successive 
conversion with (di)isocyanates is generally possible because the secondary OH groups 
are readily available for the reaction with NCO groups, whereas the primary OH groups 
become available after, e.g., saponification [33]. The complete deacetylated ASL should 
also allow a certain selectivity since primary OH groups react with NCO groups about 
three times faster than secondary OH groups [34–38]. Utilizing appropriate reaction 
conditions, primary OH groups can purposely be consumed first in order to produce 
linear and thus thermoplastic PU [38–43]. In contrast, complete conversion of all OH 
groups leads to significant crosslinking and therefore to a thermosetting material. 
Considering the Flory–Stockmayer relation [44], the degree of crosslinking and thus the 
nature of the thermosetting material can be tailored to a certain extent, e.g., by appropriate 
choice of the NCO/OH ratio (index) [44–46]. In summary, SL provide a high number of 
potential reaction sites with different reactivity toward NCO groups and should therefore 
be suited as crosslinking agent and potentially as a linear building block [32]. 
Additionally, SL are suited as internal emulsifier in PU dispersion technology because of 
their amphiphilic nature [47–49]. 

HFA form renewable resources like castor oil, which can be converted to polyester 
polyols or directly to PU [17,50–52]. Typically for such HFA is that the OH group is 
localized in the center of the molecule. The resultant polyester or PU systems 
consequently contain dangling chains that reduce crystallinity and glass transition 
temperature [52,53]. In contrast to that, ω- or (ω-1)-HFA yield systems without side chains 
and with lower ester- or urethane group concentrations. Therefore, dangling chains are 
not expected and lipophilicity is increased suggesting enhanced hydrolysis resistance and 
improved interactions to hydrophobic surfaces [54]. ω- or (ω-1)-HFA with varying chain 
lengths can be obtained by fragmentation of SL [26] and successively converted 
chemically [55] or enzymatically [56–60] to yield polyesters via A/B self-condensation. 
Note that successive conversion with diisocyanates to high molecular weight PU requires 
two-fold OH termination, which can be accomplished, e.g., by initiation with or addition 
of suitable diols [55,61]. Additionally, the acid moiety of HFA can be converted to azide 

Figure 1. Examples for common types of sophorolipids (SL) comprising unsaturated C18 fatty acid moieties. (1A):
Acetylated lactonic form (LSL). (1B): Deacetylated acidic form (ASL). The number of carbon atoms of the fatty acid chain is
usually 16 or 18. The sophorose unit is typically attached to the fatty acid moiety at its second last carbon atom (ω-1) or at
its terminal carbon atom (ω, structure not shown).

Dihydroxyl alkyl glycosides are structurally similar to SL and were already converted
successfully to PU by reaction with diisocyanates [14,32]. In these procedures, the double
bond of the fatty acid moiety is transformed into a vicinal diol structure, which is sub-
sequently converted to PU by reaction with the isocyanate (NCO) groups of isophorone
diisocyanate (IPDI). Consequently, SL should perform similarly to give PU. Moreover, LSL
has six hydroxyl (OH) groups (two acetylated primary OH groups and four secondary OH
groups) and ASL seven OH groups (two acetylated primary OH groups and five secondary
OH groups) per molecule. This means that a successive conversion with (di)isocyanates
is generally possible because the secondary OH groups are readily available for the re-
action with NCO groups, whereas the primary OH groups become available after, e.g.,
saponification [33]. The complete deacetylated ASL should also allow a certain selectivity
since primary OH groups react with NCO groups about three times faster than secondary
OH groups [34–38]. Utilizing appropriate reaction conditions, primary OH groups can
purposely be consumed first in order to produce linear and thus thermoplastic PU [38–43].
In contrast, complete conversion of all OH groups leads to significant crosslinking and
therefore to a thermosetting material. Considering the Flory–Stockmayer relation [44], the
degree of crosslinking and thus the nature of the thermosetting material can be tailored
to a certain extent, e.g., by appropriate choice of the NCO/OH ratio (index) [44–46]. In
summary, SL provide a high number of potential reaction sites with different reactivity
toward NCO groups and should therefore be suited as crosslinking agent and potentially
as a linear building block [32]. Additionally, SL are suited as internal emulsifier in PU
dispersion technology because of their amphiphilic nature [47–49].

HFA form renewable resources like castor oil, which can be converted to polyester
polyols or directly to PU [17,50–52]. Typically for such HFA is that the OH group is local-
ized in the center of the molecule. The resultant polyester or PU systems consequently
contain dangling chains that reduce crystallinity and glass transition temperature [52,53].
In contrast to that, ω- or (ω-1)-HFA yield systems without side chains and with lower
ester- or urethane group concentrations. Therefore, dangling chains are not expected
and lipophilicity is increased suggesting enhanced hydrolysis resistance and improved
interactions to hydrophobic surfaces [54]. ω- or (ω-1)-HFA with varying chain lengths
can be obtained by fragmentation of SL [26] and successively converted chemically [55]
or enzymatically [56–60] to yield polyesters via A/B self-condensation. Note that succes-
sive conversion with diisocyanates to high molecular weight PU requires two-fold OH
termination, which can be accomplished, e.g., by initiation with or addition of suitable
diols [55,61]. Additionally, the acid moiety of HFA can be converted to azide in order to
accomplish Curtius rearrangement [62] yielding A/B type polyurethanes [51,63–68].
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The present work shows that LSL can act as crosslinker or as plasticizer in PU systems
depending on employed stoichiometry. (ω-1) HFA-based polyester polyols and (ω-1)
HFA-based PU systems are feasible; however, low amounts of glucose impurities seem to
limit the versatility of the reaction since there is a substantial extent of crosslinking and
branching. Additionally, we demonstrate the fundamental access to A/B type PU systems
by applying Curtius rearrangement on (ω-1) HFA azides obtained from LSL, confirming
the Curtius approach to A/B type PU systems of other groups [51,64–69].

2. Materials and Methods
2.1. Materials

1,4-Dioxane (pure), dimethyl sulfoxide (DMSO, ≥99%), oxalyl chloride (for synthe-
sis), and tetrabutylammonium hydroxide (in 2-propanol/methanol, TitriPUR) were from
Merck Millipore. 4-tert-Butylcatechol (99%), N-methylpyrrolidin-2-one (NMP, for synthe-
sis), and sodium azide (NaN3, >99%) were from Acros Organics. 12-Hydroxystearic acid
(95%), sodium sulfate (Na2SO4, anhydr., 99%), and tert-butyl methyl ether (MTBE, ≥99.9%)
were from Alfa Aesar. 1-Hexylisocyanate (HIC, 97%), dibutylamine (99.5%), phenyliso-
cyanate (PIC, for synthesis), and tin(II) chloride (SnCl2, 98%) were from Sigma Aldrich.
1,6-Hexanediol (for synthesis), 1,6-hexamethylenediisocyanate (HDI, >98%), 2-butanone
(MEK, >99%), 2-propanol (≥99%), acetonitrile (≥99.95%), N,N-dimethylformamide (DMF,
≥99.8%), hydrochloric acid (HCl, 1 M, TitriPUR), potassium hydroxide (KOH, 0.1 M in
methanol, TitriPUR), and sodium chloride (NaCl, ≥99%) were from VWR Chemicals.
Deuterated chloroform (CDCl3 with 0.03% TMS, 99.8 atom%D) and deuterated THF (THF-
d8 with 0.03% TMS, 99.8 atom%D) were from Deutero. Acetone (≥99%), cyclohexane
(≥99.5%), chloroform (CHCl3, >99%), dichloromethane (CH2Cl2, for analysis), diethyl ether
(≥99.5%), ethanol (abs.), ethyl acetate (for analysis), methanol (HPLC grade), petroleum
ether (for analysis), tetrahydrofuran (THF, HPLC grade), and toluene (≥99.9%) were from
Fisher Chemical. Sodium hydroxide (NaOH, pure) was from Bernd Kraft. n-Hexane
(≥95%) was from Carl Roth. Dibutyltindilaurate (DBTDL, technical grade) and poly(1,4-
butylene)adipate (PBA, technical grade, Mn = 2250 g mol−1) were kindly provided by
Covestro Deutschland AG. SL (1A) (LSL) (Figure 1) was synthesized and purified accord-
ing to the methods published elsewhere and provided by Zerhusen and Schörken [19,25,27].
1,6-Hexanediol and PBA were dried for at least 2 h under reduced pressure, and kept at
elevated temperature (50 mbar, 80 ◦C) before use. All other chemicals were used as received
or purified applying established and well-known procedures [70].

2.2. Measurements and Equipment

Size exclusion chromatography (SEC) was carried out on a PSS Polymer SECcu-
rity system based on Agilent 1260 hardware modules equipped with SECcurity isocratic
pump, vacuum degasser, refractive index and UV-Vis detector (254 nm), column oven,
and a standard auto sampler. A styrene-divinylbenzene copolymer column (SDV linear
XL (100–3,000,000 Da)) with 5 µm particle size and 1000 Å porosity was calibrated with
polystyrene ReadyCal Kit (PSS Polymer) standards. Measurements were carried out in
THF at 30 ◦C with a flow rate of 1.0 mL min−1. Integration of the signals was performed
via software package “WinGPC Unity” from PSS Polymer.

1H- and 13C-NMR spectra were recorded using a Bruker Ascend 400 spectrome-
ter (400 MHz) at room temperature using CDCl3 or THF-d8 as solvent (sample conc.
= 0.05 mg µL−1). Tetramethylsilane (TMS) was used in all experiments as internal stan-
dard.

ATR-IR spectra were recorded using a Bruker Platinum-ATR equipped with a MIR-RT-
DLaTGS detector and a KBr radiation plate. OPUS software of Bruker Optic GmbH was
used for data handling. Spectra were recorded at room temperature, applying 24 scans,
and a resolution of 4 cm−1. Background spectra were recorded in ambient atmosphere
prior to each measurement. For reaction monitoring, inline-IR-spectroscopy was used
applying Thermo Fisher Nicolet iS 50-spectrometer equipped with a probe coupler and the
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ZnSe-ATR-tube FlexiSpec® from art photonics GmbH, Berlin. HgCdTe detector was cooled
with liquid N2. The software “Macros Basic” enabled 20 automated scans per minute in a
resolution of 2 cm−1. Background spectra were recorded in dry N2 prior each measurement.
“OMNIC” software was used to calculate peak areas.

Differential scanning calorimetry (DSC) was conducted applying Q2000 DSC from
TA instruments consisting of an auto sampler and a RCS90 cooling unit calibrated by
an indium standard. Samples were placed in Tzero aluminum crucibles. SL containing
samples were heated to 150 ◦C and cooled to −60 ◦C twice using a rate of 10 K min−1. The
results of the second cycle were used for evaluation.

X-ray diffraction (XRD) was conducted with a Bruker D2 Phaser 2nd Gen equipped
with a Cu tube (λ = 1.54184 Å), fixed slit 0.4 mm, 4◦ grid, and a Lynx 1D Modus detector
as single measurements in order to obtain data for crystallinity (angle of incidence: 5–80◦;
rotation: 0–15 rpm; increment: 0.03◦; time per step: 0.02 s; scan type: Coupled Two Theta
Theta; scan modus: Continuous PSD fast). Samples were applied as films or grinded
powder. For evaluation, Bruker’s Diffrac EVA software was used.

High-performance liquid chromatography (HPLC) was conducted using Shimadzu
Nexera XR equipped with a BM-20 A communications bus module, two LC-20 AD XR,
a SIL-D0ACXR auto sampler, a column oven, and a VWR-ELSD 80 detector. Conditions:
N2; 3.5 bar; 40 ◦C; column: 4.6 mm × 250 mm, 5 µM C18 RP La Chrom II (Hitachi, Tokio,
Japan); flow rate: 1.0 m min−1; 30 ◦C; solvent: acetonitrile/water (50 vol.%:50 vol.% for
25 min. to 99 vol.% acetonitrile linearly within 60 min.); samples: 2.5 mg mL−1 in THF.

Acid number, hydroxyl number and the content of NCO groups were determined
according to DIN EN ISO 660 2009, DIN 53240-2 (ASTM E1899-08), and DIN EN ISO 11909
2007, respectively. Automated titration was conducted with a TitroLine 7000 titration unit
from SI Analytics.

Shore A hardness was measured five times for each sample according to DIN EN
ISO 868 applying SAUTER HBA 100-0 and SAUTER TI-A0 with a contact pressure of 5 kg
and calibrated with Durometer Test Block Kit AHBA-01 (SAUTER). Tensile tests were
conducted according to DIN EN ISO 527-1/-2 (ASTM D 638) on a Shimadzu Autograph
AG-X plus tensile testing machine (50 mm min−1). TrapeziumX (Shimadzu, Kyoto, Japan)
software was used for evaluation. The samples were polymer films produced by casting
the liquid polymer (2000 µM) on a Teflon plate with a squeegee.

The preparation of SL solutions was as follows: 100 mg (0.145 mmol) of (1A) (LSL) or
90.5 mg (0.145 mmol) (1B) (ASL) was transferred at room temperature to 2 mL of solvent
and the solubility evaluated optically.

2.3. Synthesis of 17-Hydroxyoctadec-9-Ene Acid ((ω-1) HFA)

(ω-1) HFA (2) (Figure 2) was produced by a modification of published procedures
in absence of carcinogenic dioxane, but at the expense of reaction time [26,71]. A typical
protocol was as follows. LSL (1A), derived from starmerella bombicola (97% purity) [19],
was dissolved in 5 M NaOH solution. To this solution, a further 5 M NaOH was added
dropwise until a constant pH was reached. After pH adjustment to 3.5 with diluted HCl,
the intermediate (1B) was crystallized at 7 ◦C and purified by lyophilization to give a white
powder. C30H54O13; M = 622.75 g mol−1; SEC: Mn = 530 g mol−1; Mw = 660 g mol−1;
PDI = 1.3; yield: 89.2%; FT-IR (ATR) ν/cm−1: 3324 (m), 2921 (m); 2851 (m); 1726 (m); 1559
(w); 1155 (m); 1070 (s); 1019 (s); 894 (m); 643 (m); 511 (m); HPLC: 10 min.
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2.5. 12-Hydroxystearic Acid Based Polyesterdiol  
OH-terminated 12-hydroxystearic acid based polyesterdiol (4) (Figure 4) was pre-
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tearic acid and 0.41 g (3.5 mmol) 1,6-hexanediol was introduced in a 20 mL flask equipped 
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A total of 5.0 g (0.008 mol) (1B) was placed in 100 mL round-necked flask and dissolved
under stirring in 50 mL 1 M HCl. The reaction proceeds at 80 ◦C, turning the clear liquid to
a turbid solution comprising particles and further to a biphasic system with yellowish, oily
droplets. The reaction progress was monitored by HPLC. After completion of hydrolysis,
the pH was adjusted to 3.5 by addition of diluted NaOH. The product was purified by
solvent extraction (distilled H2O/CHCl3) and removal of excessive solvent in vacuo. The
product (2) accumulated as yellowish oil in 83.5% yield. Since dimers and oligomers were
identified, (2) was stirred in 5 M NaOH at 80 ◦C for a further 16 h. Repeated solvent
extraction and removal applying the same conditions yielded a brownish oil.

C18H34O3; M = 298.47 g mol−1; OH number = 240; acid number = 86.1; yield: 54.3%;
FT-IR (ATR) ν/cm−1: 3393 (w), 3004 (w), 2924 (s), 2853 (s), 1709 (s), 1460 (m), 1375 (m),
1243 (m), 1191 (m), 1081 (m), 754 (s); HPLC: 40 min. (monomer), 89 min. (dimer); 1H NMR
(400 MHz, CDCl3, δ): 5.40–5.28 (m, 2H; H10, H11), 3.81 (m, 1H; H2), 2.34 (t, J = 7.5 Hz, 2H;
H18), 2.07–1.96 (m, 4H; H9, H12), 1.69–1.52 (m, 4H; H4, H17), 1.43 (d, J = 3.7 Hz, 4H; H8,
H13), 1.37–1.22 (m, 12H; H5 – 7, H14–16), 1.19 (dd, 3H; H3); 13C NMR (101 MHz, CDCl3,
δ): 178.66 (C19), 129.85 (C10, C11), 68.33 (C2), 39.25 (C4), 34.78 (C18), 29.69–28.99 (C6–C8,
C13–C16), 27.19 (C9, C12), 25.75 (C5), 24.73 (C17), 23.43 (C3).

2.4. Synthesis of (ω-1) HFA Based Polyester Diol

OH-terminated (ω-1) HFA-based polyester diol (3) (Figure 3) was prepared accord-
ing to a published procedure [61]. A total of 9.0 g (0.03 mol) (ω-1) HFA (2) and 0.7 g
(0.006 mol) 1,6-hexanediol was introduced in a 100 mL flask equipped with a Vigreux
column, thermometer, and distilling link. The reaction mixture was heated to 200 ◦C within
1 h. Reaction water was removed by distillation. In contrast to the published procedure, no
catalyst (SnCl2) was used. Instead, 7.0 mg (0.042 mmol) 4-tert-butylcatechol was added
in order to prevent undesired reactions at the double bond. After 24 h, the reaction was
stopped, leaving a highly viscous and sticky product, which was partially soluble in THF.

Polymers 2021, 13, x FOR PEER REVIEW 5 of 20 
 

 

purified by solvent extraction (distilled H2O/CHCl3) and removal of excessive solvent in 
vacuo. The product (2) accumulated as yellowish oil in 83.5% yield. Since dimers and oli-
gomers were identified, (2) was stirred in 5 M NaOH at 80 °C for a further 16 h. Repeated 
solvent extraction and removal applying the same conditions yielded a brownish oil. 

 

Figure 2. 17-Hydroxyoctadec-9-ene acid ((ω-1) HFA) (2). 

C18H34O3; M = 298.47 g mol−1; OH number = 240; acid number = 86.1; yield: 54.3%; FT-
IR (ATR) ν/cm−1: 3393 (w), 3004 (w), 2924 (s), 2853 (s), 1709 (s), 1460 (m), 1375 (m), 1243 
(m), 1191 (m), 1081 (m), 754 (s); HPLC: 40 min. (monomer), 89 min. (dimer); 1H NMR (400 
MHz, CDCl3, δ): 5.40–5.28 (m, 2H; H10, H11), 3.81 (m, 1H; H2), 2.34 (t, J = 7.5 Hz, 2H; H18), 
2.07–1.96 (m, 4H; H9, H12), 1.69–1.52 (m, 4H; H4, H17), 1.43 (d, J = 3.7 Hz, 4H; H8, H13), 
1.37–1.22 (m, 12H; H5 – 7, H14–16), 1.19 (dd, 3H; H3); 13C NMR (101 MHz, CDCl3, δ): 
178.66 (C19), 129.85 (C10, C11), 68.33 (C2), 39.25 (C4), 34.78 (C18), 29.69–28.99 (C6–C8, 
C13–C16), 27.19 (C9, C12), 25.75 (C5), 24.73 (C17), 23.43 (C3). 

2.4. Synthesis of (ω-1) HFA Based Polyester Diol 
OH-terminated (ω-1) HFA-based polyester diol (3) (Figure 3) was prepared accord-

ing to a published procedure [61]. A total of 9.0 g (0.03 mol) (ω-1) HFA (2) and 0.7 g (0.006 
mol) 1,6-hexanediol was introduced in a 100 mL flask equipped with a Vigreux column, 
thermometer, and distilling link. The reaction mixture was heated to 200 °C within 1 h. 
Reaction water was removed by distillation. In contrast to the published procedure, no 
catalyst (SnCl2) was used. Instead, 7.0 mg (0.042 mmol) 4-tert-butylcatechol was added in 
order to prevent undesired reactions at the double bond. After 24 h, the reaction was 
stopped, leaving a highly viscous and sticky product, which was partially soluble in THF. 

 

Figure 3. (ω-1) HFA based polyester diol (3). 

SEC (soluble fraction): Mn = 2370 g mol−1 (Mn,theo = 2250 g mol−1), Mw = 99,700 g mol−1, 
PDI = 42.1; acid number = 2.8; yield: not determined; FT-IR (ATR) ν/cm−1: 3350 (m), 2930 
(s), 2858 (s), 1726 (s), 1460 (m), 1374 (m), 1174 (m), 1055 (s), 727 (w); 1H NMR (400 MHz, 
THF-d8, δ): 5.33 (t, J = 4.8 Hz, 4H; H9, H10, H31, H32), 4.89–4.78 (m, 1H; H1), 4.15–4.05 (m, 
2H; H42), 4.01 (t, J = 6.6 Hz, 3H; H39, H47), 2.31–2.16 (m, 4H; H17, H23), 2.03 (m, 8H; H8, 
H11, H30, H33), 1.72–1.45 (m, 12H; H3, H16, H25, H38, H43, H46), 1.45–1.20 (m, 49H; H4–
H7, H12–15, H21, H26–29, H34–H37; H44, H45), 1.16 (d, J = 6.2 Hz, 1H; H41); 13C NMR 
(101 MHz, THF-d8, δ): 172.30 (C18, C22), 129.54 (C9, C10, C31, C32), 69.85 (C1), 66.87 (C39), 
63.47 (C47), 35.92 (C38), 34.04 (C3), 33.66 (C17, C23), 29.69 (C36), 29.22–28.62 (C5–C8, C12–
C14, C27–C29, C34–C36), 27.03 (C8, C11, C30, C33), 25.61–24.74 (C16, C25, C37, C45), 23.95 
(C41), 19.35 (C21). 

2.5. 12-Hydroxystearic Acid Based Polyesterdiol  
OH-terminated 12-hydroxystearic acid based polyesterdiol (4) (Figure 4) was pre-

pared according to a published procedure [61]. A total of 5.0 g (16.7 mmol) 12-Hydroxys-
tearic acid and 0.41 g (3.5 mmol) 1,6-hexanediol was introduced in a 20 mL flask equipped 

Figure 3. (ω-1) HFA based polyester diol (3).

SEC (soluble fraction): Mn = 2370 g mol−1 (Mn,theo = 2250 g mol−1), Mw = 99,700 g mol−1,
PDI = 42.1; acid number = 2.8; yield: not determined; FT-IR (ATR) ν/cm−1: 3350 (m), 2930
(s), 2858 (s), 1726 (s), 1460 (m), 1374 (m), 1174 (m), 1055 (s), 727 (w); 1H NMR (400 MHz,
THF-d8, δ): 5.33 (t, J = 4.8 Hz, 4H; H9, H10, H31, H32), 4.89–4.78 (m, 1H; H1), 4.15–4.05
(m, 2H; H42), 4.01 (t, J = 6.6 Hz, 3H; H39, H47), 2.31–2.16 (m, 4H; H17, H23), 2.03 (m, 8H;
H8, H11, H30, H33), 1.72–1.45 (m, 12H; H3, H16, H25, H38, H43, H46), 1.45–1.20 (m, 49H;
H4–H7, H12–15, H21, H26–29, H34–H37; H44, H45), 1.16 (d, J = 6.2 Hz, 1H; H41); 13C
NMR (101 MHz, THF-d8, δ): 172.30 (C18, C22), 129.54 (C9, C10, C31, C32), 69.85 (C1), 66.87
(C39), 63.47 (C47), 35.92 (C38), 34.04 (C3), 33.66 (C17, C23), 29.69 (C36), 29.22–28.62 (C5–C8,
C12–C14, C27–C29, C34–C36), 27.03 (C8, C11, C30, C33), 25.61–24.74 (C16, C25, C37, C45),
23.95 (C41), 19.35 (C21).

2.5. 12-Hydroxystearic Acid Based Polyesterdiol

OH-terminated 12-hydroxystearic acid based polyesterdiol (4) (Figure 4) was prepared
according to a published procedure [61]. A total of 5.0 g (16.7 mmol) 12-Hydroxystearic
acid and 0.41 g (3.5 mmol) 1,6-hexanediol was introduced in a 20 mL flask equipped with
a Vigreux column, thermometer, and distilling link. The reaction mixture was heated to
200 ◦C within 1 h. Reaction water was removed by distillation. After 24 h, SnCl2 was
added in order to complete the conversion. After another 24 h, vacuum was applied to
remove water residues leaving a highly viscous liquid as the product.
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SEC: Mn = 2210 g mol−1 (Mn,theo = 2250 g mol−1), Mw = 5800 g mol−1, PDI = 2.6;
acid number = 2.1; Tg = −20 ◦C; yield: quantitative; FT-IR (ATR) ν/cm−1: 3350 (w), 2922
(s), 2852 (s), 1731 (s), 1464 (m), 1376 (w), 1174 (m), 1100 (w), 723 (w); 1H NMR (400 MHz,
THF-d8, δ): 4.85 (m, J = 6.2 Hz, 1H; H12), 4.01 (t, J = 6.6 Hz, 2H; H21), 3.41 (s, 1H; H41),
3.25 (s, 2H; H26), 2.24 (m, J = 7.4, 3.1 Hz, 4H; H2, H31), 1.59 (m, J = 8.3, 5.2, 4.4 Hz, 8H; H3,
H22, H25, H32), 1.56–1.47 (m, 16H; H4, H11, H13, H23, H24, H33, H40, H42), 1.40–1.19 (m,
44H; H4–H10, H14–H17, H33–H39, H43–H46), 0.89 (t, J = 6.5 Hz, 6H; H18, H47); 13C NMR
(101 MHz, THF-d8, δ): 172.05 (C1, C29), 73.03 (C12), 70.34 (C41), 65.98 (C21), 63.45 (C26),
37.91 (C40, C42), 34.21 (C31), 34.03 (C11, C13), 31.79 (C23, C45), 29.90–28.63 (C4–C9, C15,
C33–C37, C44), 25.80 (C3, C24, C32), 24.90 (C17, C46), 13.47 (C18, C47).

2.6. Synthesis of 17-Hydroxyoctadec-9-Enoyl Azide ((ω-1) HFA Azide)

The synthesis of (5) (Figure 5) follows a modification and combination of several
published procedures in order to improve reaction time and yield [72,73]. In a 100 mL
flask, 0.75 g (2.50 mmol) (ω-1) HFA (2) was dissolved in 15 mL dry CH2Cl2. To this
solution, 0.25 mL (3.0 mmol) oxalyl chloride and 2.30 mL (0.03 mmol) DMF was added,
and the reaction mixture was stirred at room temperature for 1 h. Then the solution was
cooled to 0 ◦C and 0.65 mg (10 mmol) of an aqueous NaN3 solution was added dropwise.
The resulting mixture was stirred at 0 ◦C for 3 h. The organic phase was extracted by
3 × 30 mL CHCl3. The combined organic layers were washed with 40 mL brine, dried over
anhydrous Na2SO4, and concentrated under reduced pressure. The product accumulated
as a yellow oil.
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Figure 5. 17-Hydroxyoctadec-9-enoyl azide ((ω-1) HFA azide) (5).

C18H33N3O2; M = 323.47 g mol−1; yield: 49%; FT-IR (ATR) ν/cm−1: 3335 (w), 2926
(s), 2854 (m), 2158 (w), 1704 (s), 1658 (s), 1368 (m), 1288 (w), 1168 (m), 1064 (m), 976 (w),
832 (w), 721 (w); 1H NMR (400 MHz, CDCl3, δ): 5.34 (t, J = 11.71, 7.3 Hz, 2H; H9, H10),
4.83–4.71 (m, 1H; H-OH), 3.72 (m, 1H; H17), 2.31 (t, J = 7.53 Hz, 2H; H2), 2.01 (m, 4H; H8,
H11), 1.68–1.57 (m, 4H; H3, H16), 1.49–1.37 (m, 6H; H7, H15, H17), 1.18 (m, 10H; H4–H6,
H13, H14), 1.18 (d, 3H; H18); 13C NMR (75 MHz, CDCl3, δ): 178.4 (C1), 130.0 (C9, C10),
68.2 (C17), 39.3 (C16), 29.8 (C2), 29.2 (C4), 29.1 (C7, C12), 29.0 (C5, C6, C13), 28.9 (C5, C11),
27.2 (C14), 25.6 (C15), 25.2 (C3), 23.7 (C18).
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2.7. Preparation of Urethanes
2.7.1. LSL and PBA-Based Urethanes

In a typical procedure, LSL ((1A), M = 694.44 g mol−1, f OH = 4) or PBA (f OH = 2)
was placed in a three-necked flask, dissolved in 50–80 mL acetone, and heated to the
desired temperature shown in Table 1. The corresponding amounts of HIC, PIC, or HDI
and DBTDL were added to the solution and the reaction was monitored by inline IR and
NCO titration. Residual amounts of diisocyanate were quenched with excessive MeOH
prior to further investigations. Figure 6 shows characteristic IR spectra obtained applying
this procedure exemplarily for the sample LSL-HDI1.1.

Table 1. Conditions for the reaction of LSL or PBA with 1-isocyanatohexane (HIC), phenylisocyanate
(PIC) or 1,6-hexamethylenediisocyanate (HDI) in acetone.

Sample Polyol Isocyanate nNCO/mol nNCO/nOH cDBTDL/ppm 1 T/◦C

LSL−HIC−S1 LSL HIC 0.0317 1.1 125 30
LSL−HIC−S2 LSL HIC 0.0317 1.1 125 50
LSL−HIC−S3 LSL HIC 0.0317 1.1 500 50
LSL−HIC−S4 LSL HIC 0.0432 1.5 500 50
LSL−PIC−S1 LSL PIC 0.0317 1.1 125 30
LSL−PIC−S2 LSL PIC 0.0317 1.1 125 50
LSL−PIC−S3 LSL PIC 0.0317 1.1 500 50
LSL−PIC-−S4 LSL PIC 0.0432 1.5 500 50
LSL−PIC−S5 LSL PIC 0.1440 5.0 500 50
LSL−HDI0.5 LSL HDI 0.0072 0.5 500 50
LSL−HDI1.1 LSL HDI 0.0158 1.1 500 50
LSL−HDI10 LSL HDI 0.1440 10.0 500 50
PBA + PIC PBA PIC 0.0220 1.1 500 50
PBA + HIC PBA HIC 0.0220 1.1 500 50
PBA + HDI PBA HDI 0.0048 1.1 500 50

1 relative to nOH.
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2.7.2. Synthesis of PU Based on (ω-1) HFA-Based Polyesterdiol and 12-Hydroxystearic
Acid Based Polyesterdiol

(ω-1) HFA-based polyesterdiol (3) was dissolved in THF for 7 d. After this period,
solubility was complete and Mn was measured to be 1561 g mol−1. A total of 25 mL THF
solution containing 3.5 g (2.3 mmol) (3) was heated to 60 ◦C and 500 ppm DBTDL and
0.58 g (3.5 mmol) HDI was added. According to NCO titration, the reaction was completed
after 16 h, cooled to room temperature and the solvent removed under reduced pressure.
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Residual HDI was quenched by 0.1 M dibutylamine solution in acetone leaving a dark
brown rubberlike product.

SEC: Mn = 3530 g mol−1 (Mn,theo = 3406 g mol−1), Mw = 772,330 g mol−1, PDI = 218.7;
Tg = −43 ◦C; FT-IR (ATR) ν/cm−1: 3333 (w), 3002 (w), 2925 (s), 2854 (s), 1732 (s), 1621 (m),
1533 (s), 1459 (m), 1373 (m), 1234 (s), 1172 (s), 726 (m), 590 (w).

12-Hydroxystearic acid based polyesterdiol (4) was dissolved in THF for 7 d. After
this period, Mn was measured to be 1862 g mol−1. A total of 25 mL THF solution containing
3.5 g (2.3 mmol) (4) was heated to 60 ◦C and 500 ppm DBTDL and 0.47 g (2.8 mmol) HDI
was added. According to NCO titration, the reaction was completed after 16 h, cooled
to room temperature, and the solvent removed under reduced pressure. Residual HDI
was quenched by 0.1 M dibutylamine solution in acetone, leaving a dark brownish oil as
product.

SEC: Mn = 4170 g mol−1 (Mn,theo = 5209 g mol−1), Mw = 11,530 g mol−1, PDI = 2.8;
Tg = −43 ◦C; FT-IR (ATR) ν/cm−1: 3333 (w), 3002 (w), 2925 (s), 2854 (s), 1732 (s), 1621 (m),
1533 (s), 1459 (m), 1373 (m), 1234 (s), 1172 (s), 726 (m), 590 (w).

2.7.3. Preparation of A/B Type PU

In a 100 mL round-necked flask, 0.80 g (2.5 mmol) 17-Hydroxyoctadec-9-enoyl azide (5)
was dissolved in 1 mL THF under N2 atmosphere. Curtius rearrangement and successive
polymerization was started applying different temperatures and allowed to proceed for
different periods of time (for details see Section 3). The resulting A/B type polymer (6) is
depicted in Figure 7.
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Figure 7. A/B Type PU (6) derived by Curtius rearrangement of azide (5).

2.7.4. Ternary Urethane Systems

For kinetic investigations, 16.42 g (7.0 mmol) PBA and 5 g (7.0 mmol) LSL were
dissolved in 80 mL acetone. At 50 ◦C, 6.1 g (0.048 mol) HIC or 5.7 g (0.048 mol) PIC
was added. The reaction was immediately started by addition of 500 ppm DBTDL and
monitored by NCO titration.

For variation of the polyol composition, corresponding amounts of LSL and PBA
(Table 2) were placed in an appropriate flask, dissolved in acetone, and heated to 50 ◦C.
After addition of HDI and 500 ppm DBTDL, the reaction was started and monitored by
NCO titration. After completion of the reaction, the product was cast on a Teflon plate
applying a squeegee (2000 µM) and dried at room temperature.

Table 2. Conditions to produce ternary PU systems based on LSL and PBA. (solvent = acetone,
T = 50 ◦C, cDBTDL = 500 ppm, xLSL = molar fraction of LSL, TM = melting point).

Sample xLSL nLSL/mol nPBA/mol nNCO/mol TM/◦C

PBA−HDI−0%LSL 0.0 - 0.0222 0.0110 47.51
PBA−HDI−10%LSL 0.1 0.0022 0.0200 0.0122 41.39
PBA−HDI−20%LSL 0.2 0.0050 0.0200 0.0150 40.65
PBA−HDI−50%LSL 0.5 0.0178 0.0178 0.0263 42.57
PBA−HDI−70%LSL 0.7 0.0100 0.0235 0.0285 -

PBA−HDI−100%LSL 1.0 0.0073 - 0.0073 46.22 1

1 Tg.
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3. Results and Discussion
3.1. Sophorolipids as Polyol Component for PU Systems
3.1.1. Solubility Studies

Lactonic SL (LSL, Figure 1(1A)), and acidic SL (ASL, Figure 1(1B)) can be produced
in good yields and with a purity of at least 97% [19,25,27]. The melting points of LSL and
ASL ranges between 55 ◦C and 65 ◦C. Above this temperature range, the SL remain highly
viscous. The reaction with isocyanates in bulk is thus quite challenging, which is why the
utilization of an appropriate solvent becomes highly favorable. The solubility of LSL and
ASL in selected solvents is listed in Table 3.

LSL is soluble in several solvents, particularly in acetone, MEK, and THF, all being
solvents commonly used in PU synthesis. In contrast to that, ASL shows poor solubility in
these solvents. In fact, solubility is sufficient in distilled water and methanol, both being
solvents with relatively high polarity. This is assumed to be the result of the higher intrinsic
polarity of ASL due to the additional OH- and COOH- functionalities. Note however that
acceptable solubility is also measured using less polar DMF and DMSO, suggesting a more
complex solubility behavior that is determined not alone by polarity.

Water and methanol are well-known to be inappropriate solvents to study the conver-
sion of polyols with isocyanates since they react themselves with isocyanates forming urea
and urethane groups [1,3]. DMF and DMSO are improper solvents as well because DMF
reacts with isocyanates forming amidines and biurets [74,75] and DMSO yields sulfide
esters by reaction with the carboxyl group of ASL [76]. Hence, the reaction of SL with
isocyanates in solution is studied applying LSL.

Table 3. Visually evaluated solubility of lactonic diacetylated sophorolipid (1A) (LSL) and acidic
deacetylated sophorolipid (1B) (ASL) in selected solvents sorted by increasing solvent polarity
(normalized molar transition energy (EN

T ) values [77,78]). (nLSL = nASL = 0.145 mmol; solvent volume
= 2 mL; + = soluble, − = not soluble).

Solvent EN
T /kJ mol−1 [77,78] Solubility LSL Solubility ASL

Petroleum ether − 1 − −
Cyclohexane 0.025 − −

n-Hexane 0.038 − −
Toluene 0.414 + −

Diethyl ether 0.490 − −
tert-Butyl methyl ether (MTBE) 0.519 − −

1,4-Dioxane 0.687 + −
Tetrahydrofuran (THF) 0.867 + −

Ethyl acetate 0.955 − −
Chloroform 1.084 + −

Dichloromethane 1.294 + −
2-Butanone (MEK) 1.369 + −

Acetone 1.486 + −
N-Methylpyrrolidin-2-one

(NMP) 1.486 + −

N,N-Dimethylformamide (DMF) 1.616 + +
Dimethyl sulfoxide (DMSO) 1.859 + +

Acetonitrile 1.926 + −
2-Propanol 2.286 − −

Ethanol 2.738 − −
Methanol 3.190 + +

Water 4.187 + +
1 not listed.

3.1.2. Reaction of LSL with Monoisocyanates

LSL comprises four secondary OH groups (Figure 1(1A)). The extent of the conversion
of the OH groups can be investigated by reaction with monofunctional isocyanates HIC
and PIC. Assuming complete conversion, the reactions of LSL with HIC or PIC should
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yield products with Mn,theo,LSL-HIC = 1197 g mol−1 and Mn,theo,LSL-PIC = 1165 g mol−1, re-
spectively. As shown in Figure 8, the experimental molecular weights are determined to be
in the range of about 1000 g mol−1 for all systems applying slight excess of isocyanate. This
means that on average, 2.5 OH groups of the LSL reacted with the isocyanate. In contrast
to this, a five-fold excess of PIC must yield a product with Mn,theo,LSL-PIC ≈ 1155 g mol−1,
thus indicating complete conversion. In addition to the urethane products, by-product
formation is observed (Figure 8). Residual isocyanates could not be detected in a significant
amount. For the PIC systems with low isocyanate excess, the molecular weight of the
by-product is about 140 g mol−1 and can be assigned to phenyl urea (Mn = 136.15 g mol−1)
being an impurity of PIC. It is well-known that monoisocyanates dimerize to form uret-
diones [79,80]. According to 13C-NMR analysis and conversion-time-investigations (results
not shown) [81], the signals at ca. 250 g mol−1 correspond to the uretdione dimers of
HIC (Mn,theo,HIC-uretdion = 254.37 g mol−1) and PIC (Mn,theo,PIC-uretdion = 238.24 g mol−1),
respectively. The dimerization explains thus excellently the incomplete conversion of OH
groups of LSL applying minor excess of isocyanate. With large excess, however, uret-
dione formation becomes prominent, but remains insufficient to prevent completion of the
reaction.
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3.1.3. Reaction of LSL with Diisocyanates
Stoichiometric Influence

To produce high molecular weight polyurethanes, LSL has to be converted with
isocyanates with a functionality f of at least two. In contrast to the reaction with monofunc-
tional isocyanates, the reaction with HDI does not lead to measurable uretdione formation.
However, because f LSL is larger than two, crosslinking is substantial and thus the point of
gelation must be considered when different stoichiometric NCO/OH ratios (indices) are
applied. The point of gelation can be calculated applying the Flory–Stockmayer relation
(1) [44–46].

(pOH × pNCO)gel = ( fOH − 1)−1( fNCO − 1)−1 (1)

with pOH and pNCO = conversion of OH and NCO groups, respectively, and f OH and f NCO
= functionality of the OH and the NCO component. For the LSL/HDI system, the point of
gelation is calculated to be 1/3. Thus, gelation is to be expected within an index range of
0.33 to 3.03. A series of experiments applying different indices allows detailed inspection
of the reaction of LSL with HDI (Figure 9). The reaction of LSL with 10-fold excess of
HDI leads to a product mixture that is still soluble in THF. SEC shows the nature of the
components of this mixture (Figure 9, dotted line). Peak c (Mn = 2190 g mol−1) relates
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to the oligomeric/polymeric adducts formed by the reaction of LSL with HDI. In addi-
tion to this, low molecular weight fractions can be detected (a and b Peaks in Figure 9),
which correspond to residual HDI and to mono- and diurethanes from quenching residual
HDI with excessive MeOH. Reducing the index to 1.1 leads to a product mixture that is
not completely soluble any more, indicating significant crosslinking as predicted by the
Flory–Stockmayer (Equation (1)). SEC analysis of the soluble fraction proves crosslink-
ing/branching to a substantial extent (Figure 9, dashed line). Inverting the NCO/OH
ratio to an index of 0.5 leads to a product with incomplete crosslinking (Figure 9, solid
line). This appears to be contradicting the prediction for the lower limit of 0.33 using the
Flory–Stockmayer relation. Presumably, unreacted OH groups are sterically shielded by
vicinal urethane groups formed first. This reduces the effective amount of OH groups for
the reaction with HDI. Consequently, the effective lower limit of the Flory–Stockmayer
gelation range is somewhat increased and seems to be larger than 0.5.
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Figure 9. Size exclusion chromatograms of products from the reaction of LSL with HDI applying
different NCO/OH ratios (index). Reaction conditions: solvent = acetone; T = 50 ◦C; cDBTDL = 500
ppm. Peak a corresponds to residual HDI, b to mono- and diurethanes from quenching residual HDI
with excessive MeOH, and c to oligomers/polymers from the reaction of LSL with 10-fold excess of
NCO groups.

Kinetic Investigations

The reaction between OH and NCO groups is generally accepted to follow second
order kinetics [36,82] and can be studied by investigation of the corresponding second
order plot and determination of kapp according to Equation (2) [38].

cNCO
−1 = kapp t + cNCO0

−1 (2)

with cNCO = concentration of NCO groups at time t and cNCO0 = concentration of NCO
groups at the beginning of the reaction. Figure 10 shows second order kinetic plots of
reactions of PIC, HIC, and HDI with LSL and PBA, respectively. The relative reactivity
of LSL and PBA towards the isocyanates is similar and follows the order PIC > HIC >
HDI. All determined kapp are in the typical range for rate constants of conversions of
isocyanates with primary or secondary alcohols [83]. In fact, PBA reacts with the corre-
sponding isocyanates about 2.5 to 3.5 times faster than LSL (compare kapp in Figure 10a
with the corresponding kapp in Figure 10b). This is because PBA is terminated by primary
OH groups, whereas LSL contains secondary OH groups only. The difference in the reac-
tivity is also observable in the second order plots of ternary reaction mixtures comprising
isocyanate and an equimolar mixture of PBA and LSL (Figure 11). From this, two dif-
ferent kapp for each reaction can be calculated being kapp1 = 16.2 × 10−4 L mol−1 s−1 and
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kapp2 = 7.99 × 10−4 L mol−1 s−1 for the PBA/LSL/PIC mixture and kapp1 = 4.64 × 10−4 L
mol−1 s−1 and kapp2 = 2.61 × 10−4 L mol−1 s−1 for the PBA/LSL/HIC reaction. The differ-
ences between kapp1 and kapp2 is about a factor of two in each ternary system, suggesting
that LSL and PBA do not affect each other in terms of reactivity towards isocyanates.
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and PBA. Reaction conditions: solvent = acetone; T = 50 ◦C; cDBTDL = 500 ppm; index = 1.1. Rate
constants kapp shown in the inlet are in ×10−4 L mol−1 s−1.

Behavior of Ternary Systems

Ternary PU systems containing LSL, PBA, and HDI are well-suited model formulations
to study the influence of LSL on the product performance. For this, the content of LSL is
systematically varied in the polyol mixture. To prevent significant crosslinking and enable
reasonably high molecular weights, an index of 0.5 is applied. SEC analysis reveals a
monomodal molecular weight distribution for the binary system PBA/HDI (0 mol.% LSL)
with an average molecular weight of Mn = 4820 g mol−1, which agrees well to Mn,theo of
4619 g mol−1 according to Flory (Figure 12) [84]. In contrast to that, increasing the amount
of LSL in the polyol mixture leads to a broadening of the molecular weight distribution
and an increase of modality. The SECs of the samples containing 70 mol % and 50 mol %
LSL in particular reveal signals at molecular weights that correspond to pure LSL. This
strongly suggests incomplete incorporation of LSL in the PU system. This is most likely
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because PBA is consumed first due to the reduced reactivity of the secondary OH groups
of LSL. Consequently, residual LSL remains in the reaction mixture. An increased amount
of LSL in the product leads also to a reduction of properties such as shore A hardness and
crystallinity, suggesting a plasticizing character of LSL (Figure 13).
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Figure 13. Crystallinity obtained by XRD and shore A hardness of products from the reaction of HDI
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solvent = acetone; T = 50 ◦C; cDBTDL = 500 ppm; index = 0.5.

3.2. (ω-1) HFA from LSL as Polyol Component for PU Systems
3.2.1. (ω-1) HFA-Based Polyester Polyols and PU Systems Thereof

The preparation of (ω-1) HFA (2) proceeds according to the sequence shown in
Figure 14. Successive alkaline and acidic hydrolysis lead to a mixture of monomeric
HFA with its dimers and some oligomers up to an overall yield of 74.5%. Further pu-
rification to produce pure monomeric HFA is possible by repeated saponification and
solvent extraction, but reduces the overall yield to 48.4%. Fortunately, the subsequent
polymerization towards A/B-type polyesters does not require highly pure monomeric
HFA, since the dimers condense in the same way and yield the desired A/B-type polyesters.
The further polymerization is thus investigated, applying the mixture of monomeric and
dimeric/oligomeric (ω-1) HFA.
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OH-terminated A/B-type polyesters can be produced by modifying a procedure pub-
lished elsewhere [61]. In this synthesis, the mixture of monomeric and dimeric/oligomeric
(ω-1) HFA is polymerized in presence of 1,6-hexanediol. The product is highly viscous,
sticky, and not completely soluble in THF (Mn of soluble fraction ≈ 2200 g mol−1). For
comparison, a polyester consisting of 12-hydroxystearic acid and 1,6-hexanediol is pro-
duced applying equal conditions. This product is oily and highly viscous as well; however,
remains fully soluble in THF (Mn ≈ 2600 g mol−1). These outcomes support other investi-
gations [81], which indicate that notable crosslinking has occurred during the synthesis
of (ω-1) HFA-based polyester diols and is most likely the result of inseparable glucose
impurities remaining in the (ω-1) HFA.

The reaction of HDI with the soluble fraction of (ω-1) HFA-based polyester diols
yields a dark brownish oily product that is not completely soluble in THF. IR and SEC
analysis reveals the product to be PU with Mn ≈ 3500 g mol−1 and a significant amount
of species with Mn >106 g mol−1 (results not shown). This is also attributed to residual
glucose moieties leading to notable crosslinking and branching during PU synthesis.

3.2.2. Direct Conversion of (ω-1) HFA to PU by Curtius Rearrangement

A/B type PU (6) can be obtained by Curtius rearrangement [51,62–68], thus, fatty acid
derivatives such as (ω-1) HFA represent potential A/B type monomers for the synthesis
of PU [69]. By modification of model reactions [72,73], a reaction procedure comprising
(ω-1) HFA (2)→ (ω-1) HFA azide (5)→ (ω-1) HFA-based A/B PU (6) could be developed
(Figure 15). This sequence leads to macromolecular species with Mn of max. 30,000 g mol−1

after extended reaction time (Figure 16a). With a reaction temperature of 60 ◦C, the product
obtained after 16 h shows a notably high PDI that indicates significant side reactions such
as crosslinking, branching, or the formation of macrocycles. Reduction of the reaction
temperature to 50 ◦C leads to species with Mn of about 15,000 g mol−1 and PDIs in the
range between 1.5 and 2.0. An increase of the temperature to 80 ◦C leads to a signifi-
cant reduction of obtained molecular weight most likely because of favored formation of
macrocycles [51,69].
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Figure 16. (a) Evolution of molecular weight and PDI of A/B type polymerization of (ω-1) HFA azide (5) via Curtius
rearrangement determined by SEC; (b) reaction monitoring of the polymerization by FT-IR spectroscopy for T = 60 ◦C.

FT-IR reaction monitoring of the polymerization step clearly shows the typical strong
asymmetric stretching frequency of triatomic N3 groups at 2150 cm−1 for the starting
material (Figure 16b) [85]. The reaction signals at 1795, 1720, and 1540 cm−1 become
distinct after 16 h, indicating the formation of the urethane functionality [86–89]. In
addition to these signals, the asymmetric stretch vibration of the NCO group [85,86,90,91]
at 2264 cm−1 becomes evident after 30 min, suggesting effective decomposition of the
azide. Note that this signal is still observable after 16 h reaction time, indicating incomplete
conversion and most likely the formation of NCO-terminated species.

4. Conclusions

In contrast to acetic and deacetylated sophorolipid (ASL), the lactonic and acetylated
form of sophorolipid (LSL) is soluble in solvents commonly used in PU synthesis. The
conversion of LSL with mono- or diisocyanates is feasible and the products obtained
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show the expected behavior for PU systems based on polyols with functionalities higher
than two, i.e., crosslinking in the reaction with diisocyanates applying indices below
the point of gelation. The reactivity of LSL is in the typical range for conversions of
isocyanates with secondary alcohols and about two to three times lower compared to
polyols containing exclusively primary OH end groups such as commercially available PBA.
This difference leads to incomplete incorporation of LSL in, e.g., ternary HDI/PBA/LSL
systems applying an index of 0.5. Consequently, LSL acts here like a plasticizer reducing
for instance crystallinity and shore A hardness. (ω-1) HFA-based polyester polyols are in
general producible; however, low amounts of residual glucose impurities seem to lead to
considerable crosslinking during the synthesis. Subsequent reaction of soluble fractions of
this polyester with HDI leads to different PU products with Mn of about 3500 g mol−1 and
>106 g mol−1, respectively, indicating substantial crosslinking and branching. (ω-1) HFA-
based A/B type PU systems are also feasible by applying a reaction procedure comprising
(ω-1) HFA (2)→ (ω-1) HFA azide (5)→ (ω-1) HFA-based A/B PU (6). Such systems show
molecular weights up to ca. 30,000 g mol−1. The products obtained show a significant
amount of NCO groups remaining in the system, suggesting incomplete conversion and
formation of NCO-terminated PU species.
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