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Abstract: Multi-material additive manufacturing of polymers has experienced a remarkable increase
in interest over the last 20 years. This technology can rapidly design and directly fabricate three-
dimensional (3D) parts with multiple materials without complicating manufacturing processes. This
research aims to obtain a comprehensive and in-depth understanding of the current state of research
and reveal challenges and opportunities for future research in the area. To achieve the goal, this study
conducts a scientometric analysis and a systematic review of the global research published from
2000 to 2021 on multi-material additive manufacturing of polymers. In the scientometric analysis,
a total of 2512 journal papers from the Scopus database were analyzed by evaluating the number
of publications, literature coupling, keyword co-occurrence, authorship, and countries/regions
activities. By doing so, the main research frame, articles, and topics of this research field were
quantitatively determined. Subsequently, an in-depth systematic review is proposed to provide
insight into recent advances in multi-material additive manufacturing of polymers in the aspect of
technologies and applications, respectively. From the scientometric analysis, a heavy bias was found
towards studying materials in this field but also a lack of focus on developing technologies. The
future trend is proposed by the systematic review and is discussed in the directions of interfacial
bonding strength, printing efficiency, and microscale/nanoscale multi-material 3D printing. This
study contributes by providing knowledge for practitioners and researchers to understand the state
of the art of multi-material additive manufacturing of polymers and expose its research needs, which
can serve both academia and industry.

Keywords: additive manufacturing; multi-material; polymers; review; scientometric analysis

1. Introduction

Additive manufacturing (AM), also referred to as three-dimensional (3D) printing,
describes a process where 3D objects are produced by combining materials, usually in a
layer-by-layer manner, from a 3D model design, as opposed to subtractive manufacturing
strategies [1]. This technology has been applied and customized into a wide applications
spectrum with recent interests such as automotive, aerospace, medical, dental, building,
biological system, electronics, and food supply chains [1,2]. Over traditional manufacturing
strategies, AM has demonstrated various advantages, including greatly enhanced design
freedom [3], simplified supply chain management [4], maximum material saving, personal
customization, and a reduced environmental impact [5].

A wide range of materials have been currently utilized in AM technologies, including
metals, ceramics, concrete, and polymers. Metals and alloys have been popular in the
aerospace industry to build, repair, and remanufacture various components due to their
numerous advantages, particularly their design flexibility, low material wastage, and their
lack of scarifying metals’ mechanical properties [6]. Ceramics are usually used for printing
biocompatible scaffolds. AM of ceramics has more challenges than AM of polymers or
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metals due to the former’s high melting points and hence the low tolerance to processing
defects of this class of materials [7]. Concrete is the main material employed in the AM
of constructions, and AM technologies have opened new building design possibilities [8].
Polymers consist of macromolecules composed of repeating subunits, and they can be
classified into thermoplastics and thermosets depending on their thermomechanical prop-
erties. Among all AM materials, polymers have been considered as the most common
materials in 3D printing because of their diverse material selection and ease of adoption
to different AM technologies. Polymer printed parts also have their advantages through
their lightweight, corrosion-resistant properties and their achievable mechanical, ther-
mal, electrical, fire-resistance, and biocompatible properties [9]. In addition, by using the
new functional polymers with novel biological, mechanical, and chemical properties, new
branches of AM also emerged, such as bio-printing and four-dimensional (4D) printing [10].
Polymers for 3D printing are extensively used in the form of photosensitive resin, thermo-
plastic filaments and powders, and viscous polymer inks [9,11]. The techniques for AM of
polymers can be divided into vat photopolymerization [12-14], material extrusion [15-17],
powder bed fusion [18-21], material jetting [22-24], binder jetting [25,26], and sheet lami-
nation [27-29]. The working principles of individual AM techniques for polymers differ
on the machine technology and material selection. Vat photopolymerization is an AM
process that uses radiation (e.g., ultraviolet (UV) light) to selectively scan and polymerize
liquid photosensitive resins in a vat to form solid 3D models. The 3D printed part by this
technology has higher part accuracy and resolution compared to that fabricated by other
AM processes [30,31]. The material extrusion technology is also widely known as Fused
Deposition Modeling (FDM). This process uses thin thermoplastics filament, viscous inks,
or polymer pellets with a specific size extruded by a nozzle controlled by numerical control
(NC) to form the 3D object layer-by-layer. Powder bed fusion utilizes a heat source (e.g.,
laser or infrared (IR) radiation) to melt and bind powder particles in a powder bed to build
3D models. This process is carried on in an enclosed chamber, which is filled with nitrogen
gas to decrease the oxidation and degradation of the material to a minimum. The material
jetting printing technique is similar to 2D inkjet printing. In this process, continuous stream
or individual drops are ejected from the nozzle and deposited on a platform, subsequently
solidifying by photopolymerization and cooling. Binder jetting (also called inkjet-printing)
is a powder-based AM technology that uses a print head to deposit the droplet of a liquid
binder onto the powder bed and selectively glue them together to form the 3D structure.
AM'’s last technology for polymers is sheet lamination, which builds a 3D object by stacking
and laminating thin sheets of material together. This technology is relatively cheaper than
others, so it is usually used for building large parts [9].

Initially, most AM technologies for polymers were developed to use a single material.
However, the 3D printed object with a single material cannot meet the rising demand
for high complexity and enhanced functional performance. Multi-material additive man-
ufacturing allows different materials to be deposited in various regions or mixed by a
percentage ratio in the same region, which can fabricate an object with a wide range of
properties and functionalities. This technology can also decrease the production time
without extra cost for fabrications with a complex morphology [32]. Recently, various
multi-material additive manufacturing technologies for polymers have been developed
and implemented in different applications. Therefore, a comprehensive and deep under-
standing of this technology is required. Whereas existing review publications showcase
detailed analyses on certain areas of research, the technologies and applications of multi-
material additive manufacturing for polymers have been diverse and with varying degrees
of complexity; thus, this study was proposed to provide a full scope of analysis in this
research area.

Scientometrics includes quantitative study of science, communication of science, and
science policy [33], which reveals the research impact of publications, researchers, journals,
and research institutions in a certain field of research and provides a deeper understanding
of scientific citations [34]. This study aims to conduct a scientometric review and analysis
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Data acqunsition

of the publications relating to the multi-material additive manufacturing of polymers to
achieve a comprehensive understanding of the development in this research field over
the last two decades (2000 to 2021). Based on the results of scientometrics analysis, an
in-depth systematic review is subsequently presented to provide deeper insights into the
technologies and applications of multi-material additive manufacturing of polymers.

The rest of the paper is organized as follows. In Section 2, the research methodology is
described in detail. Subsequently, the results and findings from the scientometric analysis
are discussed in Section 3. In Section 4, a systematic review of the existing literature is
proposed. Finally, a conclusion is given in Section 5.

2. Research Method

This work’s motivation is to provide an up-to-date review of the research works for
multi-material additive manufacturing of polymers and an understanding of the future
direction in the field. For this study, a mixed-review method was employed, including
steps of data acquisition, scientometric analysis, and systematic review, allowing the
research to be analyzed from different perspectives. The flowchart of the methodology is
presented in Figure 1. In the first stage, the relevant research results were retrieved from
the academic literature database (Scopus) following the meta-analyses guidelines [35]. A
scientometric analysis was conducted to measure the targeted research field and map the
current knowledge and research topics in a domain based on the retrieved literature. A
systematic review was implemented in the last stage, discussing the topics of different
technologies and applications for multi-material additive manufacturing of polymers. The
topics were carefully selected by following the results of the scientometric analysis. After
a manual literature screening, the existing studies were comprehensively reviewed, and
the future research directions were also discussed. The subsections explain the research
method in detail.

Scientometric analysis

Number of publications
analysis

Literature coupling analysis

.

Data retrieval

Systematical analysis

Keyword co-occurrence
analysis

Applications

—>

Technologies

Authorship analysis

Countries/Regions activities I\/I

analysis

S VOSviewer

Future research directions

Figure 1. Overall research methodology.
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2.1. Data Acquisition

Data acquisition of the existing literature was significantly important in this research,
especially for the conclusion drawn from the scientometric analysis. For this research,
the data acquisition pursued the strategy suggested by [36,37]. The literature collection
strategy followed two criteria, including (1) contemporary and relevance: all publications
were searched from 2000 to 2021 and the papers were manually literature screened by
reviewing the keywords and abstracts carefully; (2) quality assurance: only peer-reviewed
papers from journals were included since the journal papers normally undergo careful
reviews to eliminate errors and mistakes.

The database selection was critical for the literature review. In this study, the Scopus
database was selected as the literature database due to its extensive coverage of journal
publications and knowledge domain compared to other databases such as Web of Science,
Google Scholar, or PubMed [34,36].

The existing literature related to multi-material additive manufacturing of poly-
mers in the Scopus was retrieved by searching keywords within the publications” ti-
tle/abstract/keywords. Based on the objective of this review, the selected keywords were:
(“additive manufacturing*” OR “print*”) AND (“polymer*”) AND (“multi-material*” OR
“composite*” OR “dissimilar*”). It should be noted that the wildcard character * was used
to capture variations of one keyword. The search period was set to from 2000 to 2021,
representing the contemporary development of multi-material additive manufacturing of
polymers. A screening process was performed to limit papers published in peer-reviewed
English journals. In the end, a filter by subject area was applied to exclude irrelevant fields,
such as “Business, Management and Account” and “Social Sciences”. Those remaining
papers after the screening process were fed into the scientometric analysis. The initial
search yielded 4767 document results, and after the successive screening processes, the
number of documents fell to 2512.

2.2. Scientometric Analysis

The term “Scientometrics” was first created by Nalimov and Mulchenko in 1969 [38]
as “a measurement of science.” The research area of scientometrics has been developed
from the second half of the 19th century until today. Over these 100 years, the studies of
scientometrics moved from the unconscious to consciousness, from qualitative research
to quantitative research, and from external description to comprehensive study disclos-
ing the inherent properties of scientific production [39]. In the recent past, the power
of scientometrics was demonstrated in different research areas, such as computer vision
in construction [34], construction and demolition waste [40], virtual reality applications
for the built environment [36], leak detection and localization [41], smart city [42], sus-
tainability and sustainable development [43], off-site construction [44], public-private
partnerships [45], oral health literacy [46], carbon footprints [47], recommendation sys-
tems [48], cloud computing [49], and unfrozen soil water [50]. From these literature reviews,
the modern scientometric analysis allows us to map knowledge structures, access scientific
contribution, find scientific development, and identify emerging trends within a given
research field [51].

Due to the wide spectrum of research topics related to multi-material additive manu-
facturing of polymers, it is very challenging to characterize this area’s overall field only
by systematic analysis. Although systematic analysis is able to provide an insightful
understanding of the research area, it is prone to bias and limited in terms of subjective
interpretation [52]. Therefore, in this study, a scientometrics analysis method was proposed
to review the previous research results in the area of multi-material additive manufacturing
of polymers. Analyses from various perspectives were implemented, including a number
of publications analysis, literature coupling analysis, keyword co-occurrence analysis,
authorship analysis, and countries/regions activities analysis. In this study, an open-source
software, VOSviewer [53], was employed for network modeling and visualization. It is
worth noting that the scientific mapping of research communities and themes generated
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from literature coupling analysis and keyword co-occurrence analysis were both considered
in formatting research topics for the subsequent systematic review.

2.3. Systematic Review

The identified research clusters can clarify the knowledge domain structure of the
multi-material additive manufacturing of polymers; however, the scientometric analysis
cannot disclose the in-depth research challenges and inform research needs. Therefore, in
this study, a systematic review was conducted as a complementation of the scientometric
analysis. Firstly, the authors divided the systematic review into two aspects: technologies
and applications. The classification structure of research topics in these two aspects was
determined by a consensus-based discussion on the scientometric review analysis.

3. Results and Analysis
3.1. Number of Publications Analysis

By applying the literature search method explained in Section 2, 2512 journal articles
were published from 2000 to 2021. Figure 2 shows the annual publication number in
journals on the topic of multi-material additive manufacturing of polymers. This figure
indicates an overall upward trend from 2000 to 2012, and the annual percentage growth
rate of the number of publications in this period was +27.5%. Starting from 2012, a burst
can be discerned, and the dramatic increase lasted until the year 2020. From 2012 to 2020,
the annual percentage growth rate of the number of publications was +184.7%, marking
an increase at an incredible rate. Notably, the burst starting from 2012 matched with a
milestone of additive manufacturing technology [1,54]. The increasing amount of research
for multi-material additive manufacturing of polymers in recent years may be attributed
to the increasing availability of mature additive manufacturing technology. In the end,
a linear regression was performed based on the data from 2018 to 2020, and the result
showed that the number of publications maintained an upward trend and estimated that
677 articles would be published in the year 2021.

Estimated: 677

—— Historical number of publications Prediction

564

44

2003 2006 2009 2012 2015 2018 2021
Year

Figure 2. Historical number of papers published each year from 2000 to 2020; the prediction for 2021.
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3.2. Literature Coupling Analysis

Table 1 summarizes the journals (minimum number of documents of a source is 20)
that published articles related to the multi-material additive manufacturing of polymers.
The number of publications, number of total citations from these articles, and number of
average citations per article were applied to determine the impact of the academic topic
in production and research. The majority of academic articles were published in the top
journals in the research area of additive manufacturing and materials, including Additive
Manufacturing, ACS Applied Materials, and Interfaces, Composites Part B Engineering, Compos-
ites Science and Technology, Scientific Reports, Advanced Materials, etc. Additive Manufacturing
(1828 citations, 18.7 average citations per article), Composites Part B Engineering (1951 ci-
tation, 29.6 average citations per article), Composites Science and Technology (1991 citations,
31.1 average citations per article), and Advanced Materials (1952 citations, 81.3 average cita-
tions per article) can be considered as journals that have a significant influence in this area.
Among them, Additive Manufacturing includes the most publications (98 articles), Composites
Science and Technology received the most citations from related articles (1991 citations), and
Advanced Materials has the highest average citations per article (81.3 citations).

Table 1. Top journal outputs from January 2000 to March 2021 published research works related to multi-material additive

manufacturing of polymers.

JOURNAL Number of % Total Number of Total Citations = Number of Average
Relevant Articles Publications from These Articles Citations per Article
Additive Manufacturing 98 5.02% 1828 18.7
ACS Applied Materials and Interfaces 92 4.71% 1397 15.2
Materials 80 4.10% 913 11.4
Composites Part B Engineering 66 3.38% 1951 29.6
Polymers 66 3.38% 359 5.4
Journal of Applied Polymer Science 65 3.33% 1107 17.0
Composites Science and Technology 64 3.28% 1991 31.1
Materials and Design 44 2.25% 956 21.7
Rapid Prototyping Journal 44 2.25% 934 21.2
Advanced Functional Materials 39 2.00% 890 22.8
Composites Part A Applied Science 31 1.59% 730 236
and Manufacturing
Rsc Advances 29 1.49% 215 74
Scientific Reports 29 1.49% 1591 54.9
Advanced Materials 24 1.23% 1952 81.3
Journal of Composite Materials 24 1.23% 270 11.3
Advanced Engineering Materials 23 1.18% 300 13.0
Journal of Polymer Materials 23 1.18% 25 1.1
Materials Science and Engineering C 23 1.18% 305 13.3
Polymer Composites 22 1.13% 171 7.8
Materials Letters 21 1.08% 224 10.7
Sensors and Actuators B Chemical 21 1.08% 321 153
Composite Structures 20 1.02% 367 18.4

3.3. Keyword Co-Occurrence Analysis

Keywords are words that capture the core content of research articles [55] and make
the published paper searchable to filter the overwhelming amount of resources available.
Keyword network illustrates a knowledge domain to provide penetration into the major
research topics and show how these topics are interrelated. In this study, VOSviewer was
used for constructing and viewing a keyword network. VOSviewer is a freely available
software for building a graphical representation of distance-based bibliometric maps. The
distance between two items reflects the strength of the relation between the items [53]. The
items in the software can be keywords, authors, organizations, and countries. Generally,
a smaller distance represents a strong relation. A label indicates the item, and the label
size is directly proportional to the number of publications that include the keyword. The
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label’s color shows the cluster to which a journal was assigned by the clustering technique
of VOSviewer [53].

In this study, the author keyword was used for keywords co-occurrence analysis, and
the threshold of keyword occurrences was set to 5. This minimum number of occurrences
was determined based primarily on the optimal graphical representation for research
clustering by multiple experiments. Therefore, 200 of the 4607 keywords met the threshold.
It should be noted that, among these keywords, some words with the same meaning
emerged in the map and network, such as ‘3d printing’ and ‘3-d printing’, ‘finite element
method” and ‘finite element analysis,” and ‘mechanical characterization” and ‘mechanical
properties.” Furthermore, keywords with a singular form and plural form were required
to be combined, like “scaffold” and ‘scaffolds,” “microstructure’ and ‘microstructures,” and
‘nanotube’ and ‘nanotubes.” Moreover, the keyword of short-form were merged with its
full form, for instance, ‘PLA’ and ‘polylactic acid,” ‘FEA” and “finite element analysis,” and
‘CFRP’ and ‘carbon fiber reinforced polymer.” In the end, to reduce the influence of regular
topics, some regular keywords which were not suitable for the specific topic were removed,
e.g., ‘3d printing’, ‘additive manufacturing,” and “polymers.” After the post-processing for
manual screening, the keyword network visualization with 155 keyword labels, 906 links,
and a total link strength of 1422 is presented in Figure 3.
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Figure 3. Network Visualization for 155 keywords.

To obtain precise results, keywords in the quantitative measurement were retrieved.
In VOSviewer, the size of each keyword label denotes the weight of occurrence. From
Figure 3, it can be observed that “‘mechanical property” and ‘fused deposition modeling’
appear most frequently. This infers that mechanical property is the most important property
for the topic of multi-material additive manufacturing of polymers, and fused deposition
modeling is the most popular technique in this area. For a given keyword, the link and
total link strength respectively represent the number of linkages of a keyword with other
keywords and the total strength of the links of a given keyword with other keywords [53].

This study proposed focusing on reviewing different multi-material AM techniques
and their key applications. Apparently, the analysis for keywords related to the techniques
and applications allowed us to provide some indications. Table 2 lists the keywords
related to the techniques. From this table, FDM may be considered as the most dominated
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technology (highest occurrence: 127; highest link: 65; highest total link strength 176) among
other AM technologies in the academic field. This point curiously matches the finding
from the survey [10], which illustrated that FDM is popular for multi-material fabrication
due to it being relatively affordable and accessible compared to other multi-material AM
technologies [56]. In addition, keyword ‘fused deposition modeling’ related articles were
most frequently published in 2019, and this can infer that the development of multi-material
FDM is still prominent today. The other popular multi-material AM technologies include
stereolithography, inkjet printing, selective laser sintering, material extrusion, etc. Selective
laser sintering and powder bed fusion are AM techniques for metal or metallic materials;
however, these techniques have contributed to hybrid polymer/metal materials [57,58].
Excluding inkjet printing, screen printing, and electrospinning, the average publish year of
other techniques are mostly in the range from 2018 to 2020, which means most of them are
in the research hotspot.

Table 2. List of keywords related to multi-material AM techniques and their relevant network data.

. Total Link Avg. Pub. Avg.
Keyword Oceur. Links Strength gear Citati%ns
fused deposition modeling 127 65 167 2019 21.7
stereolithography 35 28 36 2018 18.5
inkjet printing 31 24 30 2016 12.4
selective laser sintering 24 17 22 2018 15.6
material extrusion 21 12 13 2020 3.5
screen printing 19 20 25 2016 18.6
extrusion 17 26 35 2019 15.5
direct ink writing 12 14 14 2020 3.9
photopolymerization 11 5 5 2018 31.8
electrospinning 9 10 11 2016 17.8
digital light processing 7 11 11 2019 24.7
material jetting 6 4 4 2019 35.7
powder bed fusion 5 3 4 2020 2.6

Table 3 presents the keywords for multi-material AM applications and their network
data. These keywords can be divided into three classes: medical application, electronics,
and soft robotics. The application of medical application includes the keywords of ‘tissue
engineering’,’scaffold’, ‘bone tissue engineering’, ‘bone regeneration’, ‘drug delivery’,
and ‘biosenso’, which account for 47% of overall occurrences. There are keywords of

‘printed electronics’, ‘flexible electronics’, ‘strain sensor’, ‘electrochemical sensor’, etc.,

which cover 50% of all keywords occurrences. ‘Soft robotics” only has 3%. Therefore, it can
be inferred that the main applications of multi-material AM techniques include medical
and electronic applications.

A new dataset was built by merging the keywords related to applications and tech-
nologies to investigate the relationship between applications and techniques. Figure 4
shows the density visualization for keywords of applications and techniques, with 5 clus-
ters. From cluster 1, we could find that stereolithography and inkjet printing are related
to applications of soft robotics, actuators, sensor, and dielectrics. Cluster 2 covers various
electronics that are related to the technique of screen printing. Cluster 3 indicates that
tissue engineering is associated with multi-material AM techniques like fused deposition
modeling, selective laser sintering, and material jetting. In Cluster 4, direct link writing,
material extrusion, and powder bed fusion are involved, but they are only linked to flexible
electronics. In the end, Cluster 5 shows that electrospinning is relevant to applications of
stretchable electronics, strain sensors, and temperature sensors.
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Table 3. List of keywords related to multi-material AM applications and their relevant network data.

. Total Link Avg. Pub. Avg.
Keyword Oceur. Links Strength gear Citati%ns
tissue engineering 35 24 51 2018 38.6
scaffold 28 23 46 2016 51.8
printed electronics 24 22 34 2017 26.6
bone tissue engineering 16 10 14 2019 15.1
sensor 13 14 17 2018 16.5
bone regeneration 11 11 13 2019 14.5
flexible electronics 11 11 13 2018 37.0
strain sensor 10 10 14 2017 19.0
electrochemical sensor 7 2 2 2018 13.6
drug delivery 6 3 3 2019 13.2
temperature sensor 6 8 9 2018 14.0
humidity sensor 6 3 3 2018 9.0
dielectrics 6 6 7 2017 3.8
biosensor 6 3 3 2017 12.3
pressure sensor 6 7 7 2015 12.3
embedded capacitor 6 4 7 2006 58.7
actuators 5 8 9 2019 20.6
soft robotics 5 6 7 2019 17.6
wearable electronics 5 3 3 2019 6.0
stretchable electronics 5 4 5 2018 17.2

Cluster l soft robotics

actuators

sensor
dielectrics

inkjet printing

electrospinning

stretchable electronics

Cluster 2

strain sensor

pressure sensor

’eering

odelingi

ing

screen printing temperature sensor fused de

printed electronics

wearable electronics

humidity sensor /
(/flexible electronics

direct ink writing

material extrusion

powder bed fusion

Figure 4. Density visualization for keywords related to technologies and applications.

3.4. Authorship Analysis

The information with respect to the authorships can be acquired from the Scopus
database. Therefore, the leading researchers in this research area could be identified, and

the collaborations between researchers could be mapped.

Table 4 lists the authors who published the most publications related to the research
field of multi-material additive manufacturing of polymers. The list of authors was acquired
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from the database, after setting the minimum number of citations of the author as 15. Out
of 7346 authors, 15 met the selection criteria. Wang Y. occupied the top position of the
most productive researcher. At the same time, in terms of citations, Wang Y. had much
higher citations than other authors, which shows that this scholar has the largest influence
in this field.

Table 4. List of authors that published the most publications related to multi-material additive
manufacturing of polymers.

Scholar Num. of Publications Citations Avg. Pub. Year Avg. Citations
Wang Y. 32 928 2018 29.0
Wang J. 25 503 2017 20.1
Liu Y. 23 335 2018 14.6
Zhang J. 21 206 2019 9.8
Zhang X. 21 269 2018 12.8
LiY. 20 201 2019 10.1
Singh R. 20 287 2019 14.4
Zhang Y. 20 367 2018 18.4
Wang L. 18 476 2017 26.4
Zhang H. 17 125 2018 7.4
Zhang Z. 17 275 2019 16.2
Wang Z. 16 583 2018 36.4
Zhang C. 16 307 2018 19.2
Chen Y. 15 514 2018 34.3
Xu]. 15 220 2019 14.7

The collaborations between researchers were visualized by VOSviewer, as shown
in Figure 5. The visualization of co-authorship resulted in 4 clusters. Cluster 1 includes
Zhang Y., Zhang C., Xu J., Wang Y., Chen Y., Wang Z., and Wang J. From Cluster 2, we
can find Zhang H., Zhang Z., Wang L., and Liu Y. In Cluster 3, there are three authors,
including Zhang J., Li Y., and Zhang X. Sing R. appears individually in the last cluster,
which indicates that there is no collaboration with the other most productive authors in
the field.

Cluster 2

Cluster 1
Cluster 4

Cluster 3

6“& VOSviewer

Figure 5. Visualization for co-authorships.

3.5. Countries/Regions Activities Analysis

The countries/regions actively engaged in the research field of multi-material addi-
tive manufacturing of polymers are listed in Table 5. Among them, the United States is
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dominating the research area in a number of publications and citations. The United States’
citations were found to be 17,544, which is far ahead of other countries/regions—followed
by China, which published 378 papers and received 6459 citations. In terms of average
citations, Japan and Singapore received 46.5 and 55.4 citations in each publication, which is
much higher than other countries/regions.

Table 5. List of countries/regions published the most publications related to multi-material additive
manufacturing of polymers.

Country/Region PuT)'iliI;:tioofns Citations Avg. Pub. Year = Avg. Citations
United States 519 17544 2017 33.8
China 378 6450 2018 17.1
United Kingdom 147 3541 2017 24.1
Germany 145 1925 2017 13.3
South Korea 139 2801 2016 20.2
India 112 1318 2017 11.8
Italy 91 2334 2017 25.6
Spain 71 1269 2018 17.9
France 66 1172 2018 17.8
Australia 62 1499 2018 24.2
Canada 60 477 2018 8.0
Taiwan 55 944 2016 17.2
Russian Federation 52 668 2018 12.8
Singapore 50 2323 2017 46.5
Japan 45 2492 2014 55.4
Switzerland 44 1220 2017 27.7
Poland 39 307 2018 7.9
Iran 34 270 2019 7.9
Sweden 34 452 2017 13.3

Figure 6 maps the collaborations between different countries/regions in the research
area, which shows 19 nodes and 111 links. The connection lines show the co-authorships
between countries/regions. According to the size of the node and thickness of connection
lines, the US maintains research links with the rest of the countries/regions.
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Figure 6. Visualization for collaborations between countries/regions.
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4. Systematic Review of Current Research
4.1. Technologies

According to the scientometric analysis, there have already been significant scientific
community efforts to fabricate multi-material polymeric 3D parts. This section reviews
the related works on various typical 3D printing techniques, including fused deposition
modeling (also known as fused filament fabrication), direct ink writing, vat photopolymer-
ization, material jetting, and some innovative hybrid 3D printing platforms. The process
mechanism, merit and demerit, and recent research advances of each 3D printing technique
are systematically reviewed in the following sections.

4.1.1. Fused Deposition Modeling

Fused deposition modeling (FDM), also known as fused filament fabrication (FFF),
is one of the most employed methods of additive manufacturing technology, in which
thermoplastic polymer in the shape of wire (filament) is melted by a liquefier and then
extruded with a fine diameter through a nozzle [23,29,59]. The semi-liquid printed material
is subsequently added layer-by-layer onto a build platform. In Figure 7a, the scheme of
this technique is shown. Compared to other AM methods, the FDM method offers many
advantages, including low costs, smooth operations, ease of support material removal,
better raw material handling, and the ability to process different thermoplastics [59,60].

(b)  resee (c) (d) N

X-Y scanning

: mask /
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Fused deposition modeling Direct ink writing Stereolithography Digital light processing Material Jetting

(FDM)

(DIW) (SLA) (DLP) (MJ)

Figure 7. Schematics of five various additive manufacturing methods: (a) fused deposition modeling (FDM), (b) direct
ink writing (DIW), (c) stereolithography (SLA), (d) digital light processing (DLP), and (e) material jetting (M]). Schematic
images were adapted from Ref. [10].

In the earlier stage of FDM, the printing potential was limited by a small selection of
thermoplastic filament materials [61]. Fortunately, with an increasing variety of filament
materials offering a wide range of physical, mechanical, and electronic properties, FDM
is now highly compatible with a wider range of materials, including acrylonitrile butadi-
ene styrene (ABS) [62-64], polycaprolactone (PCL) [65-68], polylactic acid (PLA) [69-71],
nylon [72-74], polypropylene (PP) [75-77], thermoplastic polyurethanes (TPU) [78,79],
polyvinyl alcohol (PVA) [80,81], high impact polystyrene (HIPS) [82,83], and composite fila-
ments [84]. Therefore, multi-material 3D printing using FDM has drawn growing interest in
recent years. Multi-material FDM can be easily realized by employing multi-material single
mixing nozzle or multi-material multiple nozzles (Figure 8a) [85]. It has been demonstrated
that the multi-nozzle achieves a better performance in the build time, while the single
nozzle shows greater consistency in fabricating high-quality materials [86].

However, some challenges associated with the printed parts with the multi-material
FDM technology still exist, such as inherent poor surface finish with ridges, limited printing
resolution, slow build speed, and low interfacial bonding strength [87]. In particular, the
weak bond strength between adjacent extruded filaments and layers is the most critical
issue among these limitations because the bonding between dissimilar materials could
be a much more intractable problem in multi-material FDM than in single-material FDM
because of the differences in physical properties and chemical properties [85].
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Figure 8. Recent advances in the multi-material FDM technique: (a) the setup developed for single
mixing nozzle and multiple nozzles for the multi-material FDM system (images were adapted from
Ref. [86]) and (b) schematics of the principle of the SLTAT method and the corresponding 3D printing
platform with a multi-material 3D printer, AMTC system and FDM print-head module (images are
adapted from Ref. [88]).

For a better mechanical performance of multi-material FDM printed parts in PLA/TPU
material pairs, the significance of interface design was investigated. The results indicate
that the macroscopic-based interface geometries designed based on mechanical interlocking
systems are more reliable than the simple face-to-face interfaces [89]. To improve the bond
strength between dissimilar materials with different melting temperatures, a single-layer
temperature-adjusting transition (SLTAT) method was proposed, and this novel technique
was found to achieve a 28% increase in the tensile strength compared to unprocessed ones
when printing PCL/PLA parts at the 130 °C bonding-layer temperature [88]. As shown in
Figure 8b, this process effectively eliminates some defects due to unnecessary heat input
by increasing the PCL bonding layer’s nozzle temperature to heat only the top PLA layer
above its glass transition temperature while keeping the 3D printing parameters of other
layers the same. In addition, the SLTAT method can be easily applied to existing multi-
material 3D printers without adding additional heating equipment or post-processing steps
(Figure 8b). For the purpose of improving adhesion of dissimilar thermoplastics without
the need for chemical compatibilization, a bi-extruder head for FDM systems capable of
printing two filaments through a single nozzle was developed [90]. This extruder’s unique
feature is its convenient access to the internal channel, which allows the insertion of a static
inter-mixer, thus enabling the deposition of mechanically interlocked extrusions consisting
of two non-combustible polymers. It has been demonstrated that this innovative FDM
extruder could successfully fabricate multi-material 3D parts with enhanced interfacial
bonding strength.

4.1.2. Direct Ink Writing

Direct ink writing (DIW) is an extrusion-based 3D printing technology in which ink is
transferred through a nozzle in a regulated pattern under ambient conditions (Figure 7b).
After deposition, the ink is immediately cured into a solid object by different post-processes,
such as photopolymerization or thermal curing [91-94]. Similar to FDM, DIW is also a
high-efficiency method to deposit multi-material printed parts because it is of low cost and
can be simply carried out [95-98]. More importantly, DIW exhibits tremendous potential
because it is highly suitable for printing a large variety of different functional materials
through multiple inkjet heads or nozzles to deposit different materials, including metallic
particles [99-101], ceramic particles [102-104], extracellular matrices [105-108], hydrogels,
and elastomers and epoxy thermosets [109-112]. As a result, DIW with multiple nozzles
has become a favored candidate for multi-material 3D printing.

Nevertheless, this approach often involves a sequential printing process for individual
materials, which adds to the build time because of the increased complexity in motion
control as well as ink supplies. Tip alignment of each nozzle, which is essential for guaran-
teeing accurate control of the interface between the extruded lines, may become even more
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difficult with the increasing number of nozzles [113]. In addition, precise material flow
control is required, especially when printing materials with different flow characteristics
such as viscosity, surface tension, shear stress, and shear elastic [113,114].

Several additions and modifications of the basic DIW settings were performed to
address the issues mentioned above. For example, a novel DIW printing method for higher
build speed with multi-material 3D printheads was designed and proven to fabricate up to
eight materials, each flowing through a network of independently bifurcated channels lo-
cated within the printhead [115]. To achieve continuous printing with dissimilar materials,
a single nozzle with multiple material containers was developed. A microfluidic printhead
was designed and fabricated to simultaneously print multiple viscoelastic inks through a
single nozzle, as shown in Figure 9a [112]. In this process, the inks are drawn from two
opposing syringes and then pushed through two square passageways into a microfluidic
interface at the bottom of the nozzle, enabling seamless switching of the two viscoelastic
materials. Similarly, a DIW technology integrating a UV exposure system and pneumatic
control systems into microfluidic printheads was described (Figure 9b) [116]. The combi-
nation of fast curing inks, and the printhead that extrudes and then cures them, allows
rapid switching between multiple low-viscosity silicone inks. A dynamic photomask-
assisted DIW printing and a two-stage curing hybrid ink were reported (Figure 9c¢) [112].
In this method, DIW is conducted using a nanocomposite ink containing photocurable
resin and thermally curable resin. The dynamic photomask is beneficial for the first stage
of light-curing with carefully controlled photocuring time at the pixel level, and the me-
chanical properties and mechanical property gradient of the printed parts can be further
enhanced through the following second-stage thermal curing. This single-nozzle-based
photomask-assisted multi-material DIW technique has low cost-effectiveness, strong inter-
face bonding strength, and relatively high resolution for achieving complex configurations
and mechanically appropriate gradients in functional applications.
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Figure 9. Recent advances in multi-material DIW technique: (a) the microfluidic printhead designed to simultaneously print
multiple viscoelastic inks through a single nozzle (images were adapted from Ref. [117]), (b) the DIW printer integrating a
UV exposure system and pneumatic control systems into microfluidic printheads (images were adapted from Ref. [116])
and (c) the dynamic photomask-assisted DIW printing technique with an interpenetrated polymer network (images were
adapted from Ref. [112]).
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4.1.3. Vat Photopolymerization

Vat photopolymerization is an advanced 3D printing process in which liquid pho-
topolymer in vats are selectively solidified by photo-activated polymerization [114,118]. A
series of related techniques based on the vat photopolymerization, such as stereolithog-
raphy (SLA) and digital light processing (DLP), was developed to process polymeric
materials [119,120].

In SLA, coherent light sources (usually lasers emitting in the UV-range) are used to
induce polymerization and further realize spatially localized cross-linking of the initially
liquid polymeric materials (Figure 7c) [121,122]. Compared to other AM methods, SLA
exhibits many advantages, including a high printing resolution, high-quality surface finish,
and wide material selection. DLP is also a 3D printing technology similar to SLA, where the
photopolymer is selectively cross-linked in a layer-by-layer fashion using light to build a
free-standing object (Figure 7d) [123,124]. The main difference is that an image is projected
onto the photopolymer bath in the DLP process, simultaneously exposing all unmasked
areas in the plane. DLP offers the same advantages as SLA and provides a higher printing
speed because of the no-scan projection lithography technology.

Although the multi-material vat photopolymerization technique is possible by us-
ing multiple vats containing different materials, it is still technically difficult because of
contamination issues and slow transfer speed from one material to another during pro-
cessing [125,126]. Many innovative AM methods were recently developed to circumvent
the technical challenges in multi-material printing based on vat photopolymerization. A
multi-material SLA machine equipped with a new rotating vat carousel system, platform
assembly, and automatic leveling system was developed [127]. The rotating platform effi-
ciently works to replace the current vat on the printing zone with another vat loaded with
a different polymeric material if a material exchange is required, as shown in Figure 10a.
However, in this device, interruptive changeover steps and rinse-cleaning between material
changeovers add significant additional process time. A novel multi-material SLA method
based on aerosol jetting was proposed to achieve direct material supply without utilizing
vats [128]. As shown in Figure 10b, this aerosol system with multiple material containers
and atomizers increases multi-material printing efficiency by converting liquid materials
into small droplets and subsequently curing them locally with a UV laser. Recently, a mi-
crofluidic device was integrated with an SLA-based 3D printing system for multi-material
fabrication (Figure 10c) [129]. This novel platform requires only a few seconds to perform
washing when a material exchange is needed, achieving a speed higher than those of
the existing SLA method. Various attempts were also made to achieve multi-material
3D printing based on DLP technology with a shortened cleaning time, such as a vat-free
droplet-based DLP with an air jet blower [130], a microfluidic material delivery system
(Figure 11) [131], or an active cleaning solution equipped with automated storage and
retrieval systems [132]. Although these methods cut down on cleaning time, they still
do not eliminate the cleaning process, which still slows down the overall printing speed.
Fortunately, a cleaning process-free DLP method for multi-material fabrication based on
dynamic fluidic control was recently developed (Figure 12a) [133]. In this method, an
integrated fluidic cell, in which multiple liquid photopolymers can be quickly transferred
through dynamic fluidic control, can enable switching more than 95% of the material within
a few seconds (Figure 12b). Also, because of the elimination of the need for a separate
cleaning process, this approach is capable of achieving fast multi-material DLP, even when
frequent material changes are needed.
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Figure 10. Recent advances in multi-material SLA technique: (a) the rotating vat carousel system
(images were adapted from Ref. [127]), (b) the dual atomizer aerosol jet system (images were adapted
from Ref. [128]), and (c) the setup of the bioprinter equipped with a UV lamp (385 nm), optical lenses
and objectives, a DMD chip, and a microfluidic device (images were adapted from Ref. [129]).
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Figure 11. The modular DLP printing technique coupled with in situ-microfluidic systems for resin
delivery (images were adapted from Ref. [131]).
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illustration of this system exhibiting the light source, resin vat, and stage and (b) detailing the resin exchange process (i)
printing the first layer with material A, (ii) replacing material A with material B, (iii) positioning for the next layer, (iv)
curing material B upon UV exposure (images were adapted from Ref. [133]).

4.1.4. Material Jetting

Material jetting (M]) is derived from conventional inkjet printing technology, but
unlike mono-layer printing, the building pallets descend sequentially as each successive
layer of liquid photopolymer is printed and polymerized, ultimately producing a 3D
object [134-137]. Photopolymer material droplets are selectively dispensed through micro
nozzles within the print head, which is composed of a large number of linearly arranged
tiny nozzles. They are UV-cured and solidified immediately after the cross-linking reaction
by UV light to build a 3D structure, and then the following layer is repeated until the
model is successfully established [54,138]. In recent years, MJ printing technology using
multiple inks in different colors has become so sophisticated that multi-material MJ printing
has been easily accomplished by using multiple printheads in the same way. Each head
is equipped with hundreds or even thousands of micro nozzles, allowing for rapid 3D
printing with parallel material deposition [139].

One limitation with multi-material MJ is that the inkjet nozzle size is so tiny that there
is a challenge of printing polymeric materials with viscosities higher than 40 cP [140,141].
To approach this problem, a study on the design and optimization of a high-temperature
microheater (more than 600 °C) was carried out, and the results show that this jetting-based
method with optimized high-temperature microheater can successfully apply to the man-
ufacture of high viscosity materials because of the reduced viscous dissipation of energy
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during the printing process [142]. The improved viscosity and good printing behavior
can also be realized with small additions of polystyrene as a rheological modifier to the
composition of inks, which successfully achieves a 70% increase in viscosity at the expense
of 20% of the performance [143]. Another challenge for the multi-material MJ method is
the printing resolution of the M] method limited by current nozzle production techniques
because it is highly dependent on the nozzle density of a jetting head. To improve the print-
ing resolution with a given nozzle density, a complete system integrating multi-objective
topology optimization into multi-material MJ printing for fabricating complex 3D parts
was developed, as shown in Figure 13. In this approach, a topology optimizer dispenses
material for a single voxel (volume element) while optimizing physical deformation and
high-resolution appearance, and multi-material MJ with a 35 um resolution was finally
demonstrated [144].

Drop-on-demand

L 3D printer
Actuator(s) - /’5" ! ® 4 :
*&- 'uf( 0
! e ﬁ“ﬁm
4 - B 3 ﬁ
A, ﬁ%

l@ ' J‘ﬁl \ Printer

: A ! controller
Actuating Visual F i
forces properties Force/

displacement
field

M{ ® "‘3 Objectives (é):%
3 ® ...* 4 h”

® O Multiobjective
I ¥ topology optimizer
i £

Figure 13. Overview of the specification-driven 3D printing process (images were adapted from
Ref. [144]).
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4.1.5. Hybrid AM Systems

The concept of hybrid 3D printing has enjoyed a steady increase in popularity, as it
incorporates multiple 3D printing technologies with various machining tools, such as a
robotic arm pick-and-place (PnP) or spray coating technologies, into an integrated manu-
facturing platform [145-148]. More importantly, each AM technique has its own strengths
and weaknesses, and the range of available materials varies dramatically. For example,
DIW 3D printing requires inks with high viscosity and significant shear thinning behav-
ior [149], while inkjet-based 3D printing, such as material jetting, requires low-viscosity
inks with tightly controlled physical properties, such as stable surface tension [150,151].
Obviously, different materials have their own unique processing requirement needs while
also providing the final 3D objects with multifunctionality. Therefore, hybrid 3D printing,
which can take advantage of each 3D printing technique’s unique processing capability to
print a wider variety of materials, is more suitable for multi-material 3D objects.

In recent years, many notable efforts towards AM hybridization were made by in-
corporating two or more of the printing methods mentioned above into a single platform
to create 3D parts. For instance, hybrid AM techniques combining DIW with MJ [152] or
DLP [153] were successfully applied to the manufacture of electronic products necessitating
the printing of highly viscous conductive materials comprising a high density of metal
particles or carbon-based materials. Similarly, a hybrid system combining material jetting
and material extrusion AM processes was presented [154]. In this method, a pneumatic
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material extrusion print head is used to print the outer frame of each layer, while a piezo-
pneumatic print head is used to quickly print the fill pattern as well as the support structure
14a). Compared to the conventional extrusion-based printing technologies, this
cannot only fabricate the non-Newtonian viscous polymeric materials but also

(Figure
system

enhances the printing speed by between 10 and 20 times.

(a)

(c)

Figure 14. Recent advances in hybrid techniques for multi-material fabrication: (a) the hybrid system
combining a pneumatic material extrusion print head and a piezo-pneumatic print head (images
were adapted from Ref. [154]), (b) the m4 hybrid 3D printer integrating inkjet printing, FDM, DIW,
aerosol jetting, and a PnP robotic arm (images were adapted from Ref. [155]), and (c) the hybrid 3D
printing system with integrated DLP and DIW 3D printing techniques (images were adapted from
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Recently, a more advanced methodology for building a multi-material multi-method
(m*) 3D printer that integrates a wider variety of deposition-based AM technologies (inkjet
printing, FDM, DIW, and aerosol jetting) was proposed (Figure 14b) [155]. It was demon-
strated by this study that easier manufacturing of 3D devices, including embedded electron-
ics, sensors, soft robotics, and customizable medical devices, could be achieved through
this platform. However, the customized m* printer is expensive, and the printing speed
is relatively low due to the major use of extrusion-based printing and inkjet printing. To
overcome this difficulty, an integration of vat-photopolymerization and material-extrusion
methods was implemented. This hybrid platform consists of a top-down DLP printer
for high-speed and high-resolution printing of a material matrix with complex geometry
and a material-extrusion DIW printer for the printing of functional material, including
liquid crystal elastomers (LCEs) and conductive silver inks (Figure 14c) [156]. This work
opens a new avenue for printing multifunctional structures and devices through a low-cost,
high-resolution, and high-speed integrated printing process, showing great potential for
broad applications in areas such as soft robotics, flexible electronics, active metamaterials,
and biomedical devices.

4.2. Applications

In recent years, multi-material polymer-based products have provided substantial
benefits to the global industry and research community, and as a result, novel investigations
and technological advancements focused on increasing levels of multifunctionality in
various applications. The possibility of fabricating customized multiple materials structures
using 3D printing technology enabled specific material selection and enhanced different
properties when compared to single homogeneous structures. The following review of
recent multi-material polymers with AM applications in the engineering, healthcare, and
electronics sectors is presented based on the scientometric analysis.

4.2.1. Engineering

Many high-tech sectors of engineering benefited substantially from the advancements
of additive manufacturing. Among these, the aerospace sector identified the importance of
developing and applying multi-material components, since it contributes to lightweight
designs and tooling testing launched into space. The extend of these materials include
ceramics, metal powders, reinforced composites, and polymer materials [86,157,158]. Also,
customization and material performance are essential for the production of multi-material
parts, since these characteristics represent a significant role in any aircraft or space mission.
Therefore, designing various components such as the heat shield of a space shuttle with
multiple-material components using carbon fiber reinforced polymers (CFRP) increases the
flexibility and reliability of parts made by AM [56]. Moreover, polymer composites such as
CarbonMide, PA, and ULTEM [159] are used in specific locations where relatively low tem-
peratures are identified, such as control panels, fan ducts, conformal cooling channels, and
acoustic liner of engines. Besides, sandwich structures polymer composites [157,158,160]
fabricated with various reinforcements such as carbon fibers (CF) and thermoplastic poly-
mers can benefit unmanned aerial vehicles (UAV) applications. Figure 15a,b show the
clamp of a quadcopter drone fabricated with CFRP layers for improvements in mechanical
strength, lightweight, and stiffness [161,162]. Also, AM parts with CF filled with other
materials such as resin composites like polyetherketoneketone (PEKK) are being used in
aircraft frames and interiors such as air ducts for cabin ventilation in aerospace applica-
tions [163]. Reference [164] presents a proof of concept of the applicability of a cost-efficient,
automated CF additive manufacturing for morphing aerospace structures (as shown in
Figure 15c), which shows great potential in improving flight performance.
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(a)

Figure 15. (a) CFRP/ABS composite bottom clamp (images were reprinted from Ref. [162]); (b) assembled clamp to the

Composite AM drone
P

(b) (c)

joint of the quadcopter (images were reprinted from Ref. [162]); (c) additively manufactured composite drone illustrating

morphing actuation (images were reprinted from Ref. [164]).

On the other hand, the automotive sector took advantage of AM techniques from rapid
prototyping to the production stage using multi-material designs in numerous applications,
including engine blocks with built-in temperature sensors [165], custom seats, reinforced
car bumpers, multicolored tail-lights, and interior/exterior trims using high-performance
materials like ULTEM, the brand name of polyetherimide (PEI), and polyether ether ketone
(PEEK) [166]. Also, the supply chain demand for just spare parts in time [167] gained
speed for best practices in the automotive industry, and multi-material AM technology
proved its benefits by producing customized ergonomic tooling and tough composites
for panels and lighter fixtures [168]. Other important applications using multi-material
additive manufacturing include designing and fabricating heterogeneous multi-material
objects such as flip flops and slippers with desired elastic deformation behavior by varying
each material’s internal microstructure [169].

4.2.2. Healthcare

Recent research developments in multi-material AM technology have brought the
field of medicine successful progress in bio-inspired fabrications [170], in developing
tissue engineering structures for delicate human parts [2,171], and applying biodegradable
polymers for cell encapsulation and drug delivery systems [172].

Among the thermoplastic polymers used for drug carrier and drug dosage are PVA
(polyvinyl alcohol) [173], PVP (polyvinylpyrrolidone), PAA (polyacrylic acid) [174], and
PCL (polycaprolactone) with biodegradable stents to prevent blood clots [175,176]. Also,
with the use of multi-material parts, different regions of a part can be controlled indepen-
dently to vary their biological, electrical, and mechanical properties [56].

Biocompatible materials are critical for the fabrication of scaffold-based tissue engi-
neering. These biocompatible materials are diverse regarding their mechanical, chemical,
and biological properties. Scaffolds for bone regeneration have different mechanical prop-
erty requirements compared to connective tissues. Regarding bone tissue engineering,
implants benefit from the mechanical behavior of different materials such as ceramics and
composites to create multiple gradient cellular structures with different cell-based printing
techniques for AM technology [85,177]. Composite ceramic and polymer materials combine
tunable macro/microporosity and osteoinductive properties of ceramic materials with
biodegradable polymers’ chemical/physical properties [178]. Some common composite
ceramics and polymers scaffolds fabricated using AM for bone tissue engineering are
summarized in Table 6.

Another significant medical application is enabling multi-material 4D printing
parts [179] and tailorable shape memory polymers [32,180]. New developments in smart
structures for actuation with medical deformable soft robot designs and bio-inspired struc-
tures [181-183] accelerated the growth in rehabilitation, surgical, and diagnosis in patients.
Prosthetics robots were designed and fabricated using multi-material AM processes for
individuals with missing limbs or extremities [184,185].



Polymers 2021, 13, 1957

22 0f 33

Also, in the dentistry field, ongoing research enables printing dentures, custom trays,
and aligners directly with additive manufacturing using multiple soft and hard polymers
with ceramics [186-188].

Table 6. Composite ceramics and polymers scaffolds fabricated using AM for tissue engineering [189].

Ceramics Polymer AM Technology Reference
Calcium chloride, glutamic acid, ammonium Sodium alginate Material extrusion [190]
hydrogen phosphate

Titanium, platelets Gelatin PBF [191]
HA, solvent system PLGA Material extrusion [192]
Calcium silicate, magnesium PCL Laser sintering PCL PBF [193]
HA, PLGA microspheres PCL Material extrusion [194]
Graphene PCL Material extrusion [195]
HA PCL Material extrusion [196]
BCP PLGA, PCL, collagen Material extrusion [197]

4.2.3. Electronics

The use of multi-materials is essential for electronics, since it provides for dissimilar
material properties to be integrated into a unique three-dimensional circuit design and
therefore produce direct manufacturing 3D printed functional embedded components with
miniaturized architecture within a reduced footprint. Smart sensor integration [198] and
microelectromechanical systems (MEMS) [199] are among the applications being fabricated
using multi-material additive manufacturing technologies. Pressure sensors have been
created using multi-material extrusion-based systems with different materials, including
photopolymers as the base material and ionic liquids for the intermediate layers [200].
Recently, a deformable soft robot actuator with embedded sensors was produced entirely
with multi-material 3D printing and incorporated into an end effector gripping system
of a robotic arm for assistance into human-occupied procedures [201]. Another study
demonstrated the importance of producing fine circuitry with complex and flexible designs
by using nanocomposites as conductive materials fabricated with extrusion 3D printed
techniques [202]. The FDM process can be used to create embedded sensors with low
variability in electrical resistance properties [198,203] and with the increased piezoelectric
response using continuous nanocomposite filament [204].

5. Discussion and Future Trends
5.1. Qverview

This study applied a mixed review method that incorporates scientometric analysis
and systematic review to explore the current state of research on multi-material additive
manufacturing of polymers. The contribution of this study can be considered as extending
previous review works in this area by complementing subjective studies with a strong
quantitative description and evaluation by science network mapping tools.

As illustrated in Figure 2, the literature on multi-material additive manufacturing
of polymers started to increase dramatically from 2012. This trend not only matches the
milestone of additive manufacturing technology, but also confirms the growing interest
in research in the field of multi-material additive manufacturing. Publications are highly
dispersed between 22 different journals (as shown in Table 1). Although journal publica-
tions are equally dispersed, Additive Manufacturing has the highest number of publications
among the total publications (5.02%). Additive Manufacturing is considered as the world-
leading journal in the area of additive manufacturing, which covers a wide scope, including
technologies, processes, methods, materials, systems, and applications. Except for Additive
Manufacturing and Rapid Prototyping Journal, Table 1 suggests that most of the journals
focus on materials. Therefore, researchers working on technologies or processes of multi-
materials additive manufacturing may encounter issues when deciding where to publish
their works.
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This study considered the relationships between keywords in publications. From
Figure 3, it can be found that researchers devoted the most efforts into the investigations of
the mechanical properties for multi-material additive manufacturing of polymers. How-
ever, thermal, electrical, fire-resistance, and biocompatible properties which are significant
for new functional polymers in the applications of electronics, bio-printing, and 4D printing
attracted much less interests in this field. Another hot spot from the keywords network
is fused deposition modeling, which is considered as the most employed approach for
multi-material additive manufacturing because of its increasing variety of materials and
achievable process. However, the issues associated with the multi-material FDM tech-
nology have not been addressed, especially the weak bond strength between different
materials, which needs more attention from academia and industry.

The scientometric analysis in this study was able to comprehensively evaluate the ex-
isting research results; however, it is limited to quantitively deriving the potential research
gaps and future trends. Therefore, the future directions proposed by the systematic review
are based on the authors’ knowledge, and they are summarized in the following section.

5.2. Future Trend

Many various 3D printing processes for the fabrication of multiple polymeric materials
have been reviewed in this manuscript. It has been indicated that the FDM and DIW
methods, which are both based on the material extrusion technique, can be simply extended
to multi-material 3D printing by increasing the number of printing nozzles. Similarly, M]
printing technology is a common method for multi-material printing through the use
of multiple printheads with inks of disparate materials. Poly]Jet (Stratasys Ltd., Eden
Prairie, MN, USA) is perhaps the most commonly employed commercial multi-material
M] process. It should also be mentioned that the vat photopolymerization process, which
typically includes SLA and DLP, is generally not well-suited for multi-material 3D printing
because the use of multiple materials in vat photopolymerization, which would result
in cross-contamination between different material systems, is challenging. Nevertheless,
the technology’s advantages of a high print resolution, high surface finish quality, and
wide range of material options still continue to attract much academic attention, which
inspired many innovative processes adapted to achieve multi-material printing. Despite
the remarkable advances in multi-material 3D printing in the past few years, the potential
has not been fully explored yet.

5.2.1. Microscale/Nanoscale Multi-Material 3D Printing

Micro/nano multi-material 3D printing methods have drawn a great deal of concern,
as they have implications for many applications such as MEMS/NEMS and nanofabrication.
Although most commercial multi-material 3D printers can fabricate macro-scale parts, there
are many practical applications where 3D printed parts at different scales are in demand.
As mentioned earlier, the hybrid 3D printing platform, which can balance resolution and
printing efficiency at the micro-nanometer scale, seems to be a promising printing technique
for 3D printing of parts from the micro to nanoscale of different materials [205,206].

5.2.2. Printing Efficiency

Printing efficiency is another potential area of research in the field of multi-material
AM. A trade-off between printing efficiency (e.g., scanning speed) and part quality (e.g.,
print resolution) is consistently required. Higher energy power or faster scanning speeds
can be employed to improve printing efficiency, but this approach may sacrifice printing
accuracy. One solution is to optimize printing parameters through numerical simula-
tion [207], in-situ monitoring [208], or artificial intelligence [209,210] to circumvent this
difficulty. Moreover, complex, time-consuming post-processes add to the overall printing
time. It is also difficult to scale up the production or print platform, as there are issues with
post-processing, like heat treatment processes and removal of support material. Therefore,
effective post-processing methods need to be continuously developed and improved.
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5.2.3. Interfacial Bonding Strength

One of the challenges in multi-material 3D printing is to engineer the interfaces
between the parts of multiple materials to realize the appropriate degree of interconnection.
Although various multi-material techniques have demonstrated great progress and vast
potential for future development, the weak bond strength between adjacent different
printed layers of different materials is still a difficult problem because of the formation
of defects caused by differences in the physical properties of materials and chemical
properties, which would finally affect overall mechanical performance of the printed parts.
Also, multi-material 3D printing technology can cause anisotropy in the printed part,
and the temperature gradient of the material due to layer-by-layer fabrication can also
reduce the mechanical properties of each layer. The approaches to improve the mechanical
strength of the multi-material 3D parts can be divided into two major groups: processing
parameter optimization [211,212] and extra external energy input [213,214]. In addition to
technical breakthroughs, fundamental scientific understanding on the inter-layer cohesion
mechanisms between dissimilar printed materials is needed to push the boundary of
multi-material additive manufacturing.

5.2.4. 4D Multi-Material Printing

Notably, 4D multi-material printing is a novel and fascinating method for producing
parts that can adopt new functionalities or shapes after fabrication. Nevertheless, some
similar difficulties including low printing efficiency and evolution, a limited range of
materials, and insufficient mechanical performance still exist, because 4D multi-material
printing was principally developed based on typical 3D printing methods such as DLP,
DIW, and FDM. New scientific progress may contribute to the activation or movement of
intelligent structures according to a predefined program. Similarly, gradient functional
materials can not only control the microstructural properties of 4D printed structures by
rationally tuning the density and orientation of the printed material layer-by-layer to create
more complex geometric transformations but also enhance the interface bonding strength
of different smart compositions [215]. In conclusion, the advancement of multi-material 4D
printing is a determinant factor in driving the development of the smart materials domain.

6. Conclusions

Multi-material AM of polymeric materials has started to transform certain key aspects
of the manufacturing industry for the fabrication of 3D parts and has attracted increas-
ing attention from researchers and practitioners. A scientometric study was proposed to
explore the status and global trends of various multi-material 3D printing technologies
for processing polymers and their applications. While a number of literature reviews
related to the field have been extensively conducted, the scientometric study was presented
as a whole for the first time, with 2512 journal papers from the Scopus database investi-
gated through the “scientific mapping” approach. The number of publications, literature
coupling, keyword co-occurrence, authorship, and countries/regions activities were ana-
lyzed, and in this way, the principal research frames, articles, and relevant research topics
were consequently identified. From the scientometric analysis, a heavy bias was found
towards studying materials in this field but lacking focusing on developing technologies.
Researchers have devoted the most efforts into investigating the mechanical properties
on multi-material additive manufacturing. However, thermal, electrical, fire-resistance,
and biocompatible properties which are significant for new functional polymers in the
applications of electronics, bio-printing, and 4D printing attracted much less interest in
this field. Thus, this paper provides an in-depth systematic review of the latest advances
in multi-material AM of polymers in terms of technology and applications, respectively.
Certainly, various multi-material AM techniques, including FDM, DIW, SLA, DLP, and
M], provide an outstanding tool for the rapid fabrication of polymer parts with geometric
complexity and material diversity. Also, it is driving the development of multi-functional
3D parts, probably leading to revolutionary solutions in a variety of fields, including
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biomedical engineering, medical devices, and electronics. Although there are many signif-
icant achievements of multi-material AM technology, some outstanding challenges still
remain, including the printing efficiency, interfacial bonding strength between different
materials, cross-contamination, scalability, and applications that are mentioned above.
Multidisciplinary research and development will be essential to conquer these challenges,
and advances in multi-material AM and its inventive applications in novel fields will
expedite scientific discoveries and technological innovations in many domains.

Some limitations exist in the proposed methodology. First, the publications were
retrieved from a single database because of the requirement for a consistent data format
from VOSViewer. It can be improved by integrating various databases from Scopus, Google
Scholar, Web of Science to obtain more comprehensive data. In addition, the scientometric
analysis in this study is unable to offer or visualize the future trend directly, while it is
summarized by the authors” knowledge, which may lead to it not being comprehensive.
In future work, the publications can be divided into different groups, and results of
scientometric analysis in each group will be submitted to the corresponding expert, where
experts in different directions can further put forward the research gaps and findings to
increase the comprehensiveness of suggestions.
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