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Abstract: We propose a chemical language processing model to predict polymers’ glass transition
temperature (Tg) through a polymer language (SMILES, Simplified Molecular Input Line Entry
System) embedding and recurrent neural network. This model only receives the SMILES strings
of a polymer’s repeat units as inputs and considers the SMILES strings as sequential data at the
character level. Using this method, there is no need to calculate any additional molecular descriptors
or fingerprints of polymers, and thereby, being very computationally efficient. More importantly, it
avoids the difficulties to generate molecular descriptors for repeat units containing polymerization
point ‘*’. Results show that the trained model demonstrates reasonable prediction performance on
unseen polymer’s Tg. Besides, this model is further applied for high-throughput screening on an
unlabeled polymer database to identify high-temperature polymers that are desired for applications
in extreme environments. Our work demonstrates that the SMILES strings of polymer repeat units
can be used as an effective feature representation to develop a chemical language processing model
for predictions of polymer Tg. The framework of this model is general and can be used to construct
structure–property relationships for other polymer properties.

Keywords: polymer informatics; machine learning; glass transition temperature; high-throughput
screening; recurrent neural network

1. Introduction

Glass transition temperature (Tg) of polymers is an important physical property, which
has been studied extensively in polymer science and engineering [1–6]. Tg characterizes
a second-order phase transition over which polymers can change between a rubbery
state and a glassy state with Young’s modulus ranging from MPa to GPa [7]. Thus, Tg
values determine the ease of processing during manufacturing and the application ranges
in their deployment. Theoretical studies have provided many chemical and physical
insights into Tg of polymers, from thermodynamics to kinetics theories [4,8–10]. It is well
known that Tg value is dependent on the chain mobility or free volume of a polymer [9].
Specifically, it depends on the molecular weight, cross-links, side groups, and chain ends
of a polymer. Though theoretical studies have offered critical understandings of polymer’s
glass transition, it is still deficient for accurate predictions of Tg of general polymers and
not effective for inverse polymer design.

While experiments and computer simulations, e.g., molecular dynamics [11–14], are
feasible approaches to quantify the Tg of polymers, the data sizes, and sample types
that can be handled by these methods are usually limited due to the significant cost in
experimental or computational measurements. Nonetheless, these measurements have
provided a diversified polymer database that can be leveraged by data-driven studies.

In general, data-driven studies try to construct a mapping relation between the poly-
mer’s chemical structures to the corresponding Tg or other properties [15–18]. The develop-
ment of quantitative structure-property relationships (QSPR) of polymers have significantly
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benefited quantitative predictions of polymer’s Tg [19–21]. This type of studies has also
been called polymer informatics [22–25]. Recently, thanks to the advances in computing
power and the availability of big data, machine learning (ML), especially deep learning
(DL), has attracted enormous attentions in various scientific fields and indeed brought
in numerous breakthroughs in material science [17,26–31] and drug discovery [32–35].
However, it is not the case when it comes to polymer science and engineering, such as
polymer’s Tg prediction and other properties.

The main reason is that the database of polymers with high quality is very limited. In
polymer literature, the database in most of previous studies were under a few hundreds
or even less [36]. Therefore, DL models were not widely applied in these studies. It
is because DL models usually have a large amount of parameters and thus are easy
to over fit if trained on a limited amount of data [37]. Nevertheless, there are a few
previous studies employing DL for polymer’s Tg prediction. For example, the deep neural
network (DNN) model [37,38] and convolutional neural network (CNN) model [39] have
been recently employed to correlate polymer’s chemical structure (monomers) and its Tg,
although the data size in these studies are rather limited. Very recently, Nazarova et.al.
studied the dielectric property of polymers using the recurrent neural network (RNN) on
1200 polymers, though the model was only tested on 60 samples [40]. Note that DL models
have widely been used for another type of tasks without labeled polymer properties,
i.e., molecular generation using deep generative models [29,31,41–44]. This kind of tasks
is to use deep generative models to learn the conditional probabilities of the SMILES
strings [45–47] of organic molecules. The task in this study is a supervised learning of the
syntax of SMILES strings for polymer’s Tg prediction.

To develop DL models with good performances for polymer Tg prediction, a large
amount of polymer data is necessary since DL models usually have a large number of pa-
rameters and thus are easy to overfit. Recently, a polymer database, called PolyInfo [48,49],
has attracted much attention as it contains about 7000 homopolymers with experimentally
measured Tg values. However, since the database uses the SMILES strings of the poly-
mer repeat units for polymer representation, the inclusion of polymerization point ‘[*]’ in
the SMILES strings brings several difficulties for common cheminformatics packages to
generate molecular descriptors or fingerprints, which have been extensively used in poly-
mer informatics [25,30,50]. For cheminformatics packages like AlvaDesc [51], the SMILES
strings with ‘[*]’ cannot be processed. While some other packages such as RDKit [52] can
process this type of SMILES strings for descriptor generation, not all of them are available
as the symbol ‘[*]’ is an unknown element for them to process, though RDKit can still
generate molecular fingerprints for the SMILES with ‘[*]’. This is probably the reason
why the monomers of polymers have been adopted for molecular descriptors/fingerprints
generation as they are very easily processed, although it is criticized that monomers are
not enough for polymer’s morphological representation [25,37,53,54].

Here, in order to avoid this deficiency and use the polymer representation directly,
we propose a chemical language processing model which is purely linguistic-based on
the SMILES strings. The idea is to consider the polymer’s repeat unit (SMILES) as se-
quential data at the character level. It is then processed by a polymer embedding layer
and the RNN for DL model development [55–57]. RNNs have enjoyed great success in,
e.g., music processing, and language translation [58,59]. In the field of cheminformatics,
they have also been widely applied as deep generative models for molecular genera-
tions [29,31,41–43]. A majority of RNN generative methods have been integrated in the
generative adversarial network (GAN) and variational autoencoder (VAE) for molecule
generation. For example, After Yu, Lantao, et al. [60] have used the RNN variant—LSTM
in GAN to generate sequences, Guimaraes, et al. [61] utilized the same strategy to generate
molecules with desirable properties. And then based on which Lengeling et al. [62] present
their Objective-Reinforced Generative Adversarial Network for Inverse-design Chemistry
(ORGANIC)—which is able to generate novel molecules such as with melting points above
800 K. If integrated in VAE, another RNN variant—GRU has also been utilized for molecule
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generation. Gø’mez-Bombarelli, et al. [63] have implemented a encoder RNN (GRU) to
convert molecules into a latent space vector, and then convert it back to molecule smiles
with a decoder RNN (GRU). Operations in latent space allow the decoder RNN to generate
novel molecules with optimized properties. To improve the validity rate (valid decoded
molecules to the total decoded molecules), Chaochao Yan, et al. [64] have built a VAE model
with the bi-directional GRU and uni-directional GRU being the encoder and decoder. Their
valid expression rate for the generated molecules is more than 90%. These RNN processing
SMILES for molecule generations have been developed extensively, but few studies have
been focused on RNN processing SMILES to predict molecule properties [33,41]. To our
best knowledge, this work is the first to apply purely linguistic-based (SMILES) DL models
for polymer’s Tg prediction. The schematic of this model for Tg prediction is given in
Figure 1, which will be introduced in detail in the later sections. The results show that this
method is a good alternative to the conventional methods based on molecular descriptors
or fingerprints.
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Figure 1. Schematic of the computational framework for chemical language processing model, in
which a polymer’s repeat unit is first represented by its canonical SMILES string, which is further
separated into individual chars as inputs of the RNN model. In the RNN model, light orange
color denotes the input chars of SMILES string of polymer’s repeat units; green color denotes the
intermediate layers, including embedding layer, LSTM layer and dense layer; the light blue color
denotes the final output layer of the predicted Tg values of polymers.

The remaining of the paper is organized as follows. The computational methodology
of the chemical language processing model is presented in Section 2. Specifically, the
database and feature representation of polymers, the char embedding, RNN, and DL
models are described in detail. The ultimate architecture of the model and its performance
tests are given in Section 3. Several aspects of the chemical language processing model are
further discussed in Section 4. Finally, the paper is concluded by remarks in Section 5.

2. Computational Methods
2.1. Database and Feature Representation

There are 7372 polymers in total in the current database. The respective Tg count
distribution is presented in Figure 2a. As mentioned previously, the SMILES strings of
polymer repeat units are employed for polymer representation. Note, however, that the
general SMILES string may not be unique for molecular representation. For example,
‘C1=CC=CC=C1’ and ‘c1ccccc1’ are all valid SMILES strings of benzene. To eliminate the
inconsistency in the general SMILES representation, all the SMILES strings of polymer’s
repeat units in the database have been processed to the corresponding canonical SMILES
string using the RDKit cheminformatics package [52].
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a b

Figure 2. Database visualization. (a): the distribution of Tg values in the database, PolyInfo; (b): the
distribution of the length of chars in the SMILES strings of the polymer’s repeat units.

With this large database of polymers and SMILES string representation for polymer
repeat units, the prediction of polymer’s Tg is considered as a chemical language processing
problem using the RNN. A significant advantage of this method is that no molecular
descriptors or fingerprints are generated for ML model development to get around the
restrictions on SMILES in descriptor generation.

In the natural language processing field, word-level or char level models can be
applied as sentences are composed of words [65,66]. However, for polymer repeat units,
only ‘word’ structure exists, i.e., SMILES strings. Thus, in this work, the char level RNN
model is formulated to learn the chemical language of polymers in the SMILES notation.
As shown in Figure 1, the pre-processing step is to split the SMILES string into a list of
individual chars, which are then tokenized into integers and fed into the embedding layer
of the DL model.

2.2. Char Embedding

Generally, in ML model development, the inputs are usually represented in digit
numbers so that mathematical models can be constructed [67]. It is the same case for
natural language processing. Two methods are usually used for word or char encoding
in previous studies, namely one-hot encoding and categorical encoding. In this work, the
latter is adopted for char encoding using the position it appears in the char lexicon. The
whole list of chars contained in the polymer database is alphabetically as follows:

char lexicon = {‘#’, ‘%’, ‘(’, ‘)’, ‘*’, ‘+’, ‘−’, ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, ‘=’,
‘B’, ‘C’, ‘F’, ‘G’, ‘H’, ‘I’, ‘K’, ‘L’, ‘N’, ‘O’, ‘P’, ‘S’, ‘T’, ‘Z’, ‘[’, ‘]’, ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘i’,
‘l’, ‘n’, ‘o’, ‘r’, ‘s’ }

In the current database, the total number of characters in the list is 45. Consequently,
any character in the list can be represented by an integer number in the range of 0 to 44
following the python index rule [68]. Therefore, any SMILES string can be represented by a
vector composed of the index number of its individual chars. For example, the numeric rep-
resentation of polyethylene ‘[*]CC[*]’ is [32, 4, 33, 19, 19, 32, 4, 33]. In our polymer database,
since the length of the SMILES strings are not the same or uniformly distributed as shown
in Figure 2b, to accelerate the ML model development using batch training, a constant
length has to be prescribed for the inputs. Another reason is to shorten the sequence length
for the next LSTM layer to reduce training difficulties, as longer sequences may result in
gradient vanishing or exploding problems during back-propagation. As a result, polymers
with longer SMILES strings than the critical length will be truncated; while polymers with
short strings will be padded with zeros in the trailing locations. In this database, over 82.1%
polymers have shorter SMILES strings than 100; while about 91.2% polymers have shorter
SMILES strings than 120. Thus, this number is considered as a hyperparameter in the ML
model development to meet the trade-off between accuracy and computational efficiency.

Despite simple and clear, this encoding algorithm may not well represent similarities
between words or chars. Therefore, this feature representation alone is not enough for
meaningful feature extraction and for ML model development with good performance. In
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previous work [69], the authors tested DNN model performance just on integer-encoded
vector by ASCII code for SMILES, the accuracy was very poor (accuracy score was about
0.53). It has been shown using word embedding can improve the model performances in
natural language processing [70,71]. The objective of word/char embedding is to transform
the one-hot or categorical encoding of words/chars into a new shorter yet dense vector
with useful language meanings, which is learned by the DL model during model training.
Hence, an embedding layer is adopted as the first layer of the chemical language processing
model following the input layer, as shown in Figure 1. The purpose is that by applying
an embedding layer, meaningful chemical information can be learned and passed to the
recurrent neural network so that good performance can be achieved.

2.3. Recurrent Neural Network

The key idea of RNN is to use hidden variables to pass information from early states
to later states for sequential data that has temporal dependencies [72]. RNNs have been
the driving force in natural language processing, such as language translation and speech
recognition. The simplest RNN unit is the so-called vanilla RNN, which suffers from
gradient exploding or gradient vanishing problems in practice [72]. Therefore, more
advanced units have been developed to build robust models, such as the Long Short-Term
Memory (LSTM) unit [73] and the Gated Recurrent Unit (GRU) [74], both of which have
been the golden standards of RNNs. The essential improvement is adding a cell state and
gates to control the information flow in/out of the unit, in addition to the hidden state
variables. In this work, the LSTM unit is employed in the RNN model. An illustrative
figure for the LSTM unit is shown in Figure 3.

Figure 3. The LSTM unit used in the recurrent neural network.

There are three gates in the LSTM unit, namely, the forget gate, input/update gate,
and the output gate. Let the input be denoted by x<t> at the time step t, the hidden state
and cell state variables be expressed by h<t> and c<t>, respectively. The computational
procedure in the LSTM unit is then:

f<t> = σ(W f hh<t−1> + W f xx<t> + b f )

i<t> = σ(Wihh<t−1> + Wixx<t> + bi)

o<t> = σ(Wohh<t−1> + Woxx<t> + bo)

c̃<t> = tanh(Wchh<t−1> + Wcxx<t> + bc)

c<t> = f<t> × c<t−1> + i<t> ∗ c̃<t>

h<t> = o<t> × tanh(c<t>)

(1)

where f<t>, i<t>, and o<t> are respectively the activated vectors for forget, update, and
output gate. c̃<t> and c<t> are the input activated and the updated cell state, respectively.
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W f h, W f x, Wih, Wix,Woh, Wox, Wch, Wcx, and b f , bi, bo, bc are trainable weights and biases
in the LSTM unit. The symbol ‘*’ denotes element-wise multiplication. σ is the nonlinear
activation function such as sigmoid function, and tanh is the hyperbolic activation function.

Note that in addition to the unidirectional LSTM layer, the bidirectional LSTM layer
has also been widely applied so that information can be passed from both early chars and
later chars. Thus, the unidirectional and bidirectional LSTM networks are also considered
for hyperparameter tuning.

2.4. DL Model Development

In this work, the DL model of chemical language processing is developed under the
Tensorflow platform [75] mainly using the Keras package [76] to realize the aforementioned
layers. To train and validate the chemical language processing model, the total database
is split into a training dataset with 90% of the data and a test dataset with the remaining
data because of a large database at hand. In the training process, the training dataset
is further split into training and validation datasets by an 8:2 ratio to monitor model
performance during training. The DL model is first trained on the training dataset and
then evaluated on the unseen test dataset. Mathematically, the DL model seeks to find a
prediction function f : Rd 7→ R, which maps the inputs of chars in d dimensions to the
Tg value. The training process is equivalent to finding the optimal weights and biases by
solving an optimization problem:

arg min
w,b

L(w, b) (2)

where w and b are the weights and biases in the DL model, which keep updating by
gradient descent scheme [77]. L(w, b) is the loss function, which is defined as:

L(w, b) =
1
m

m

∑
i=1

(yi − ŷi)
2 (3)

and the evaluation metric of the DL model on the test dataset is

MAE =
1
n

n

∑
i=1
|yi − ŷi| (4)

where m and n are the number of polymer samples in the training and test dataset, respec-
tively. yi and ŷi denote the real and predicted values of the Tg of the i-th sample, respectively.

To develop an ML model with good performance, the grid search approach is usually
adopted to tune the hyperparameters that lead to a relatively better model. The total
hyperparameters considered in this work include:

1. The maximum input length of the SMILES string (100 or 120);
2. The length of the embedded vector (the output of the embedding layer);
3. The type of LSTM layer (unidirectional or bidirectional);
4. The number of LSTM layers;
5. The number of hidden neurons for each LSTM units;
6. The type of intermediate layers (dense layer or time distributed layer), as shown in

Figure 4.

In the grid search of the optimal hyperparameters, the Adam optimization scheme [78]
is adopted to minimize the loss function for weights and bias updates. In each case, the
model is first trained on the training dataset, and then the prediction performance is eval-
uated on the test dataset using the mean absolute error (MAE) metric, which provides
guidance on the selection of the optimal hyperparameters. The early stopping and check-
points are employed to automatically cease training once comparable model performances
are observed on the training and validation datasets.
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Figure 4. Two different types of DL model architectures. (a): Dense layer as an intermediate layer after the last LSTM unit
of the previous LSTM layer; (b): Time Distributed Dense layer as an intermediate layer (flattened representation).

3. Results
3.1. The architecture of the Chemical Language Processing Model

A series of chemical language processing models with various hyperparameters are
developed according to the setup described in Section 2.4. Readers are referred to the
Supporting Information for more details. It is observed that the DL model is relatively
stable under different hyperparameters, with the MAE metric on the test dataset being
in the range of 30∼34 ◦C. It is also observed that using the Time Distributed Dense layer
(Figure 4b) may result in better model performance, which passes information out at
each time step. While there is no obvious performance difference in DL models using
unidirectional or bidirectional LSTM layers. The architecture of the optimal chemical
language processing model is the one shown in Figure 4b.

Specifically, the char embedding layer receives an encoded char vector with a length
of 120 and outputs an embedded vector of a length of 15 at each time step. In the next, two
bidirectional LSTM layers are implemented with 60 hidden neurons for each layer. A Time
Distributed Dense layer with 30 neurons follows the RNN (LSTM) layers subsequently.
The final layer is a dense layer with only one neuron which denotes the predicted glass
transition temperature Tg. All previous layers use the default activation functions while
the final dense layer uses the linear activation function. Unless otherwise stated explicitly,
the other parameters are following the default settings in the Keras package.

The learning curve in the training process is shown in Figure 5a. As can be seen from
this curve that comparable performances have been achieved on the training and validation
dataset. It should be noted that since a patience length of 10 epochs during training is
applied, the best model is saved due to early stopping rather than the model trained at the
final epoch.
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Figure 5. DL model development and evaluation. (a): the learning curves of the loss and the MAE with training epochs on
the training and validation dataset; (b): the performance evaluation of the model on the unseen test dataset (color denotes
the density of points).
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3.2. Predictions of the Chemical Language Processing Model on Unseen Data

To further validate the trained chemical language processing model, we apply it to
predict Tg values of the test dataset. Note that the test dataset is unseen during the training
of the DL model. Therefore, the predictability of the DL model can be directly evaluated
on this additional dataset, which has 724 polymer samples in total.

After the DL model is well-trained, new predictions can be made easily on the test
dataset. The correlation coefficient R2 score and the MAE can then be calculated based
on the predicted and true values of Tg, which is plotted in Figure 5b. One can see that
the majority of the scatter points locates in the unity red line, indicating the predicted
Tg values are close to their true values. Quantitatively, the developed DL model gives a
correlation score R2 = 0.84 and MAE = 30.69 ◦C. This performance is reasonably well and
comparable with many other ML models for Tg prediction in terms of MAE values or R2

score [24,37–39,79], which confirms the effectiveness of the chemical language processing
model. Note that in most previous works, the polymer samples were not large and only
certain types of polymers were studied [36], the MAE and R2 score may be higher. While
in this work, the data size is very large and the types of polymers in the database are
very general.

3.3. Application of the Chemical Language Processing Model for High-Throughput Screening

To demonstrate the capability of our chemical language processing model, another
unlabeled polymer dataset of 5686 samples without reported Tg values are considered for
a high-throughput screening task. This dataset collected from earlier work [36] is also from
the PolyInfo database [48]. Thus, these two databases are considered similar. It can also
be seen from the char length distribution shown in Figure 6a, as compared to the labeled
database given in Figure 2b.

To make Tg predictions, the polymer’s repeat units in the unlabeled database are first
converted into the integer-encoded vector form and then feed into the developed chemical
language processing model. The glass transition temperature Tg for those unlabeled
polymers can be quickly predicted. Figure 6b presents the distribution of the predicted
glass transition temperatures Tg.

For high-throughput screening tasks, the candidates with extreme properties are
usually desired and of great value in material discovery [80,81]. As an example, twelve
candidates in this unlabeled database with Tg larger than 400 ◦C are quickly identified, as
shown in Figure 6c, although their Tg values have not been reported before. Particularly, we
find the chemical structures of these identified polymers share similar features as other high-
temperature polymers, such as polyaryletherketone and polyimide. For instance, saturated
4,5 member rings, bridged rings, benzene rings, oxolane groups, amine groups, and
halogens had a higher occurrence rate for polymers with high Tg [81–83]. For preliminary
validation of ML predictions, we have performed all-atom molecular dynamics (MD)
simulations on these polymers, with simulation protocols and detailed results given in
the Supporting Information. Overall, the Tg values predicted from molecular dynamics
simulations are in good agreement with ML predictions within the range of uncertainty.
It indicates that the proposed model can be employed for high-throughput screening
tasks if trained well. Besides, the model’s prediction ability is evaluated on anther dataset
of 32 conjugated polymers with experimentally reported Tg values [84]. A reasonable
prediction is demonstrated and can be found in the Supporting Informations. However,
note that these examples are mainly adopted for demonstration purposes of the chemical
language processing model. If the unlabeled database is significantly different from the
training database with reported Tg values, the DL model would do an extrapolation rather
than interpolation, which would lead to inaccurate predicted Tg.
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Figure 6. Data visualization for high-throughput screening of high-temperature polymers. (a): the distribution of the length
of chars in the SMILES strings of polymer’s repeat units; (b): the distribution of predicted Tg values in the database; (c): the
12 candidates with Tg larger than 400 ◦C in the screening of the unlabeled database. ‘*’ indicates the polymerization point in
the repeat unit of polymer. Values in the parentheses by gray color are respective Tg obtained by MD simulations.

4. Discussion

Here, we formulate the forward prediction of polymer’s Tg as a chemical language
processing problem, leveraging a large polymer database PolyInfo. The utilization of
SMILES strings for polymer’s repeat unit as feature representation is made to develop DL
models. To encode the SMILES strings for DL model development, a lexicon composed of
individual characters following alphabetic order is applied. Since feature representation
is of great importance for ML models [30], alternative forms of polymer lexicon can be
developed to build superior chemical language processing models. For example, an
element lexicon can be developed based on the atomic element, e.g., using ‘Si’ as a lexicon
element for silicon instead of ‘S’ and ‘i’.

Additionally, one potential way to improve model performance is to incorporate more
chemical domain knowledge into the model. For instance, adding in molecular weight,
topological information of polymers, and processing conditions as additional inputs so
that the model can reasonably predict Tg with better accuracy. This can be realized by, for
example, taking advantage of the hidden vector of the RNN. The additional information
can be used to initialize the hidden vector. Alternatively, the information can be added by
concatenating to the outputs of RNNs. Moreover, focusing on certain types of polymers,
e.g., polyolefin, or polyesters, may also potentially improve the model performances. For
example, Pugar et. al. considered polyurethane elastomers and applied ML to extract
important physicochemical properties governing Tg [85]. Leveraging these descriptors,
such as electrostatic, hydrogen bonding, and microstructures of the hard segments, in the
model can improve ML model performances. Furthermore, the sampling method of the
training dataset can also impact the model performances, especially for studies with a
small database [86].

There are several advantages of the feature representation adopted in this work. The
use of polymer repeat units is more reasonable than that of monomers as the former is
a building block of the corresponding polymers, though the use of polymer monomers
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has been widely adopted in polymer informatics [39,87,88]. This is probably due to the
requirements of cheminformatics packages on the SMILES strings that can be processed.
Polymer’s monomers can be easily processed to generate molecular descriptors or finger-
prints to be used as inputs for ML model development, while polymer’s repeat units with
polymerization point ‘[*]’ may not be feasibly processed in many packages. Besides, there
is no additional pre-processing needed before ML model development due to the pure
SMILES string used as inputs, in contrast to the use of molecular descriptors or fingerprints.
Thus, the formulation of polymer’s Tg prediction as a chemical language processing might
be more beneficial and efficient. This representation will also benefit the development of
generative ML models for the inverse molecular design of polymers.

While the polymers in this study are homopolymers, the framework is general and
can be extended to study polymer blends of different typologies. The first step is to
prepare the inputs which include the SMILES string of composing polymers and the ratio
of them. A model is feasible to build from the perspective of ML model development,
but the performance remains to be seen depending on the specific system of interest. For
example, when polystyrene under cyclic topological constraint is compared with its linear
compartment, a reduced hydrodynamic volume has been reported, leading to higher Tg.
Although our RNN model is purely trained on linear polymers, its prediction ability on
cyclic architecture is also well demonstrated, as shown in Figure 7. The prediction trend
matches well with experiments observation that The cyclic architecture has higher Tg
compared with the linear analogue [89]. A positive correlation of RNN Tg prediction to the
molecular weight is well recognized too, especially on the linear architecture which is used
for our model training.

C

C

CC

C

C
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C C

C

*

*

*

*

*

*

*

*

*

*
*

*

*

*
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*
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102.20            187.06              179.33              178.63              79.25                 61.51                58.34

Repeat Unit                       Cyclic architecture                                                linear architecture

Polystyrene’ Tg prediction (Experimental Tg of polystyrene: −40 ~ 110 oC)

183.13              180.07              180.92              66.88                 80.09                95.72 

175.30             172.55              170.24             102.17              100.71              100.75

*

*

Figure 7. RNN model predictions on various polystyrene architectures. The cyclic architecture and
linear architecture of polystyrene being evaluated by the obtained RNN model are accompanied
by the Tg prediction (in Celsius). Experimental Tg is taken from [89], with Tg values ranging from
−40∼100 °C and 65∼110 °C form linear and cyclic polystyrene polymers, respectively, depending on
the molecular weight.

5. Conclusions

In summary, we proposed a chemical language processing model for predictions
of polymer’s Tg. The SMILES notation of polymer’s repeat unit is adopted as feature
representation, which is purely linguistic-based. There are no additional computations
needed for pre-processing, in contrast to other conventional polymer informatics models.
The key feature of our model is the usage of char embedding and RNN to process the
char-based inputs of polymers. Reasonable predictions on polymer’s Tg can be achieved
using this model. Besides, a high-throughput screening task has been performed on an
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unlabeled polymer database to identify promising candidates with high Tg values that
can be used in extreme environments. It suggests that the chemical language processing
model may be used as an effective approach to developing predictive ML models for
other properties of polymers, such as melting temperature, electronic bandgap, dielectric
constant, refractive index, and many others.
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56. Mikolov, T.; Kombrink, S.; Burget, L.; Černockỳ, J.; Khudanpur, S. Extensions of recurrent neural network language model.

In Proceedings of the 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP), Prague, Czech
Republic, 22–27 May 2011; pp. 5528–5531.

57. Jo, J.; Kwak, B.; Choi, H.S.; Yoon, S. The message passing neural networks for chemical property prediction on SMILES. Methods
2020, 179, 65–72. [CrossRef]

58. Boulanger-Lewandowski, N.; Bengio, Y.; Vincent, P. Modeling temporal dependencies in high-dimensional sequences: Application
to polyphonic music generation and transcription. arXiv 2012, arXiv:1206.6392.

59. Auli, M.; Galley, M.; Quirk, C.; Zweig, G. Joint Language and Translation Modeling with Recurrent Neural Networks. In
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing; Association for Computational
Linguistics, Seattle, WA, USA, 18–21 October 2013; pp. 1044–1054.

60. Yu, L.; Zhang, W.; Wang, J.; Yu, Y. Seqgan: Sequence generative adversarial nets with policy gradient. In Proceedings of the
AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31.

61. Guimaraes, G.L.; Sanchez-Lengeling, B.; Outeiral, C.; Farias, P.L.C.; Aspuru-Guzik, A. Objective-reinforced generative adversarial
networks (ORGAN) for sequence generation models. arXiv 2017, arXiv:1705.10843.

62. Sanchez-Lengeling, B.; Outeiral, C.; Guimaraes, G.L.; Aspuru-Guzik, A. Optimizing distributions over molecular space. An
objective-reinforced generative adversarial network for inverse-design chemistry (ORGANIC). ChemRxiv 2017, 2017. [CrossRef]

http://dx.doi.org/10.1016/j.patter.2021.100225
http://dx.doi.org/10.1021/acs.jcim.9b00358
http://dx.doi.org/10.1016/j.polymer.2020.122786
http://dx.doi.org/10.1016/j.polymer.2020.122341
http://dx.doi.org/10.1021/acs.jcim.0c01366
http://www.ncbi.nlm.nih.gov/pubmed/33871989
http://dx.doi.org/10.1021/acscentsci.7b00512
http://www.ncbi.nlm.nih.gov/pubmed/29392184
http://dx.doi.org/10.1021/acs.jcim.0c00599
http://www.ncbi.nlm.nih.gov/pubmed/32686938
http://dx.doi.org/10.1021/acs.jcim.0c00343
http://dx.doi.org/10.1021/acs.jcim.0c00726
http://dx.doi.org/10.1021/ci00057a005
http://dx.doi.org/10.1021/ci00062a008
http://dx.doi.org/10.1021/ci00067a005
http://dx.doi.org/10.1039/D0CP03243C
http://www.ncbi.nlm.nih.gov/pubmed/32830206
https://www.rdkit.org/
http://dx.doi.org/10.1002/polb.24117
http://dx.doi.org/10.1016/j.ymeth.2020.05.009
http://dx.doi.org/10.26434/chemrxiv.5309668.v2


Polymers 2021, 13, 1898 14 of 14

63. Gómez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.; Hernández-Lobato, J.M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-
Iparraguirre, J.; Hirzel, T.D.; Adams, R.P.; Aspuru-Guzik, A. Automatic chemical design using a data-driven continuous
representation of molecules. ACS Cent. Sci. 2018, 4, 268–276. [CrossRef]

64. Yan, C.; Wang, S.; Yang, J.; Xu, T.; Huang, J. Re-balancing variational autoencoder loss for molecule sequence generation. In
Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, Virtual
Event USA, 21–24 September 2020; pp. 1–7.

65. Kim, Y.; Jernite, Y.; Sontag, D.; Rush, A.M. Character-aware neural language models. arXiv 2015, arXiv:1508.06615.
66. Pham, T.H.; Le-Hong, P. End-to-end recurrent neural network models for vietnamese named entity recognition: Word-level vs.

character-level. In International Conference of the Pacific Association for Computational Linguistics; Springer: Berlin/Heidelberg,
Germany, 2017; pp. 219–232.

67. Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press:
Cambridge, UK, 2014.

68. Van Rossum, G.; Drake Jr, F.L. Python Tutorial; Centrum voor Wiskunde en Informatica: Amsterdam, The Netherlands, 1995;
Volume 620.

69. Sun, W.; Zheng, Y.; Yang, K.; Zhang, Q.; Shah, A.A.; Wu, Z.; Sun, Y.; Feng, L.; Chen, D.; Xiao, Z.; et al. Machine learning–assisted
molecular design and efficiency prediction for high-performance organic photovoltaic materials. Sci. Adv. 2019, 5, eaay4275.
[CrossRef] [PubMed]

70. Zamani, H.; Croft, W.B. Relevance-based word embedding. In Proceedings of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval, Tokyo, Japan, 7–11 August 2017; pp. 505–514.
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