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Abstract: This short review summarizes the literature on composite anion exchange membranes
(AEM) containing an organo-silica network formed by sol–gel chemistry. The article covers AEM
for diffusion dialysis (DD), for electrochemical energy technologies including fuel cells and redox
flow batteries, and for electrodialysis. By applying a vast variety of organically modified silica
compounds (ORMOSIL), many composite AEM reported in the last 15 years are based on poly
(vinylalcohol) (PVA) or poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) used as polymer matrix. The
most stringent requirements are high permselectivity and water flux for DD membranes, while high
ionic conductivity is essential for electrochemical applications. Furthermore, the alkaline stability of
AEM for fuel cell applications remains a challenging problem that is not yet solved. Possible future
topics of investigation on composite AEM containing an organo-silica network are also discussed.

Keywords: ionomers; ormosils; diffusion dialysis; fuel cells; redox flow batteries; electrodialysis

1. Introduction

Anion exchange membranes (AEM) are important materials for applications in energy
and in the environment [1–4]. In electrochemical energy technologies, they are used as
ion-conducting separators between the electrode compartments physically impeding the
mixture of electrolyte solutions in redox flow batteries [5–10] or gases (hydrogen and
oxygen) in anion exchange membrane fuel cells (AEMFC) and water electrolyzers [11–14].
In this case, the major requirements are a high ionic conductivity in order to reduce as
much as possible the Ohmic drop during current flow; and a low permeability to reactants,
i.e., electrochemically active ions in a redox flow battery or a low hydrogen and oxygen
permeability in AEMFC. The environmental applications of AEM are especially for water
purification [15,16] or acid recovery by diffusion dialysis (DD) [17,18]. In this case, the
ion permselectivity is a major factor of merit [19,20]. In any case, AEM must present a
good chemical stability against acids and bases; reducing or oxidizing conditions; a good
mechanical stability, especially high strength and sufficient ductility; and a good thermal
stability to be applicable above room temperature, typically up to 100 ◦C [21–23].

The field of advanced membrane separators can profit from two approaches: (i) the
synthesis of new ionomers with new polymer backbones or new ion exchange groups; and
(ii) the modification of existing ionomers, especially by adding a second phase to prepare
composite ion exchange membranes.

We have contributed a significant amount of work, along with others, on the synthesis
and characterization of composite ion exchange membranes either in protonic or anionic
forms. Most of the published literature concern materials with inorganic second particles,
especially silica [24–28]; titania [29–32] or more complex inorganic solids, such as MX-
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enes [33]; or those presenting an intrinsic ionic conductivity, such as the proton-conducting
Zr(HPO4)2 [34,35] or anion-conducting lamellar double hydroxides (LDH) [36–39].

In most of the cases, preformed oxide particles were added to the anion exchange
polymer during casting. This procedure can, however, lead to an imperfect distribution of
the nanoparticles due to sedimentation. This phenomenon generally impacts mechanical
properties with a lower strength and ductility due to the inhomogeneities and lower
performances, especially reduced ionic conductivity. An interesting approach to avoid
this drawback is the in situ formation of the second phase by sol–gel chemistry inside the
casting solution.

The sol–gel process that generates in situ inorganic or hybrid networks within a
polymeric membrane is a flexible and versatile strategy for the synthesis of conductive
nanocomposite materials with very homogeneous and precise morphology [40–42]. In
principle, the sol–gel process begins with the infiltration of a precursor solution into the
polymer matrix. The hydrolysis of the precursor occurs due to the nucleophilic water
present in the membrane that reacts with the inorganic atoms. If the reaction is acid-
catalyzed a hydrated acidic polymer, such as Nafion, acts as a catalyst by itself. The original
morphology of unfilled polymer membranes is maintained even after the sol–gel process.
The differences between anionic and cationic membranes are considerable and synthetic
methods for preparing nanocomposites via sol–gel chemistry cannot be fully transposed
between the two ionic conductors but must be targeted to the chosen material.

Many silica precursors are available. An important role in the formation of a hybrid
silica network is played by organically modified silicas (ORMOSIL), where the organic
functional groups are covalently attached to the silica structure which consents to a specific
control of the chemical and physical properties of the materials [42,43]. The number of
alkoxide groups on the silicon atom determines the role in the reaction and the network
structure: tetra-functional silicon alkoxides act as a network former, tri-functionals behave
as cross-linker, di-functionals are bridging molecules, and mono-functionals can be used as
terminating agents.

This short review is intended to present a comprehensive view on anion-conducting
hybrid polymers obtained by sol–gel routes from silica precursors covering the last 15 years.
It is subdivided into three parts corresponding to the major applications.

2. Membranes for Diffusion Dialysis (DD) and Related Fields

AEM are a key component that determines the performance of DD processes, es-
pecially for acid recovery. Pioneers in this field were Tongwen Xu and his co-workers
that, starting from 2003, prepared various hybrid materials in order to test the feasibility
of membranes containing a silica network as anion exchangers. Initially they prepared
positively charged co-polymers and started from polyethylene oxide (PEO) functionalized
with alkoxysilanes followed by quaternization [44]. The authors also explored aliphatic co-
polymers formed by glycidylmethacrylate (GMA) and 3-methacryloxy propyltrimethoxysi-
lane (MPS) [45].

Glycidyl (or 2,3-epoxypropyl) groups are often introduced in polymeric backbones
due to their high reactivity which allows easy polymer functionalization using various
reagents such as amine, water, alcohol, alkyl halide, etc. [46]. The co-polymers formed by a
polymerizable unit containing a glycidyl moiety and an ORMOSIL in the backbone were
modified by ring opening reactions and used as the precursor for sol–gel processes with
further MPS [45].

The same strategy was applied to the co-polymer formed by GMA and MPS and re-
acted by sol–gel with N-triethoxysilylpropyl-N,N,N-trimethylammonium iodide (APTEOS-
I) and monophenyltriethoxysilane (EPh) (Figure 1). The homogeneity was strongly in-
fluenced by both the quantity of silicon and the molecular weight of the copolymer:
membranes with higher molecular weight showed the worst morphological properties [47].
A related approach used MPS, 3-glycidoxypropyltrimethoxysilane (GPTMOS), and tri-
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ethoxysilylpropylamine quaternized with CH3I to introduce the anion-exchange moi-
ety [48].
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Figure 1. Schematic synthesis of AEM showing the role of glycidyl and alkoxysilane groups.
Reprinted from Reference [47] with permission from Elsevier.

Some authors started from a commercial aromatic polymer, mostly poly (2, 6-dimethyl-
1,4-phenylene oxide) (PPO) and post-functionalized the backbone with an ORMOSIL, often
by methylbromination or methylchlorination routes, to achieve a hybrid precursor for the
following sol–gel processes.

For example, Xu et al. functionalized brominated PPO (BrPPO) with 3-aminopropyl-
trimethoxysilane (APTMOS) followed by sol–gel reaction with further APTMOS [49]. The
material became an anionic conductor during the sol–gel procedure in acidic media due to the
protonation of the amine moieties. Throughout this explorative work, the authors showed
that a good homogeneity can be achieved controlling the initial ratio between APTMOS and
the degree of bromination of PPO. Hollow-fibers of BrPPO, obtained by electrospinning,
were treated with tetraethoxysilane (TEOS) and then quaternized [50]. The membranes
presented a homogenous morphology and good thermal and dimensional stabilities.

Analogous membranes that were based on PPO and were reacted with EPh and TEOS
were applied in DD [51]. The operational temperature was in the range from 15 ◦C to
65 ◦C and the separation performances increased at higher temperatures. This material
was also electrospun and hot-pressed. The resulting membranes showed excellent DD
characteristics attributed to the particular membrane morphology [52].

PPO quaternized with dimethylaminoethanol (DMAE) was used for the sol–gel re-
action with the ionic liquid 3-methyl-1-(3-(triethoxysilyl) propyl)-1H-imidazolium chlo-
ride [53]. The interest in this work is to maintain the ion exchange capacity by adding
a silica network containing ionic groups. The obtained membranes were thin, porous,
mechanically stable, and possessed a high ion exchange capacity above 2.1 meq/g and
an excellent performance in DD. The porosity increases with the amount of ionic liquid
(Figure 2).

In an extension of this work, amphoteric membranes were synthetized by adding the
same ionic liquid and 4-(hydroxymethyl) benzoic acid to PPO quaternized with DMAE [54].
The zwitterionic pores not only improved the proton diffusion coefficients but also the
diffusion of ferrous ions (feed solution HCl and FeCl2) showing that the size of the pores
was of paramount importance to achieve high selectivity.

Another approach used poly (vinyl alcohol) (PVA) as the backbone. Major advantages
of PVA are its high hydrophilicity that improves water diffusion, its non-toxicity, and
its low price. Furthermore, the hydroxyl groups can easily react by condensation with
organo-silica precursors. Many efforts were spent to improve the mechanical properties
of PVA.

Xu and his co-workers prepared hybrid materials based on poly (vinyl alcohol) (PVA)
and APTEOS-I [55]. In order to improve the mechanical properties, the PVA matrix was
cross-linked with different agents ranging from small alkoxysilanes (TEOS, GPTMOS, and
EPh) to the co-polymer formed by GMA and MPS, which is described in Reference [47].
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Membranes obtained with the co-polymer cross-linker showed the best properties in
DD tests.
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amount of ionic liquid, while (d–f) has a higher ionic liquid loading. Reprinted from Reference [53]
with permission from Elsevier.

Hybrid membranes were prepared from TMA-quaternized PPO, PVA, and double
crosslinking agents including EPh and TEOS [56]. The OH groups in PVA were regarded
as assistant functional groups for the sorption and DD process. Similar membranes were
later used for acid recovery [57]. Hybrid quaternized PVA (Q-PVA) based membranes
were also used for the pervaporation dehydration of ethanol [58]. Q-PVA was obtained by
reaction of PVA with glycidyltrimethylammonium chloride (GTMA-Cl) followed by cross-
link formation with glutaraldehyde (GA). The Q-PVA was modified by sol–gel reaction
with APTEOS. It was reported that the introduction of ammonium groups enhanced the
PVA water permselectivity and permeation flux due to the increased hydrophilicity and
reduced PVA crystallinity. Furthermore, the addition of APTEOS introduced nanofractal
blisters on the surface due to the self-assembly of the ammonium groups of quaternized
PVA chains and the amino groups of APTEOS. The modified membranes showed an
improved pervaporation performance with respect to pristine Q-PVA that depended on
the APTEOS amount.

Co-polymers formed of vinylbenzyl chloride (VBC) and MPS were quaternized and
reacted with PVA by the sol–gel process as reported in Figure 3 [59]. They showed excellent
properties in DD compared to commercial membranes. The swelling decreased as the
amount of co-polymer increased and therefore as the IEC increased, a trend opposite to the
normal behavior of AEM resulted because non-functionalized PVA was the main source of
membrane swelling.
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from Reference [59] with permission from Elsevier.

Poly (VBC-co-MPS) were then prepared with high and low molecular weight and
treated with PVA. Here the authors assumed cross-linking of PVA by Si-O-Si bonds and
studied the effect of the molecular weight on the membrane properties and DD process [60].

An imidazolium functionalized ionic liquid was directly linked to PVA and TEOS [61].
Membranes showed good DD performance with high acid recovery and separation factor.
Imidazolium was also functionalized with APTEOS by sol–gel and used to quaternize
BrPPO. The hybrid materials were tested for salt removal [62]. The authors observed that
during the process the power consumption decreased while the current efficiency increased
with the functionalized silica content.

Another approach was realized preparing 2-(dimethylaminomethyl)pyridine quat-
ernized with a long chain formed by hydroxyl alkylbromide and used as the precursor
for sol–gel and cross-linking reactions with PVA and TEOS [63]. A lumped parameter
model was developed and used to predict the membrane performance in acid recovery
and compared with experimental results.

The double quaternization of 1,4-diazabicyclo [2.2.2] octane (DABCO) was explored
in Reference [64] using dibromohexane in the first step and cross-linking with PVA and GPT-
MOS in the second step. In Reference [65], DABCO was replaced by 1,5-diaminonaphthalene
quaternized with GTMA-Cl and reacted with PVA and TEOS that were used as cross-linking
agents. The membrane selectivity depended on the ionic radius and mobility and it was
very high for Al3+ but lower for Fe2+ and Zn2+.

Poly (DMAEM-co-MPS) was prepared by free radical polymerization of 2-
(dimethylaminoethyl) methacrylate (DMAEM) and MPS [66]. The sol–gel precursor was
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used in the reaction with PVA followed by reaction with GTMA-Cl and quaternization
with CH3I. A series of membranes was obtained varying the percentage of the co-polymer.
In this paper the authors compared the acid recovery and separation performance values
of different available membranes for DD and the explanation for the scheme of the process
is reported in Figure 4.
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from Elsevier.

Vinod Shahi and his co-workers prepared membranes based on PVA and TEOS by
sol–gel and added anion exchange resin particles (Indoin) to the matrix; they studied
various membrane properties such as permselectivity and ion transport numbers [67]. In
Reference [68] they replaced ion exchange resin particles with quaternized 4-vinylpyridine
grafted and were crosslinked to PVA and TEOS. The resulting membranes were analyzed
concerning different electrochemical properties, such as ionic transport numbers, electroos-
motic coefficient, and ionic conductivity. The conductivity in NaCl was up to 0.4 mS/cm.
An anion exchange hybrid material was obtained by a green method using APTEOS and
GTMA-Cl via electrophilic ring opening reaction and by introducing the silica precursor
in PVA [11]. The presence of the inorganic network in PVA was responsible for good
electrochemical properties including a hydroxide conductivity up to 7.6 mS/cm and a low
electro-osmotic drag of solvent across the membrane. The same membranes were reported
in Reference [69] but the conductivity was much higher.

Free radical polymerization between DMAEM and vinyltrimethoxysilane (VTMS)
was followed by sol–gel reaction with PVA, crosslinking, and quaternization [70]. These
membranes were analyzed from the point of view of different electrochemical properties
including electro-osmotic drag, electrodialysis, and ionic conductivity in NaCl solution (up
to 7.2 mS/cm).

Composite membranes for pervaporation separation were developed by Premakshi et al.
starting from PVA and a quaternized ammonium silica precursor obtained by APTMOS
and GTMA-Cl [71]. The hybrid was obtained by sol–gel reaction and crosslinking with
formaldehyde. The increase in the silica content in the membranes increased the permeation
flux and the selectivity. The hydrophilicity of the materials favored the selective removal of
water from alcohols.

Membranes for acid recovery via DD based on PVA were also obtained by grafting
allyltrimethylammonium chloride on the polymer via free-radical polymerization [72]. The
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grafted polymer was cross-linked with TEOS by sol–gel process. The membrane properties
depended on the grafting ratio and an optimal performance (feed solution HCl and FeCl2)
was obtained with a ratio of 19%, with the best compromise between the permeation flux
and the selectivity.

Poly(ethyleneimine) (PEI) was modified by GPTMOS through epoxide ring-opening
reaction to synthesized silica modified poly(ethyleneimine) (SMPEI). Composite AEM were
obtained by the sol–gel process in aqueous media using PVA [73]. The electro-osmotic
study revealed that mass drag across these membranes and their equivalent pore radius
increased with SMPEI content in the membrane matrix.

The synthesis of functionalized stationary phases with quaternary ammonium groups
on the silica surface was realized by Buszewski et al. [74]. Silica gel was modified with
APTEOS and reacted with 4-butanedioldiglycidyl ether and methylamine obtaining quat-
ernized ammonium groups. The resulting materials were efficiently used for the ion-
chromatographic separation of inorganic anions.

3. Membranes for Electrochemical Energy

Following Reference [44], the hybrid PEO-based matrix was used as the precursor
for the subsequent sol–gel reaction with EPh and/or TEOS [75]. The hybrid ionomers in-
tended for use in AEMFC showed homogeneous morphology, good mechanical properties,
and relatively good stability in alkali media, although the conductivity was limited and
membranes showed water instability.

Similar to the functionalization of PEO, quaternized PPO reacted by sol–gel with
EPh and/or TEOS with partially hydrolysed bromomethylated groups and with a sup-
plementary heat treatment at 120–140 ◦C [76]. According to the authors, a possible effect
of the thermal treatment was the formation of cross-linked membranes after loss of the
ammonium groups (via Friedel–Crafts reaction) that increased the hydrolytic stability. The
conductivity reached 8.5 mS/cm with relatively high alkaline resistance.

In 2008, Xu and his co-workers prepared co-polymers based on VBC and MPS followed
by quatenization of VBC with TMA and sol–gel reaction with EPh and/or TEOS [77]. The
membranes showed good mechanical properties but the conductivity remained relatively
low: 0.2 mS/cm. Other similar membranes obtained with slight modification of the reaction
conditions reported in Reference [76] showed apparently better properties including ionic
conductivity 8–11 mS/cm at RT and 35 mS/cm at 90 ◦C in fully humidified conditions [78].
The co-polymer poly (VBC-co-MPS) was blended with BrPPO and then quaternized with
TMA [79]. The highest conductivity (12 mS/cm) was observed for a BrPPO content of 75%.

A comparison between hybrid membranes containing a dispersed or linked silica
network was realized by Zheng et al. [80]. Cardo poly (aryl ether sulfone ketone) s
functionalized with tertiary amine groups were used as a starting product to prepare
composite membranes by in situ sol–gel of TEOS (Figure 5, left). In the second procedure,
the same polymer used before quaternization reacted with an alkyl siloxane to obtain a
quaternized hybrid precursor. The hybrid polymer then underwent sol–gel reaction via
a partial hydrolysis of alkylsiloxane portion in the basic medium. The second procedure
led to a hybrid with a Si-O-Si network (Figure 5, right). The membrane with a linked
silica network showed an improvement, especially in terms of mechanical properties and
alkaline stability, while the composite membranes presented inhomogeneity and poor
mechanical resistance.

The synthesis of 4,4′-Oxydiphenylguanidine (ODG) was performed via Vilsmeyer
salt and quaternized with (chloromethyl)trimethoxysilane to obtain 4,4′-oxydiphenyl
guanidinium-bridged-silsesquioxane (ODGBS) [81]. Chloromethylated polysulfone (PSU)
reacted with ODG forming cross-linked and quaternized guanidine moieties and different
amounts of ODGBS were added to this system. Ion exchange capacity, water uptake, and
conductivity of the modified membrane increased with ODGBS content. The alkaline
stability was also related to the ODGBS amount and attributed to better water retention
and the delocalization of the positive charge.
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ORMOSIL-based membranes can improve another important green technology: Direct
Methanol Fuel Cells (DMFC). Low methanol crossover is critical for high energy efficiency
and longevity. Membranes based on polynorbornene (PNB) possessing pendant epoxy
groups and functionalized by sol–gel with silica-containing ammonium moieties (APTMOS)
in the presence of GA as cross-linker were used as separators in DMFC (Figure 6) [82].
The methanol permeability was in the order of 10−7 cm2 s−1, which is much lower than
that of Nafion. The alkaline stability in 6M NaOH of the hybrid materials improved with
the amount of APTMOS, although the initial conductivity decreased with the presence
of the second phase. The best compromise was found for 10% APTMOS. In a modified
synthesis, starting from PNB containing hydroxyl groups, the authors investigated the
influence of the quantity of quaternary ammonium groups on the properties [83]. The
ionic conductivity ascribed to the hydrophilic silica part that was embedded in the PNB
hydrophobic matrix reached 10 mS/cm at 80 ◦C for the sample containing 25% TMSP.
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Several AEM were prepared starting from BrPPO. In Reference [84], it was quaternized
with 1,2-dimethylimidazole and partially hydrolyzed to react by sol–gel with GPTMOS
and TEOS were used in AEMFC. A study of the properties was conducted as a function
of the inorganic content and the IEC. The best results were obtained with membranes
containing 24% of the inorganic phase and a relatively high value of IEC (2.84 meq/g
and conductivity 34 mS/cm at 80 ◦C). The alkaline stability tested in 2M KOH at 60 ◦C
showed that, for this sample, an improved resistance was obtained (loss of conductivity of
pristine and hybrid membranes was 51% and 32% for 10 days, respectively). The dense
silica network was believed to be responsible for the higher stability due to its screening
effect of the positive charge around the ammonium moiety. A similar beneficial effect was
found in composite polyamine (PA) membranes containing a modified silica network [85].
The modified silica, obtained by sol–gel reaction between silica and APTEOS, was cast
with PA and the resulting membrane quaternized with CH3I.

BrPPO was functionalized by N-methyldiethanolamine and two cross-linker molecules
(N,N,N’,N’-tetramethyl-1,6-hexane-diamine and 2-(3,4-epoxycyclohexyl) ethyltrimethoxysi-
lane) were incorporated into the polymeric matrix via sol–gel process. The simultaneous
uses of two cross-linking agents were intended to improve the dimensional stability and
alkali resistance of the membrane and to maintain a good hydroxide conductivity, which
reached 21 mS/cm at 80 ◦C. The alkaline stability displayed a moderate improvement [86].
Another approach based on BrPPO was exploited by He et al. [87]. The brominated precur-
sor was partially quaternized with triethylamine and reacted with GPTMOS. The epoxy
rings reacted with the residual BrPPO while the alkoxy groups of GPTMOS underwent
sol–gel reactions forming a cross-linked hybrid material. The conductivity increased with
the amount of GPTMOS in the membranes reaching a value of 46 mS/cm at 80 ◦C. The
alkaline stability in 1M KOH at 80 ◦C showed an improved resistance with respect to the
pristine sample although a loss of conductivity around 45% was observed.

Guanidinium-functionalized graphene oxide (GGO) nanoparticles were embedded
in un-charged PSU functionalized with diethanolamine (DEA) via the chloromethylation
route [88]. The absence of positive charges on PSU was intended to avoid the backbone
degradation, especially by the chain scission of ether and sulfone links. The alkaline
stability tests in 1M NaOH at 60 ◦C showed a retention in conductivity around 75% for the
sample containing 25% of GGO after 120 h.

Silica particles synthesized by sol–gel were polymerized and quaternized with imida-
zolium moieties tethered by hydrophilic groups (NH2, OH, and CO2H) and incorporated
in a chitosan CS matrix [89]. The hydrophilicity of the functionalized silica was responsible
for good homogeneity and compatibility between the two phases. Despite the relatively
low value of IEC (up to 0.45 meq/g) the AEM formed by a non-conductive backbone and
conductive particles reached a decent conductivity (up to 3.1 mS/cm at RT). The alkaline
stability (3M KOH, 80 ◦C) was very good; the conductivity loss was less than 10% after
300 h.

Recently Sgreccia et al. prepared membranes based on TMA-quaternized PSU con-
taining a semi-interpenetrating silica network formed by 3-(trimethoxysilyl) propyl-N,N,N-
trimethylammonium chloride (TMSP) or by TMSP and 3-(2-aminoethylamino)propyldimethoxy-
methylsilane (AEAPS) [90]. The composite with only TMSP showed better properties in
term of ductility and conductivity due to a better homogeneity, although the composite
with TMSP and AEAPS presented a more stable network in alkaline conditions (Figure 7).
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Figure 7. Synthesis routes for hybrid membranes by (a) in-situ and (b) ex-situ sol–gel techniques [90].

By adding different amounts of TEOS to PVA quaternized with GTMA-Cl, a series
of hybrid membranes with different silica contents were synthesized and used in alka-
line DMFC [91]. The membrane with 5 wt% of silica showed the best performances in
term of permeability (8.45 × 10−7 cm2 s−1 at 30 ◦C) and conductivity (6.8 mS/cm). A
pyridine-functionalized PVA matrix was also prepared and the hydroxy groups of PVA
reacted with ethoxy groups of 3-(2-aminoethylamino)propyltriethoxysilane (AAPTEOS) to
form a network of Si-O-C and Si-O-Si bonds, which improved the dimensional stability
and mechanical properties of the hybrid membranes [92]. The highest conductivity was
14 mS/cm at 30 ◦C and 96 mS/cm at 80 ◦C and the alkaline stability was remarkable; after
360 h in 6M NaOH at 80 ◦C, the remaining conductivity was nearly 90% of the initial one.

For vanadium redox flow batteries, Zhao et al. [93] prepared hybrid AEM starting
from commercial Fumasep FAP (fluorinated AEM, Fumatech GmbH, Bietigheim-Bissingen,
Germany), which was reacted by in situ sol–gel reaction with TEOS. The effects of using
silica nanoparticles were the reductions in the crossover of vanadium ions and the rates
of self-discharge and capacity loss. Hybrid membranes were also prepared by reaction of
(CS) and GPTMOS followed by sol–gel process [94]. These membranes did not contain
permanent ammonium groups but became AEM by reaction of amine groups with an
acid solution. The IEC remained relatively low (<0.7 meq/g) and the conductivity in 1 M
VOSO4 and 1M H2SO4 was in the order of 10 mS/cm.

4. Electrodialysis (ED)

Organic–inorganic AEM were synthetized to evaluate the performance of anion ex-
changers in the NaCl removal from an aqueous solution [95]. PVA, TMA-quaternized
CS, and an anion-exchange silica precursor formed by an epoxide ring opening reac-
tion between glycidoxypropyltrimethylammonium chloride and AAPTMOS were reacted
and crosslinked by sol–gel in acidic conditions. The energy consumption was measured
(4.1 kWh/kg for 94% removal of NaCl from 0.2 M NaCl).

Water-soluble siloxane resins obtained by sol–gel reaction of N-dimethoxymethylsilylpropyl-
N,N,N-trimethylammonium chloride and 3-acrylamido- propyltrimethoxysilane were
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blended with monomers containing ammonium and acrylamide moieties and further
submitted to photoinduced radical polymerization [96]. The obtained blend was also used
for the impregnation of porous polyethylene to synthetize pore-filling hybrid AEM. The
properties of the samples were influenced by the resin composition. The membranes were
used for reverse ED showing an improved performance with respect to commercial AEM.

Graphene nano-ribbons bearing amide groups (fGNR) were incorporated into a co-
polymer formed by free radical copolymerization between VBC quaternized with N-
methylmorpholine and triethoxyvinylsilane. The co-polymer underwent sol–gel reaction
with PVA and was cross-linked with formaldehyde [97]. The hydroxide ion conductivity
reached 12 mS/cm at RT for the higher amount of fGNR (0.1 wt%). The hybrid membranes
were used for salt removal by ED and for acid recovery by DD. In the ED process, the
composite with the higher amount of fGNR showed the best current efficiency (89%) and
the best lower energy consumption (1.36 kWh/kg).

Xu and his co-workers prepared zwitterionic membranes by the introduction of
carboxylic acid groups in the membrane matrix via a sol–gel process with PPO quaternized
with DEA (Figure 8). They investigated the influence of the amino isophthalic acid (AIPA)
content on the membrane ED properties, such as ion flux and permselectivity for the
Li+/Mg2+ system, as a model for the separation of lithium from seawater. The membrane
with 20 wt% AIPA showed high flux with good permselectivity. Furthermore, excellent flux
and permselectivity were also found for the other ions, including Na+/Mg2+, K+/Mg2+,
and H+/Fe2+ [98].
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from Elsevier.

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

Another zwitterionic polymer was prepared by reaction of AEAPS and 3-
cyanopropyltrichlorosilane with PSU. This polymer showed pH sensitive properties, such
as tuneable ionic conductivity and interface potential deposition on acidic and basic sub-
strates [99].

5. Salient Features

Figure 9 represents the share of works on the three main applications of sol–gel
AEM; the largest part is devoted to diffusion dialysis, followed by electrochemical energy
technologies and electrodialysis. The most popular precursor polymers and Ormosils are
also schematized in the figure.
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There are little literature on sol–gel modified AEM with other elements than Si [100,101].
According to many authors, the SiOH groups in sol–gel silica interact strongly with water
molecules and favor water retention. Excessive condensation into Si-O-Si network can,
however, limit the formation of ionic channels and much effort is directed to the correct the
balance of the two phases. Titania and zirconia precursors, due to the higher reactivity of
the metal, generally lead to a more condensed network with less OH groups. Furthermore,
the starting materials for transition metal sol–gel methods are not easily available, more
expensive, and sometimes difficult to manage.

Table 1 summarizes the precursors and the important properties of sol–gel composite
AEM. One can observe that the ionic conductivity at room temperature remains below
10 mS/cm in most cases, although few papers indicate surprisingly high values. Similarly,
the proton dialysis coefficients and separation factors are mostly consistent with few
exceptions. In electrochemical energy technologies, the composite AEM are mainly used in
DMFC, because the second phase can further reduce the methanol permeability.

By far, the largest amount of papers is devoted to the development of AEM for DD
and related processes, especially with membranes including a PVA matrix. Glycidyl
groups in the polymer backbone are often used to link the organo-silica network. AEM
presents several advantages for acid recovery, especially high product quality given the
high selectivity for acids [102]. An important requisite for the matrix is its hydrophilicity
that helps the water diffusion; for this reason, PEO and PVA are very popular. However,
a very hydrophilic matrix may lead to high swelling and poor mechanical properties,
which can be counterbalanced by the incorporation of cross-linking agents or an organo-
silica network.
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Table 1. Polymer precursors, Si sources, and important properties of sol–gel modified AEM.

Polymer Matrix Si Precursor Properties Reference

PEO N-[3-(trimethoxysilyl)propyl]
ethylene diamine

Pore size decreases with the increase in
dip-coating sols (0.2–0.6, 0.023–0.12,

0.008–0.033 and 0.002–0.006 µm)
[44]

Poly(GMA-co-MPS) MPS Pore diameters: 0.006–0.002 µm [45]

Poly(GMA-co-MPS) MPS
APTEOS-I, EPh

APTEOS-I content controls the
membrane electrical properties

Membrane potential: 11.6–15.8 mV
[47]

Poly(MPS-co-GPTMOS)
GPTMOS

TEOS;
Triethoxysilylpropylammonium

Membrane potential: 14.8–18.8 mV
Transport number > 0.92 [48]

BrPPO APTMOS Mole ratio Si/PPO in the polymer
precursor 0.34, 0.42, 0.62, and 0.91 [49]

PPO-TMA hollow-fibers TEOS
Maximum water uptake: 1.4 g water/g

dry hollow fiber (10% of TEOS)
Dimensional change: 13–16%

[50]

PPO-TMA EPh
TEOS

Easy diffusion of H+ and Fe2+ (45 ◦C)
at high content of silica: molar ratio

(TEOS + EPh)/Br-PPO = 32%
[51]

PPO SiO2
Proton dialysis coefficient: 0.0703 m/h

Separation factor (HCl/FeCl2): 68.0 [52]

PPO-DMAE
IL: 3-methyl-1-(3-

(triethoxysilyl)propyl)-1H-
imidazolium chloride

Proton dialysis coefficient:
0.020–0.0273 m/h Separation factor

(HCl/FeCl2): 38.8–86.5
[53]

PPO-DMAE
IL: 3-methyl-1-(3-

(triethoxysilyl)propyl)-1H-
imidazol-3-ium chloride

Zwitterionic pores
Proton dialysis coefficient:

0.021–0.0386 m/h Separation factor
(HCl/FeCl2): 33.9–62.0

[54]

PVA APTEOS-I
TEOS, GPTMOS, EPh; GMA-MPS Separation factor (HCl/FeCl2): 16–21 [55]

PPO-TMA
PVA

TEOS
EPh

Proton dialysis coefficient:
0.021–0.049 m/h Separation factor

(HCl/FeCl2): 44
[56]

PPO-TMA
PVA

TEOS
EPh

Proton dialysis coefficient:
0.008–0.011 m/h (15 ◦C), 0.014–0.018

m/h (55 ◦C)
Separation factor (HCl/FeCl2): 48–68

(15 ◦C), 40–51 (55 ◦C)

[57]

Poly(PVA-co-GTMA-Cl) APTEOS
Separation factor (85% ethanol

in water): 52–63 (50 ◦C)
Nanofractal blisters on the surface

[58]

Poly(VBC-co-MPS)
PVA MPS Separation factor (HCl/FeCl2): 25–30

(20 ◦C), 12.1–35.7 (60 ◦C) [59]

Poly(VBC-co-MPS) (high and low
molecular weight)

PVA
MPS

Proton dialysis coefficient (CH3COOH):
0.009 m/h; Proton Dialysis coefficient

(HCl): 0.01–0.029 m/h)
Separation factor (HCl/FeCl2): 28–39

[60]

PVA TEOS
1-methylimidazole-AESP

Proton dialysis coefficient
0.0315–0.0483 m/h Separation factor

(HCl/FeCl2): 28.6–52.5
[61]
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Table 1. Cont.

Polymer Matrix Si Precursor Properties Reference

PPO-triethylamine 1-vinylimidazole-APTEOS
Power consumption:
0.98–1.17 kWh/Kg

Current efficiency: 74.02–89.73%
[62]

PVA-2-
(dimethylaminomethyl)pyridine TEOS

Proton dialysis coefficient:
0.009–0.022 m/h

Fe2+ dialysis coefficient:
0.00017–0.00055 m/h

Separation factor (HCl/FeCl2): 42–54

[63]

PVA-DABCO GPTMOS

Proton dialysis coefficient:
0.03–0.045 m/h

Fe2+ dialysis coefficient:
0.0009–0.0015 m/h

Separation factor (HCl/FeCl2):
20.9–32.3

[64]

PVA-1,5-diaminonaphthalene-
GTMA-Cl TEOS

Proton dialysis coefficient: 0.0225 m/h
(HCl-NaCl); 0.025 m/h (HCl-ZnCl2);
0.0275 m/h (HCl-FeCl2); 0.026 m/h

(HCl-AlCl3)

[65]

Poly(DMAEM-co-MPS)
PVA MPS

Proton dialysis coefficient:
0.016–0.029 m/h Separation factor

(HCl/FeCl2): 23.3–87.7
[66]

PVA
Anion exchange resin particles

(Indoin)
TEOS

Counter-ion transport numbers:
0.910–0.916 (Cl−); 0.785–0.838 (Br−);

0.712–0.786 (F−) Permselectivity:
0.775–0.790 (Cl−); 0.462–0.594 (Br−);

0.387–0.545 (F−)

[67]

PVA-4-vinylpyridine TEOS
Electroosmotic permeability:

0.41–2.17 × 10−4 cm3/C
Counterion transport number: 0.92

[68]

PVA
GTMA-Cl APTEOS

Counter ion transport number:
0.91–0.96 Permselectivity (OH−):

0.86–0.94
OH− ion conductivity: 5.9–7.6 mS/cm

[11]

PVA
GTMA-Cl APTEOS

Transport number: 0.79–0.92
OH− ion conductivity: 34.8–75.7

mS/cm
[69]

DMAEM-VTMS
PVA VTMS Permselectivity (Cl−): 0.76–0.90

Cl− ion conductivity: 7.2 mS/cm [70]

PVA APTEOS -GTMA-Cl
Tensile strength: 55–69 MPa
Elongation at break: 45–80%

IEC: 0.25–0.73 meq/g
[71]

PVA-allyltrimethylammonium
chloride TEOS

Proton dialysis coefficient:
0.015–0.060 m/h

Fe2+ dialysis coefficient:
0.013–0.020 m/h

Separation factor (HCl/FeCl2): 7–22

[72]

SMPEI, PVA GPTMOS Permselectivity (Cl−): 0.79 [73]

4-butanedioldiglycidyl
ether-methylamine

Silica Gel
APTEOS

Retention factor: 2.08–4.10 (Cl−);
3.59–7.01 (Br−); 1.02–1.88 (F−);

4.42–8.57 (NO3
−); 2.10–5.64 (NO2

−)
[74]
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Table 1. Cont.

Polymer Matrix Si Precursor Properties Reference

PEO EPh
TEOS

Tensile Strength: 1.0–20.5 MPa
Elongation at break: 33–120%

OH− ion conductivity: 3 mS/cm
[75]

PPO-triethylamine EPh
TEOS

IEC (Br− form) 1.27–2.05 mmol/g
OH− ion conductivity: 1.0–8.5 mS/cm [76]

Poly(VBC-co-MPS) MPS
EPh, TEOS

IEC (Cl− form) 1.70–2.20 mmol/g
OH− ion conductivity: 0.2–0.4 mS/cm [77]

PPO-triethylamine EPh
TEOS

OH- ion conductivity: 8–11 mS/cm
(RT); 35 mS/cm (90 ◦C)

Peak power density: 32 mW/cm
(fuel cell test)

[78]

Poly(VBC-co-MPS)
BrPPO MPS IEC (Cl− form): 2.20–2.25 mmol/g

OH− ion conductivity: 12 mS/cm [79]

Cardo poly(aryl ether sulfone
ketone

3-Chloropropyltrimethoxysilane
TEOS

Tensile Strength: 20.0–40.3 MPa
Young’s Modulus: 196–1166 MPa

Elongation at break: 36–70%
[80]

PSU ODGBS OH− ion conductivity: 20–26 mS/cm
(60 ◦C) [81]

PNB APTMOS

Methanol permeability:
1.54–2.75 × 10−7 cm2/s

OH− ion conductivity 6.3–41.0 mS/cm
Peak power density: 43 mW/cm

(fuel cell test)

[82]

PNB TMSP

Methanol permeability:
1.34–2.89 × 10−7 cm2/s

OH− ion conductivity (80 ◦C):
6.8–9.3 mS/cm

Peak power density: 32 mW/cm2;
(fuel cell test)

[83]

PPO-1,2-dimethylimidazole GPTMOS
TEOS

IEC: 2.19–2.63 mmol/g
OH− ion conductivity: 10–22 mS/cm

(25 ◦C); 26–36 mS/cm (80 ◦C)
[84]

5PA silica and APTEOS IEC: 1.29 mmol/g [85]

PPO-N-methyldiethanolamine 2-(3,4-epoxycyclohexyl)
ethyltrimethoxysilane

OH− ion conductivity: 21 mS/cm
Peak power density: 14.2 mW/cm2

(40 ◦C); 16.9 mW/cm2 (60 ◦C)
(single cell test)

[86]

PPO-triethylamine GPTMOS OH− ion conductivity: 46.0 mS/cm
(80 ◦C) [87]

PSU-DEA
GGO APTMOS

IEC: 0.48–0.90 mmol/g
OH− ion conductivity: 6–11 mS/cm

(RT); 12–20 mS/cm (70 ◦C)
[88]

CS
3-(Methacryloxy)

propyl-trimethoxysilane
TEOS

IEC: 0.37–0.46 mmol/g
OH− ion conductivity: 1–3 mS/cm

(20 ◦C); 6–13 mS/cm (90 ◦C)
[89]

PSU-TMA TMSP
AEAPS

IEC: 1.3–1.4 mmol/g
Cl− ion conductivity: 0.8–1.3 mS/cm

(RT); 3.4–3.9 mS/cm (80 ◦C)
[90]
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Table 1. Cont.

Polymer Matrix Si Precursor Properties Reference

PVA- GTMA-Cl TEOS

Methanol permeability:
8.4–11.6 × 10−7 cm2/s

OH− ion conductivity: 3.1–6.8 mS/cm
(30 ◦C); 14 mS/cm (60 ◦C)

[91]

PVA- pyridine AAPTEOS

Peak power density: 53 mW/cm2

(80 ◦C) (fuel cell test)
Alkaline stability: remaining

conductivity 90% (360 h in 6M NaOH
at 80 ◦C)

[92]

Fumasep FAP TEOS
IEC: 1.07–1.13 mmol/g

VO2+ permeability:
5.48 × 10−7 cm2/min

[93]

CS GPTMOS

IEC: 0.34–0.71 mmol/g
VO2+ permeability:

3.13–8.17 × 10−6 cm2/min
SO4

2− ion conductivity:
7.6–11.3 mS/cm

[94]

PVA
CS-TMA

AAPTMS
TEOS

IEC: 0.82–1.29 mmol/g
Chloride ion transport number:

0.86–0.94
[95]

(3-acrylamidopropyl)-
trimethylammonium,

Polyethylene
Siloxane resins IEC: 1.67–2.26 mmol/g

Resistance: 0.23–0.32 Ω/cm2 [96]

poly(QVBC-co-
triethoxyvinylsilane)

PVA, Graphene nano-ribbons
Triethoxyvinylsilane IEC: 1.92–2.09 meq/g

Energy consumption: 1.36 kWh/kg [97]

PPO-DEA AIPA

Zwitterionic membrane
Permselectivity: 8 (Li+/Mg2+);

24.8 (K+/Mg2+); 41.3 (Na+/Mg2+);
261.7 (H+/Fe2+)

[98]

PSU AEAPS
3-cyanopropyltrichlorosilane

Zwitterionic membrane
0.071 mS/cm (acidic), 0.051 mS/cm

(basic), 0.0065–0.0088 mS/cm
(zwitterionic) (80 ◦C)

[99]

In electrochemical technologies and electrodialysis, the choice of membranes is more
diverse because ionic conductivity and membrane stability in alkaline conditions play
a central role. The largest amount of work was made on PPO-based systems. The im-
provement regarding the stability is not always evident. Some attempts to achieve AEM
without a charged organic polymer backbone were made. In many cases, the positive ionic
groups are grafted onto the organic polymer, which can degrade the alkaline stability due
to backbone scission reactions, especially if the polymer backbone contains ether groups.
The possibility to anchor the positive groups to the organo-silica networks might improve
the alkaline stability of the composite AEM. However, a clear experimental confirmation
remains to be produced.

6. Conclusions

This short article reviews the field of composite AEM, including a hybrid organic–
inorganic second phase built in-situ by sol–gel chemistry. The main applications covered are
AEM for diffusion dialysis, especially acid recovery; electrochemical energy technologies,
including AEM for fuel cells and redox flow batteries; and AEM for electrodialysis.
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The DD process performance is linked to the diffusion flux and the membrane hy-
drophilicity and permselectivity. The permselectivity depends on the characteristics of the
ions (size, charge, and mobility), the morphology, and the composition of IEM. Composites
based on PVA are the most developed, while simultaneously placing at a lower price. The
silica part improves the weak mechanical properties of pristine PVA.

Another main requirement for fuel cells, redox flow batteries, and electrodialysis is
a high ionic conductivity; furthermore, a good alkaline stability is necessary for AEMFC.
Composites based on many different polymers were reported with the largest share for
PPO-based AEM. The improvement of alkaline stability by the addition of a silica network
remains to be confirmed. In our opinion, the alkaline stability might be further improved
for AEM when the ionophoric groups are placed at the organo-silica part which may reduce
the organic polymer chain scissions, especially at ether groups.

There is also a variety of polymer matrices used in ED. An interesting approach for ED
is the development of zwitterionic membranes that can conduct both cations and anions.
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Abbreviations

AAPTEOS 3-(2-aminoethylamino)propyltriethoxysilane
AAPTMOS 3-(2-aminoethylamino)propyltrimethoxysilane
AEAPS 3-(2-aminoethylamino)propyldimethoxymethylsilane
AEM: anion exchange membranes
AEMFC anion exchange membrane fuel cells
AIPA amino-isophthalic acid
APTEOS 3-aminopropyltriethoxysilane
APTMOS 3-aminopropyltrimethoxysilane
APTEOS-I N-triethoxysilylpropyl-N,N,N-trimethylammonium iodide
BrPPO brominated poly(2,6-dimethyl-1,4-phenylene oxide)
CS chitosan
DABCO 1,4-diazabicyclo[2.2.2]octane
DD diffusion dialysis
DEA diethanolamine
DMAE dimethylaminoethanol
DMAEM 2-(dimethylaminoethyl) methacrylate
ED electrodialysis
EPh monophenyltriethoxysilane
GA glutaraldehyde
GMA glycidylmethacrylate
GPTMOS 3-glycidoxypropyltrimethoxysilane
GTMA-Cl glycidyltrimethylammonium chloride
MPS 3-methacryloxypropyltrimethoxysilane
ODG 4,4′-oxydiphenylguanidine
PA polyamine
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PEI poly(ethylene imine)
PEO poly(ethylene oxide)b
PNB polynorbornene
PPO poly(2,6-dimethyl-1,4-phenylene oxide)
PSU polysulfone
PVA poly(vinyl alcohol)
QPVA quaternized poly(vinyl alcohol)
SMPEI silica-modified poly(ethylene imine)
TEOS tetraethoxysilane
TMA trimethylamine/trimethylammonium
TMSP N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride
VBC vinylbenzyl chloride
VTMS vinyltrimethoxysilane
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