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Abstract: Recycled rubber in granulated form is a promising geosynthetic material to be used in
geotechnical/geo-environmental engineering and infrastructure projects, and it is typically mixed
with natural soils/aggregates. However, the complex interactions of grains between geological
materials (considered as rigid bodies) and granulated rubber (considered as soft bodies) have not
been investigated systematically. These interactions are expected to have a significant influence on
the bulk strength, deformation characteristics, and stiffness of binary materials. In the present study,
micromechanical-based experiments are performed applying cyclic loading tests investigating the
normal contact behavior of rigid–soft interfaces. Three different geological materials were used as
“rigid” grains, which have different origins and surface textures. Granulated rubber was used as a
“soft” grain simulant; this material has viscoelastic behavior and consists of waste automobile tires.
Ten cycles of loading–unloading were applied without and with preloading (i.e., applying a greater
normal load in the first cycle compared with the consecutive cycles). The data analysis showed that
the composite sand–rubber interfaces had significantly reduced plastic displacements, and their
behavior was more homogenized compared with that of the pure sand grain contacts. For pure sand
grain contacts, their behavior was heavily dependent on the surface roughness and the presence of
natural coating, leading, especially for weathered grains, to very high plastic energy fractions and
significant plastic displacements. The behavior of the rigid–soft interfaces was dominated by the
rubber grain, and the results showed significant differences in terms of elastic and plastic fractions of
displacement and dissipated energy compared with those of rigid interfaces. Additional analysis
was performed quantifying the normal contact stiffness, and the Hertz model was implemented in
some of the rigid and rigid–soft interfaces.

Keywords: recycled rubber; elastomer; contact mechanics; earth material; composite interface

1. Introduction

Recycled rubber in a granulated or shredded form derived from waste automobile
tires has been applied in geotechnical and geo-environmental engineering projects over the
last three decades, both in pure form and mixed with earth materials. Recycled rubber is
an elastomer type of polymer with very low specific gravity and high energy dissipation
properties; thus, it has very attractive properties to be used in a variety of applications such
as lightweight geosynthetic, alternative and low-cost vibration isolation earth material,
or drainage earthen system in landfills [1–10]. Many research studies have proposed the
use of recycled rubber in granulated/shredded form in various projects, for example, as
lightweight embankment/subgrade material [11–16], backfill in retaining walls [12,17–20],
high damping capacity system beneath foundations [21–24], isolation material mitigating
soil liquefaction [25–28], and railway ballast [29]. Recycled rubber, apart from being used
in geotechnical engineering as a lightweight material, also finds a variety of other potential
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applications such as composite material in new concrete production or asphalts [30–32],
and it may find applications in industrial and aeronautic engineering as well [33–35].

In geotechnical engineering, a significant amount of research has been conducted
investigating the mechanical and dynamic properties of granulated rubber and soil–rubber
mixtures [7,28,36–47]. However, because of the complex nature of soil–grain–rubber inter-
actions, which heavily control the bulk behavior of these granular composites, there are
still many unresearched areas, especially in the analysis of these binary materials at the
micromechanical level and multi-scales [46,48–50]. Similar to the behavior of other binary
materials composed of rigid and soft grains, for example, sand–expanded polystyrene
beads (sand–EPS) [51–53], the investigation into the (bulk) constitutive behavior of sand–
rubber mixtures necessitates an understanding of the way viscoelastic (soft) grains interact
with brittle-to-ductile (rigid) grains, which can help researchers to develop multi-scale
models in the analysis of these granular composites. As there exists a gap in the literature
by means of fundamental studies that look into the problem of rigid–soft grain interaction
at the small-scale based on laboratory observations, the present work attempted to provide
a new contribution in this direction.

In their recent experimental study based on grain-scale and element-size samples of
sand–rubber mixtures, Li et al. [46] reported a direct relationship between the grain-to-grain
friction (interparticle coefficient of friction) with their bulk strength. Previous experimental
and theoretical studies reported the important influence of both rubber content and the
relative size of sand against rubber particles on the bulk behavior of these composites in
terms of strength, compression/deformation behavior, and stiffness [40,41,54–57]. These
influences have been linked predominantly to the distribution of contacts between sand–
sand, sand–rubber, and rubber–rubber grains, influencing the dynamic development of
load transfer networks within the granular assembly.

The application of granulated/shredded rubber in ground improvement has also
been proven beneficial in cases that the host soil is composed of crushable/weak grains.
An example of this may refer to the application of chemically decomposed rocks such
as completely weathered granite or volcanic materials, which are abundant in tropical–
subtropical regions, and they are commonly used as earthen materials in various projects.
However, these materials are characterized by high compressibility, which is contributed
by the low strength of the individual grains; the low particle strength also contributes to the
amplification of creep deformations in those materials. The studies by Fu et al. [43,44,58]
and Li et al. [47] showed that the inclusion of granulated rubber provides a mitigating
mechanism against sand grain breakage, even though, because of the deformable nature
of the polymeric grains, the inclusion of granulated/shredded rubber may increase the
compressibility of the binary material. This behavior may depend upon the content of
rubber as well as the relative size of sand and rubber particles. In their recent study,
Tian and Senetakis [59] showed that the inclusion of granulated rubber in sands might
have a beneficial influence in increasing bulk stiffness as observed in crushable sand–
rubber mixtures while providing a mechanism of mitigating creep deformations due to the
reduction of sand grain breakage. However, Tian and Senetakis [59] noticed that the overall
mechanisms contributed by the inclusion of rubber are complex, as the presence of this
polymeric material in granulated form provides, simultaneously, different and competitive
mechanisms in soil creep. This complex behavior is ascribed to the viscoelastic nature of
rubber grains contributing to the reduction of contact stresses within the granular assembly,
thus preventing sand grain breakage, and by deforming continuously with time, altering
in this way the deformation characteristics of binary materials. Indeed, this behavior may
lead to a significant increase in the stiffness of sand–rubber mixtures within the service
period of geo-systems where granulated rubber is used as geosynthetic.

Based on the abovementioned complexities, as revealed in previous works on sand–
rubber mixtures, it is essential that future studies attempt to investigate the behavior of
these binary materials through micromechanical-based simulations, for example, using the
discrete element method (DEM), which is a powerful tool in understanding the small-scale
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fundamental mechanisms that control the behavior of earthen and binary (or composite)
materials. DEM studies use as input the interparticle friction and contact laws of the
interacting grains, and this input has been proven to have a significant influence on the
resultant output (or bulk behavior) of granular materials [60–62]. Thus, understanding
and modeling the contact behavior of composite sand–rubber interfaces is essential to be
obtained through grain-scale experimental studies, which was one of the major motivations
behind this work. Even though previous studies using DEM attempted to provide insights
into the fundamental mechanisms that control the mechanical behavior of binary systems
composed of rigid and soft grains, including sand–rubber [56,57,63–67], as well as sand–
expanded polystyrene beads [51,68], there has been reported much less progress in terms
of laboratory studies at the grain-scale [46,49]. Especially the works by Li et al. [46] and He
et al. [49] had a major focus on the interparticle coefficient of friction and the constitutive
behavior in the shearing (or tangential) direction of sand–rubber composite interfaces.
However, a complete understanding of the fundamental behavior of interfaces necessitates
an investigation of the normal load–displacement response and normal contact stiffness
variation, which are important to examine by means of cyclic tests. This investigation
is important because, in natural systems, the contact force networks alter dynamically;
thus, grain contacts are continuously subjected to changes of the magnitude of applied
normal load.

In the present study, an experimental investigation into the normal contact behavior
of sand–rubber composite interfaces is attempted examining the influence of sand particle
type, number of loading cycles, and preloading by performing micromechanical-based
(grain-scale) experiments. Emphasis is placed on the analysis and quantification of the
elastic and plastic fractions of displacement, the energy dissipation, and the understanding
of the contributing mechanisms of the rubber particles due to their viscoelastic nature, as
well as the analysis of the data by means of a contact model commonly used in the study of
non-conforming surfaces. This analysis contributes to a better qualitative understanding,
at the grain-scale, of the behavior of composite materials composed of rigid (sand) and soft
(rubber) particles and can also provide input parameters to be used in DEM analyses of
binary granular systems and geosynthetics. Thus, the main objectives of this work are sum-
marized as follows: (i) examining the influence of natural grain type and its morphology
on the response of sand–rubber composite interfaces covering a range of natural materials
(in sand–rubber systems); (ii) providing a qualitative and quantitative understanding of the
influence of the number of loading cycles and pre-loading on the normal contact behavior
of sand–rubber composite interfaces; (iii) analyzing energy dissipation mechanisms and
the role of loading history; (iv) analytically studying the problem of the normal contact re-
sponse of sand–rubber interfaces based on the laboratory test results. Based on the existing
literature and abovementioned major gaps, this work comprises a new contribution into
the systematic analysis and quantification of the normal contact behavior of sand–rubber
interfaces considering a large number of potential influencing factors, which can provide a
direct contribution of input parameters in DEM simulations of binary granular materials.

2. Materials and Methods
2.1. Materials Used and Their Compositional and Morphological Characterization

Three types of natural aggregates (sands) from different geological origins (2–5 mm
fractions) and a polymeric material in granulated form composed of shredded automobile
tires were used in the micromechanical-based experiments. The three natural aggregates
(LBS, BLS, CDG) have different morphological features both at the scale of the grain size
and also at the small-scale of roughness. Leighton Buzzard sand (denoted as LBS) is a
natural quartz sand from the UK, which consists of subrounded to rounded grains of
relatively smooth texture. Blue sand (denoted as BLS) is a silica-based material from
New South Wales, Australia, and it is composed of crushed rock of mafic magma with
highly angular grains and rough texture. Completely decomposed granite (denoted as
CDG) originates from Hong Kong, and it consists of a weathered igneous rock of felsic
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composition, and its grains are crushable (i.e., weak grains) with irregular shapes and
rough texture. LBS is a benchmark quartz sand previously studied in the Geomechanics
Laboratory of City University of Hong Kong [69–71], BLS is a typical material (in crushed
form) used as fill/backfill/ballast in infrastructure projects [72], while CDG may also find
many potential applications as an earth material in tropical/subtropical regions such as
Hong Kong [47,73–75].

Scanning electron microscope (SEM; FEI/Philips XL30 Esem-FEG, FEI Company, Hills-
boro, OR, USA) images of representative grains from the different samples (natural and
polymeric grains) at different magnifications are given in Figure 1. The high magnification
SEM images of these samples showed highly distinctive surface conditions. LBS grains
consist of relatively homogeneous surface textures, whereas BLS and CDG samples have
adsorption of debris (microparticles) on their surfaces (more prominently for CDG), which
consist, primarily, of clay particles on a dominant matrix of quartz (indicated in Figure 1f,g).
The origin of this debris is, primarily, because of the mining process (for BLS) and aggres-
sive chemical weathering (for CDG) subjected on the original rocks. The compositional
characterization of the materials was performed based on energy dispersive spectroscopy
(EDS) analysis, carried out along with SEM, and representative results are displayed in
Figure 2. Based on this analysis, the three natural aggregates have quartz as the domi-
nant mineral taking up 60–80% of SiO2 formations. The LBS grains have minor traces of
impurities from iron-oxides, while the CDG grains have, apart from the dominance of
quartz, significant quantities of aluminum-oxides (23%), which can be associated with
the clay minerals (along with Na and K elements), resulted from the chemical weathering
of feldspars and micas from the original igneous rock. BLS grains have formations of
lightweight alkali earth metal oxides (Mg, Na, and Ca), most presumably due to the mining
of the original basaltic rock. The presence of debris materials on the grain surfaces changes
the micro-scale morphology of the aggregates and is expected to have a significant influence
on their inter-particle contact behavior, as previous studies would also suggest [73,76–78].

The polymeric grains included in the study to investigate the behavior of composite
interfaces can be classified as granulated rubber (with an average size similar to that of the
sand grains), based on the ASTM specifications [10]. The elemental composition analysis of
this sample showed significant amounts of Molybdenum (Mo), which forms the reinforcing
mechanism in natural rubber. The rubber particles are obtained from recycled automobile
tires that have been shredded, forming granules of various sizes and shapes. In the present
study, polymeric grains with relatively flat surfaces were chosen for the experiments of
rigid–soft interfaces (rigid: soil grain, soft: rubber grain). Inspection of SEM images of
representative granulated rubber samples revealed the presence of some surface cracks on
the material and that the polymeric grains have a highly continuous and uniform texture.
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The SEM images in Figure 1 can provide some qualitative inferences on the surface
texture at the meso-scale of the different types of aggregates, whose textural characteristics
may have an important influence on their tribological behavior, for example, the presence of
debris [78,79] or meso-scale morphology [80]. However, the surface roughness at the micro-
scale (expressed with an RMS value in the present study) is itself an important characteristic
that controls the frictional and constitutive behavior of interfaces [70,81,82] and also the
bulk behavior of granular materials [46,60–62,83–85]. For quantitative evaluation of surface
roughness, an optical surface profiler (Wyko NT9100 Surface Profiler, Veeco Instruments
Inc., Tucson, AZ, USA) was used, and the surface roughness values were calculated from the
standard deviation of the asperity peaks from the mean height (Sq as shown in Equation (1))
for a given area.

Sq =

√
1
u

u

∑
i=1

(wi
2) (1)

where u is the number of measured data points and w is the elevation relative to the
base surface.

Representative flattened surface profiles of the four types of aggregates for a given
scanned area of 67 µm × 89 µm are shown in Figure 3, and the average Sq values along
with one standard deviation from 10 different measurements for each material type are
displayed in Figure 4. It was observed that the average Sq value for a given material
increased with a higher scanned area, and the trend of increment in Sq was different for
each material type. A systematic calculation of Sq values for scanned areas ranging from 25
to 400 µm2 was performed with a constant data resolution of 0.39 Mdpi (or 240 datapoints
per 1 µm2).

The data in Figure 4 suggest that for the LBS grains, which displayed the smoothest
surfaces (i.e., the lowest values of Sq), the RMS roughness is almost independent on the
scanned areas (power coefficient of 0.07). Granulated rubber and BLS particles have
an intermediate variation (power coefficients of 0.15 and 0.17, respectively) of surface
roughness with scanned area owing to their asperities formed from their respective origins.
CDG grains, because of the non-uniform clay coating on their surfaces and their generally
very rough textures, show significantly higher surface roughness values and also a faster
increase in Sq values with the scanned area (power coefficient of 0.22). It can be inferred
that the surfaces with higher average Sq values for a given area show greater dynamics
in the lateral variation of asperity heights and that the values of the standard deviation
of the surface roughness for different locations for a given material type are significantly
high. This analysis is particularly important in the present study, because the contact
area between sand and rubber particles is expected to significantly increase during the
application of normal loading, owing to the viscoelastic behavior of the granulated rubber.
For pure sand grain contacts, even though some increase of the apparent area, as a result
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of normal load increase, is expected based on Hertz contact response (after [86]), such an
increase would be considered very small compared to that of rigid–soft contacts.
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2.2. Experimental Setup for Normal Contact Tests

The grain-scale (interface) experiments were performed using a custom-built mi-
cromechanical apparatus at City University of Hong Kong, which is capable of testing
sand-sized grains ranging, approximately between 0.5 and 5.0 mm, with grains having
apex–apex, apex–block, or block–block types of contacts. Previous works using the same
apparatus have studied, predominantly, pure sand grain contacts as well as block types of
contacts typically of the “rigid-type” [69–71,75,81,82,87–89] and have provided detailed
technical descriptions of the apparatus and its calibrations. A schematic illustration of the
experimental setup is given in Figure 5.
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The apparatus consists of three loading arms/systems and has the capability to
apply/recode forces and displacements both horizontally (i.e., in the shearing and out-of-
plane directions) and vertically (normal to the shearing plane). Each of the three loading
systems of the apparatus consists of a set of stiff mechanical parts, linear bearings, a linear
actuator (Zaber Technologies, Vancouver, BC, Canada), a load cell (Novatech Measurements
Ltd., East Sussex, England), and a non-contact displacement transducer (Microepsilon
Messtechnik GmbH&Co., Ortenburg, Germany). Both the load cells and displacement
sensors have very high precision, which helps to resolve the data for the derivation of
contact stiffness (both in the shearing/tangential and normal directions). Each grain is
fixed on a mount that is rigidly connected to the guiding sled (lower particle) and the
vertical loading system (upper particle). During the application of the vertical (normal)
loading, the lower grain is held stationary while the upper grain can move downwards
and upwards under a displacement-controlled or force-controlled mode for the application
of the loading and unloading phases, respectively.

2.3. Testing Program

The micromechanical experiments in the present study on sand–sand (“rigid” systems)
and sand–rubber grain interfaces (“rigid–soft” systems) involved two major classes: (i)
cyclic normal loading tests investigating the influence of sand type and the number of
loading cycles. These tests (termed “CP”) were performed applying 10 loading–unloading
cycles up to a maximum normal load of 1.5 N and (ii) preloading path tests investigating
the influence of loading history (or preloading) on the behavior of the grain contacts. For
this class (termed as “PP”), the first cycle was applied at a maximum normal load of 10 N
and was followed by 9 cycles at a maximum normal load of 1.5 N. Thus, the influence
of previous loading history in terms of a greater applied load could be investigated at
the contacts of aggregate-rubber. The experiments were performed at a loading rate of
0.1 mm/h for rigid interfaces and 0.4 mm/h for rigid–soft interfaces for both the loading
and unloading phases. Before the first cycle of loading, the contact between the top and
bottom grains was first ensured after the application of a seating load of around 10 mN. A
summary of the experiments and the combinations of grain interfaces is given in Table 1. A
flowchart explaining the experimental process and respected analysis from the grain-scale
tests (also linking the different steps with the subsequent analytical expressions) is given in
Figure 6.
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Table 1. Summary of the testing program and particle geometry parameters.

Type Loading Path
Local Radius (mm)

No. of Cycles Maxium Load
R1 R2

LBS–LBS

Cyclic
Loading

0.24 0.32

10 1.5 N

LBS–rubber 0.72 ∞

CDG–CDG 1.00 0.51

CDG–rubber 0.99 ∞

BLS–BLS 0.56 0.28

BLU–rubber - ∞

LBS–LBS

Preloading

0.36 0.32

10 10 N(1st cycle)
LBS–rubber 0.81 ∞

CDG–CDG 0.31 0.62

CDG–rubber 0.47 ∞

Polymers 2021, 13, x FOR PEER REVIEW 8 of 32 
  

 

previous loading history in terms of a greater applied load could be investigated at the 
contacts of aggregate-rubber. The experiments were performed at a loading rate of 0.1 
mm/h for rigid interfaces and 0.4 mm/h for rigid–soft interfaces for both the loading and 
unloading phases. Before the first cycle of loading, the contact between the top and bottom 
grains was first ensured after the application of a seating load of around 10 mN. A sum-
mary of the experiments and the combinations of grain interfaces is given in Table 1. A 
flowchart explaining the experimental process and respected analysis from the grain-scale 
tests (also linking the different steps with the subsequent analytical expressions) is given 
in Figure 6. 

Table 1. Summary of the testing program and particle geometry parameters. 

Type Loading Path 
Local Radius (mm) 

No. of Cycles Maxium Load 
R1 R2 

LBS–LBS 

Cyclic 
Loading 

0.24 0.32 

10 1.5 N 

LBS–rubber 0.72 ∞ 
CDG–CDG 1.00 0.51 

CDG–rubber 0.99 ∞ 
BLS–BLS 0.56 0.28 

BLU–rubber - ∞ 
LBS–LBS 

Preloading 

0.36 0.32 

10 10 N(1st cycle) 
LBS–rubber 0.81 ∞ 
CDG–CDG 0.31 0.62 

CDG–rubber 0.47 ∞ 

 
Figure 6. Flowchart explaining the different steps during the experiments and data analysis. 

  

Figure 6. Flowchart explaining the different steps during the experiments and data analysis.

3. Results and Discussion
3.1. Cyclic Normal Load Tests without Preloading (CP Tests)
3.1.1. Rigid Interfaces

In the following discussions, the total deformation of the specimens (or grain system)
is defined as the displacement measured at the maximum normal load, and the elastic and
plastic fractions are the recovered and unrecovered parts, respectively, which are quantified
upon uploading. The load–displacement response of the three types of rigid contacts
(pure contacts of LBS–LBS, CDG–CDG, and BLS–BLS) are illustrated in Figure 7a–c. The
variations of the total displacement (dashed line), and the corresponding elastic and plastic
fractions within each loading cycle are plotted in Figure 7d–f. The results suggested
that the LBS–LBS contacts display predominantly elastic response with 86% of elastic
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fraction and 2 µm total displacement in the first cycle, after which the subsequent cycles
resulted in purely elastic behavior (Figure 7d). The virgin loading cycle of CDG–CDG
contact displayed a softer response, reaching a total displacement of around 35 µm (~18
times higher than that of LBS–LBS contact) at the maximum normal load, and 82% of this
displacement is irrecoverable upon unloading (Figure 7e). Despite the fluctuations in the
data, the total displacement to reach 1.5 N normal load decreased with the increasing
number of cycles, and the plastic fraction also reduced from ~80% to ~20%. These data
are in qualitative agreement with previous studies investigating the cyclic normal load
behavior of decomposed tuff grains [76], which are characterized by a heavy coating of
clay microparticles formed by the chemical weathering of the parent rock.
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Kasyap et al. [78] defined the fundamental difference between the normal contact
response of clay- and silt-coated (artificially coated) LBS grains in terms of the trend of
non-linearity in the load–displacement curves, given that both the grain classes show
significant compression compared to the uncoated grains. It was demonstrated based
on micromechanical experiments and microscopic image observations that grains coated
with clay, because of the smaller size and softer behavior of the microparticles compared
with silt coating, tend to show smoother normal load–displacement curves without any
abrupt drop or fluctuations in the normal load (ascribed to particle rearrangement of the
silt microparticles in the study by [78]). In the present study, the CDG grains with non-
uniform natural clay coating on their surfaces showed an intermediate behavior between
clay- and silt-coated sand grains with higher compression and slightly irregular load–
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displacement curves (no abrupt drop in the normal load for the given range of normal
loads and displacements for the CP tests).

The normal contact response of BLS grains in Figure 7c is comparable to LBS (Figure 7a)
but with greater compression for a given normal load (i.e., lower loading stiffness) owing
to the higher surface roughness and thus significant asperity breakage (after [82]). For
BLS samples, the change of elastic and plastic fractions of displacement with the increase
in loading cycles is similar to the behavior of LBS grains. The mobilized displacement
at 1.5 N normal load for BLS grains in the first loading cycle was around 6 µm, with
a plastic fraction of 34%; however, both values of mobilized displacement and plastic
fraction gradually stabilized after the third cycle, with values of approximately 4 µm
and 5%, respectively, despite the small fluctuations in the data. These results suggest
that for chemically weathered grains of igneous origin, which are characterized by rough
surfaces with the presence of heavy coating of clay-type microparticles, significant plastic
displacements were present even in cycle-4 to cycle-10; however, for crushed aggregates
of BLS, the plastic displacements almost diminished from cycle-4 and beyond that. Even
though both CDG and BLS grains displayed rough surfaces, and both types of aggregates
have inclusions of microparticles on their surfaces, CDG is predominantly characterized by
a heavy clay coating, whereas BLS is characterized, primarily, by rough surfaces due to the
mining process the original rock has been subjected to. Thus, over the ten loading cycles
in the CP tests, CDG interfaces were dominated by the compression of the microparticles
leading to an accumulation of plastic deformations, whereas for BLS, the major part of the
deformations, caused by the plastic response of asperities, took place during the very first
cycles of loading, leading, in the consecutive cycles, to a behavior that was very similar to
that of LBS.

It is noted that geological materials (and respected interfaces of particles) are expected
to display a brittle to ductile behavior; thus, the contact response of rough interfaces may
be influenced by both plastic deformations of asperities as the contact mechanics literature
would suggest [82,90] and, perhaps, some brittle damage of micro-asperities [73,79,82]. For
the given range of normal loads applied in the CP tests and based on the generally smooth
shape of the normal load–displacement curves, it is expected that plastic behavior is the
dominant mechanism (at the maximum normal load of 1.5 N), which may be contributed
by both the compression of the coating (for CDG and BLS) and asperity deformation
for the three different types of sands. For rigid interfaces, the three major contributing
factors on their normal contact response can be summarized as (i) microscale morphology
(roughness); (ii) mesoscale morphology represented by the local shape of the grains in
the vicinity of their contacts; and (iii) the presence of impurities on the surfaces of the
grains. All the natural grains tested in the present study (despite their differences in
terms of morphology and the presence of natural coating in some types of aggregates)
are, predominantly, silica-based materials; thus, surface chemistry is important in terms of
composition (i.e., elemental analysis) of the grains, as this would be expected to influence
surface hardness [70,72,75]. As will also be discussed in the subsequent sections, there is a
significant difference between the natural aggregates (as brittle-to-ductile materials) with
that of granulated rubber, which belongs to the group of elastomers, and its behavior is
viscoelastic, which plays a dominant role in the behavior of the composite interfaces.

3.1.2. Rigid–Soft Interfaces

The normal contact response of LBS–rubber, CDG–rubber, and BLS–rubber composite
interfaces for ten loading cycles in CP tests is presented in Figure 8a–c, and the correspond-
ing variations of elastic and plastic fractions at each cycle are compared in Figure 8d–f. The
composite (rigid–soft) interfaces showed predominantly elastic behavior and significantly
higher total displacements (on average 5 times for CDG, 30 times for BLS, and 64 times for
LBS) compared to the pure sand grain contacts. However, the behavior of these composite
interfaces cannot be considered purely elastic, as some small portion of plastic deforma-
tions was also observed at the end of each loading cycle. Though the fractions of plastic
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deformation decreased in the case of composite interfaces compared with pure sand grain
contacts, their absolute values are significantly higher, particularly in cycle-1. For example,
the LBS–LBS contact showed a plastic displacement of around 0.3 µm, corresponding to
14% plastic fraction with respect to the total displacement, whilst the LBS–rubber contact
showed around 14 µm of plastic displacement, which was much larger compared to pure
LBS interfaces; however, the plastic fraction for the composite interface (corresponding to
8% of the total displacement) was in general comparable with that of the pure LBS contact.
For CDG–rubber and BLS–rubber interfaces, the portions of plastic displacement were
significantly reduced in the first loading cycle compared with the respected results on pure
CDG and BLS samples. In the subsequent cycles, all the types of composite interfaces
showed a similar response in terms of plastic fractions of displacements, indicating a
dominant influence of the rubber (viscoelastic in nature) particle.
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From element-scale tests based on one-dimensional confined compression, Edil and
Bosscher [2] reported large plastic strains for sand–rubber mixtures. The reproduced data
by the authors from the Edil and Bosscher [2] study are displayed in Figure 9, and the
stress–strain response (macroscopic behavior) showed, qualitatively, a great similarity
with the interparticle compression tests (microscopic behavior). The studies by [2,91,92]
ascribed such plastic responses to the rearrangement of the particles in the first cycle,
assuming that the deformation of rubber is purely elastic. An additional mechanism was
proposed by Valdes and Evans [63], in which study the observed large residual strains were
also explained by the higher sidewall friction. The grain-scale experiments in the present
study suggest that plastic deformations of the sand–rubber composite interfaces may also
contribute, as an additional mechanism, to the bulk plastic behavior of binary mixtures,
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even though the inclusion of rubber prevents, to an important extent, large fractions of
plastic displacement, especially for assemblies having crushable sand grains with irregular
shapes or with rough textures.
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(reproduced by the authors, after Edil and Bosscher [2]).

In DEM simulations of granular systems, the normal contact stiffness (KN) comprises
one of the important input properties of the interacting grains. By differentiating the
normal load against the displacement from the curves presented in Figures 7 and 8, the
normal contact stiffness against the displacement for the different grain combinations is
presented in Figure 10 (data correspond to cycles 1, 3, and 5 during the loading process).
For the pure sand grains, LBS had much larger KN values compared to BLS and CDG,
in a range of approximately 600–800 N/mm at normal displacements between about 1
and 2 µm (note the strong dependency of normal contact stiffness on the displacement in
these curves). These values are, in general, four times greater compared with those of BLS
contacts for the given displacement range. CDG grains displayed extremely small values
of KN during cycle-1; however, in subsequent loading cycles, the values were in general
comparable with those of BLS. For the composite interfaces, KN values were, on average,
one to two orders of magnitude smaller compared with those of the pure sand grains, while
the influence of the loading cycle was much smaller compared with that of the pure sand
grain contacts (specifically CDG and BLS interfaces). Even though the presentation of these
data (normal contact stiffness) attempts to provide some general understanding of a range
of KN values for the different material types, these results may also comprise some useful
guide of input parameters in DEM simulations of binary materials.
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3.2. Cyclic Normal Load Tests with Preloading (PP Tests)
3.2.1. Rigid Interfaces

The preloading tests were carried out on pure aggregate contacts for LBS and CDG grains
(Figures 11 and 12) as well as their composite interfaces with rubber (Figures 13 and 14). In the
preloading cycle (cycle-1), where the normal load reached 10 N, a complete hardening behavior
was observed for LBS grains, but the CDG grains showed significant brittle damage of the
micro-asperities, resulting in fluctuation of the normal load (after reaching approximately
4 N). This behavior is hypothesized to be the result of two major mechanisms: one mechanism
is contributed by asperity breakage, which is of a brittle nature, as previous studies would
also suggest, on rough interfaces of aggregates or weathered rocks [73,79,93], and a second
mechanism is associated with the compression behavior of existing microparticles on the
surfaces of the aggregates [77,78]. As discussed in Section 3.1, the CDG grains showed an
intermediate behavior of silt- and clay-coated LBS grains (after Kasyap et al. [78]) at 1.5 N
normal load. As the normal load further increased, significant particle damage leading to an
abrupt drop in the normal load was observed. In the consecutive reloading cycles from cycle-2
to cycle-10 (maximum normal load of 1.5 N), the LBS–LBS and CDG–CDG contacts showed
predominantly elastic response, as most parts of the plastic damage occurred in the preloading
cycle, even though some small fluctuations of the plastic fractions are acknowledged in
Figure 12. A significant decrease (around four times) in the total displacements required
to reach 1.5 N normal load for CDG grains was observed when preloading was applied,
indicating an increased contact stiffness. Kasyap et al. [78] also observed similar behavior for
silt-coated LBS grains owing to the compression of microparticles in the contact region due to
excessive normal load in the preloading cycle. From a comparison between CP and PP classes
of tests (subsets in Figure 11), a common inference observed for both types of aggregates (LBS
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and CDG) is that the accumulation of plastic deformations (ratchetting) was higher under the
influence of preloading. In the experiments without preloading (CP tests) and with preloading
(PP tests), the respective ratchetting displacements were 0.25 and 0.75 µm for LBS grains and
2.5 and 5 µm for CDG grains, respectively. The load–displacement curves of CDG in PP tests
also showed an elbow shape during unloading, particularly at very small normal loads below
a threshold of 0.25 N, which was not observed in the CP tests on CDG or the experiments on
LBS grains. This elbow shape of the unloading curve implies a non-linear response during
unloading, which is expected for many material types [94,95], despite the fact that the most
important part of the unloading curves in the PP tests can be considered linear. A similar
behavior was reported in the recent study by Kasyap et al. [72] based on micro-indentation
experiments. Among the different types of geological materials/aggregates examined by [72],
elbow-shape curves were observed for recycled concrete aggregate, which has rough surfaces
with the presence of microparticles, and this behavior was explained based on the hypothesis
of partial relaxation leading to a change of the slope (stiffness) during the unloading process.
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3.2.2. Rigid–Soft Interfaces

Similar to the observations in Section 3.1.2 and even though pure LBS and CDG samples
had very different responses in the PP tests, LBS–rubber and CDG–rubber specimens sub-
jected to preloading displayed, in general, similar behavior, as shown in Figures 13 and 14.
The preloading at 10 N had a limited effect on the subsequent loading cycles for both types
of composite interfaces, which displayed (similar to the CP tests) hysteretic behavior and a
softer response compared with that of pure aggregate contacts. It is acknowledged, however,
by comparing CP (Section 3.1.2) and PP (this section) tests of the composite interfaces, that
CDG–rubber samples displayed a slightly stiffer response in PP tests compared with CP
tests, whereas the load–displacement curves of LBS–rubber samples displayed a slight
shift in the PP tests compared with the respected tests without preloading. Similar to the
observations in Figure 12, some fluctuations of the data are observed in Figure 14 in terms of
elastic and plastic fractions of displacement, though the absolute values of plastic fractions
are not very different between rigid and rigid–soft contacts between cycle-2 and cycle-10
(comparing the data in Figures 12 and 14).

Similar to the discussions in Figure 8 on the behavior of composite interfaces subjected
to CP tests, the data on LBS–rubber and CDG–rubber from PP tests in Figure 14 would
suggest a dominance of the rubber particle on the behavior of the composite interfaces.
Another similarity in the experimental curves in Figures 8 and 13 is that the composite in-
terfaces displayed highly non-linear unloading curves, which is influenced, predominantly,
by the viscoelastic behavior of the rubber magnifying relaxation effects. The important
influence of the viscoelastic nature of polymeric materials in terms of relaxation (and creep)
has been highlighted in the literature for other types of geosynthetics as well [96–98].

Macroscopic experiments on sand–rubber mixtures have suggested that the inclusion
of rubber prevents particle breakage of the sand, particularly for earth materials of weaker
grains [43,44,47,59,91]. Qi et al. [99] attributed the decrease in particle breakage to the
absorption of input energy by the rubber particles (through their deformation), which
otherwise would have caused sand grain breakage. However, there is a lack of direct
experimental evidence at the grain-scale to support this hypothesis, which necessitates
micromechanical-based tests to be performed. In the present study, this potentially protec-
tive mechanism can be directly examined by calculating the apparent stress at the sand
and sand–rubber contacts based on the following expression:

σ =
FN
α

(2)

where α is the apparent contact area calculated based on Hertz theory, which is assumed to
satisfy the following definition (after Johnson [86]):

α = πδR∗ (3)

1
R∗

=
1

Rs
+

1
Rr

(4)

where Rs and Rr are the local radii of the sand (rigid) and rubber (soft) particles in the
vicinity of their contact, respectively.

In the present study, flat rubber particles were used so that Rr can be considered as
infinity, thus:

R∗ = Rs (5)

LBS–LBS and LBS–rubber interfaces are used as an example due to the simpler cal-
culation of shape parameters and hence the apparent contact stress, as CDG (as well as
BLS) particles display high irregularities. Based on the abovementioned expressions, the
apparent stress for the virgin cycles of LBS–LBS and LBS–rubber samples in the preloading
tests are compared in Figure 15, whose values, due to the influence of local radius and
meso-scale morphology of the grains, represent average stresses.
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Figure 15. The variation of apparent stress against applied normal load for (a) LBS–LBS contact and
(b) LBS–rubber contact.

These data suggest that for a normal load of 10 N, the apparent average stress at the
contacts of sand grains reaches values of 150 MPa and beyond that. However, for rigid–soft
interfaces, the apparent stress is less than 10% (i.e., less than 10 MPa) of that computed
for the rigid interfaces, as the soft particles of rubber contribute to the formation of much
larger contact area through their deformation, which redistributes (and decreases) the
contact stresses. These theoretical (and generally approximate) values are in agreement
with the interpretations from the numerical study by Zhang et al. [67] and could provide
some quantitative evidence of the interpretations/discussions by Liu et al. [91] that stress
concentration is significantly reduced in binary materials such as sand–rubber, which may
significantly contribute to the prevention of sand grain breakage.

3.3. Energy Dissipation in Cyclic Tests

One of the promising applications of granulated and shredded rubber in geotechnical
engineering is related to their use as a vibration isolation system due to their high damp-
ing (or energy dissipation) capacity. Quantification of the energy dissipation in contact
mechanics studies is also important to be obtained for a fundamental understanding of
the response of interfaces. In the present study, the energy dissipation of the rigid and
rigid–soft interfaces was examined through the estimation of the plastic energy and the
elastic and plastic fractions of energy throughout the consecutive loading cycles. An illus-
trative example of the computation of both elastic and plastic energies is given in Figure 16,
where the plastic energy corresponds to the area of the closed-loop in a loading-unloading
process, which gives an indication of the dissipated energy, while the elastic energy is
defined from the enclosed area below the unloading curve. A summary of the results from
both the CP and PP tests on rigid and rigid–soft interfaces is given in Figures 17 and 18.
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Based on the data in Figure 17a–c, LBS displayed the lowest values of plastic energy
fractions, which is in accordance with the observations in Figure 7. Despite the small
fluctuations in the data, some measurable plastic energy fractions are still observed in
LBS contacts. Apart from the first loading cycle, where significant plastic energy could
be measured for the BLS sample, in the subsequent cycles, the behavior was very much
similar to that of LBS (slightly greater plastic energy fractions are acknowledged for BLS
contacts compared with those of LBS contacts). For CDG, the behavior was significantly
different compared with that of LBS and BLS, with the plastic energy being dominant in all
the loading cycles (cycle-1 to cycle-10), demonstrating highly hysteretic behavior. This is in
accordance with the observations of the high portion of plastic displacements (Figure 7e),
and it is understood that this behavior may have been contributed, predominantly, by
the presence of the heavy coating of clay microparticles on CDG surfaces. The roughness
of the grains itself should have an influence on the hysteretic behavior observed for
all the different types of contacts (LBS, CDG, BLS); however, the significant portion of
clay microparticles as the coating is demonstrated to play a key role in the high energy
dissipation capacity for CDG grains.

The rigid–soft interfaces displayed a very different behavior, with the viscoelastic
rubber providing a homogenization of the response of the different samples (i.e., almost no
influence of sand type on the measured elastic and plastic energy fractions) as observed
in Figure 17d–f. While for CDG, the inclusion of rubber (by means of sand–rubber inter-
faces) mitigated the plastic energy fractions compared with pure CDG samples, for both
LBS–rubber and BLS–rubber, the plastic fractions were generally significantly increased
compared with those of pure LBS and BLS contacts, and similar conclusions could be
obtained in the PP tests (Figure 18). However, the data in Figure 18 would also suggest
that preloading significantly reduced the plastic energy fractions in CDG, whereas no
measurable influence of preloading was observed in LBS.

The data in Figures 17 and 18 suggest that geological materials display some level of
hysteretic behavior at their contacts, which is true even for grains with a relatively smooth
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texture and low roughness, without the presence of natural coating of microparticles (LBS
contacts). Increased roughness results in amplifying the hysteretic behavior, which, how-
ever, seems to be mitigated as the number of loading cycles increases (BLS contacts); thus,
the presence of natural coating of microparticles may play the most dominant role in the
continuous dissipation of energy in the subsequent cycles (CDG contacts). In rigid–soft in-
terfaces, the energy dissipation mechanism is different and is attributed, predominantly, to
the viscoelastic nature of the rubber, which, simultaneously, prevents plastic displacements
but significantly increases the energy dissipation, especially for geological materials, which
are dominated by their small-scale surface roughness. An adverse effect was, however,
observed for natural grains with a heavy coating of microparticles, as for CDG–rubber, the
dissipated energy reduced compared with that of pure CDG contacts.

3.4. Theoretical Analysis Using Hertz Fitting
3.4.1. Background of Model and Sensitivity Analysis

It was attempted to apply the Hertz normal contact model [100] to the experimental
curves in order to quantify the equivalent (or contact) Young’s modulus of the pure sand
and composite interfaces and derive the modulus of the sand and rubber grains. Because
of its simplicity, the Hertz model has been widely used in DEM analyses [101] as well as in
the discrete-based simulation of sand–rubber mixtures [63,65,67].

Based on the Hertz model, the load–displacement relationship is given as:

FN =
4
√

R∗E∗δn
1.5

3
(6)

where R*, E*, and δn denote the equivalent radius of the contacting grains, the equivalent
(contact) Young’s modulus, and normal displacement of the contact, respectively. The
equivalent Young’s modulus E* depends on the elastic moduli and Poisson’s ratios of the
two bodies in contact as:

1
E∗

=
1− vs

2

Es
+

1− vr
2

Er
(7)

where vs, Es and vr, Er denote Poisson’s ratio and Young’s modulus of sand and rubber
particles, respectively.

Hertz fitting was applied to LBS–LBS, CDG–CDG, LBS–rubber, and CDG–rubber
contacts (in CP tests), but it was avoided for BLS and its composite interface with rubber
because of the sharp conical shape of the crushed blue sand in the vicinity of the rigid
and rigid–soft interfaces. The subsequent analysis provides a direct fitting of the Hertz
model to the experimental curves; thus, model parameter E* is directly estimated from this
analysis. This means that in order to estimate Er, the model parameters of the aggregate (Es
and vs) must be predefined (estimated from the respected tests on LBS–LBS and CDG–CDG
interfaces). However, as these parameters may vary significantly for the natural grains,
a sensitivity analysis (with hypothesized values) was performed in order to assess the
tolerance of the Hertz model for the composite interfaces (i.e., how sensitive is the estimated
Er value based on the predetermined model parameter values of the sand grains’ rigid
body). The analysis using the Hertz model may also be sensitive to changes of the local
radius (representing the local radius of the aggregate in this study) as previous studies
would suggest [71], so that the sensitivity analysis was further expanded to understand,
quantitatively, this influence of the local radius on Er values, and the results adopting an
iteration process are displayed in Figure 19.
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These data suggest that even though the back-calculated Young’s modulus of rubber is
practically not dependent on the combination of model parameters of the aggregate (Es and
vs), Er values are very sensitive to the local radius of the aggregate. Thus, in the subsequent
analysis and implementation of the Hertz model, local radii of the sand grains are used.
These local radii are determined based on images taken from two microscope digital
cameras placed orthogonally, which capture the local shape in the vicinity of the grain
contacts (similar to previous studies by [79,81,102]) and the computation of the arithmetic
mean of the local radius of the LBS and CDG grains (for both rigid and rigid–soft interfaces).

3.4.2. Data Analysis

Hertz fitting was applied on the first three cycles of the CP tests for rigid and rigid–
soft interfaces, and the results (for the loading phase) are summarized in Figure 20 and
Table 2. The number displayed next to the sample code expresses the consecutive cycle;
for example, “LBS–LBS-2” means data of LBS interfaces (and respected fitting) in cycle-2.
From Figure 20 and Table 2, it is observed that for the LBS–LBS sample during the loading
process, the resultant Es values increased from 53 to 61 GPa from cycle-1 to cycle-3. Es
value corresponding to cycle-1 is in agreement with the reported data by Sandeep and
Senetakis [70]. However, for CDG–CDG contacts, cycle-1 revealed a very soft response
with Es value to be equal to 0.7 GPa, and Young’s moduli increased significantly in cycle-
2 and cycle-3 of loading. The significant change of the Young’s modulus for the CDG
sample as the number of cycles increased, based on Hertzian fitting, is attributed to the
plastic deformations during the loading process, which was much less pronounced for LBS,
though still measurable (Figure 7). This behavior was also observed by Kasyap et al. [77]
in cyclic tests of artificially coated LBS grains with clay microparticles.
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Figure 20. Hertz fitting for the first three cycles of normal loading tests for (a) sand–sand contact and
(b) sand–rubber contact.

Table 2. Fitting parameters using Hertz model for the first 3 cycles of loading for different interface types.

Specimen Type Es (GPa) νs Er (MPa) νr E * R2

LBS–LBS-1 53

0.1 *

- - 27 GPa 0.99

LBS–LBS-2 59 - - 30 GPa 0.99

LBS–LBS-3 61 - - 31 GPa 0.99

LBS–rubber-1 58 16

0.5

21 MPa 0.99

LBS–rubber-2 58 18 24 MPa 0.99

LBS–rubber-3 58 18 25 MPa 0.99

CDG–CDG-1 0.7

0.25 **

- - 0.4 GPa 0.97

CDG–CDG-2 9 - - 5 GPa 0.98

CDG–CDG-3 18 - - 10 GPa 0.99

CDG–rubber-1 9.2 10

0.5

13 MPa 0.98

CDG–rubber-2 9.2 12 16 MPa 0.99

CDG–rubber-3 9.2 12 16 MPa 0.99
* νs of LBS, after [71] ** νs of CDG, after [70].
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For the composite interfaces, Es was taken based on average values (for each material
type) from the LBS–LBS and CDG–CDG contacts (equal to 58 and 9.2 GPa, respectively). It
is expected that the brittle-to-ductile behavior of geological materials at their contacts leads
to the development of plastic deformations (and perhaps some small asperity breakage,
though this phenomenon is more pronounced for higher normal loads). Thus, the Young’s
modulus of the pure aggregate contacts during the first loading cycle represents an apparent
value (after [71]) and is influenced, significantly, by material type, surface morphology, and
the presence of coating of microparticles.

For sand–rubber contacts, it is expected that damage of the sand grain may be pre-
vented so that the Es value to be used in the analysis for composite interfaces may not
be represented effectively by the Young’s modulus of the sand grain contacts as revealed
from the first loading cycle. Consecutive cycles on pure sand grain contacts result in a
continuous increase of Es, which is more pronounced for the CDG sample, as the data
presented in the previous sections would suggest. Thus, in composite interfaces, two
competitive mechanisms are hypothesized to control the resultant Young’s modulus; one is
that Es may be higher in magnitude compared with the derived value from the first cycle in
pure sand samples, and the second is that in consecutive loading cycles on the sand–rubber
sample, there may be expected negligible change of Es. Based on these hypotheses and
considering that the decision of Es value will have a minute influence on the resultant
Er (Figure 19), it was compromised to use average Es values for the composite interfaces
based on the respective results on pure sand grain contacts (indicated in Table 2, and these
values were considered as constant throughout the three consecutive loading cycles in
sand–rubber samples. By applying Hertz fitting on sand–rubber interfaces in CP tests, it
was found that Er ranged between 16–18 and 10–12 MPa for LBS–rubber and CDG–rubber
interfaces, respectively. Thus, the application of Hertz fitting with the abovementioned as-
sumptions and compromises provided a reasonable estimation of rubber Young’s modulus
with small deviations between LBS–rubber and CDG–rubber samples (note that Er is by
definition independent on sand type, but the small deviations are expected because of the
assumptions made in the analysis of the data).

The results in Figure 20 and Table 2 show that the Hertz model applies reasonably well
for both LBS and CDG contacts and their respective composite interfaces for a maximum
load of 1.5 N. It is acknowledged, however, as previous studies have also reported on
geological materials [70,102], that the application of Hertz fitting needs to consider the
initial plastic displacements (soft behavior) so that the theoretical curves are shifted to
slightly larger displacements prior to the implementation of the fitting process. In the
abovementioned analysis, for LBS and LBS–rubber interfaces, fitting was applied without
any shift of the theoretical curve (i.e., the Hertz model was applied from the regime
of initial displacements); however, for CDG and CDG–rubber, a slight shift to larger
displacements, of the order of a few microns, was applied to fit the analytical expression to
the experimental data.

4. Summary, Conclusions, and Recommendations for Future Research

An experimental micromechanical-based study was presented investigating the cyclic
normal contact behavior of rigid–soft interfaces composed of natural sand (rigid grain)
against recycled rubber (soft grain). Three different soils were examined, including a natural
quartz sand (LBS), grains from completely decomposed granite (CDG), and crushed rock
(BLS), while recycled rubber consists of an elastomer type of polymer and is derived from
wasted automobile tires. The influence of loading history was examined by performing
two types of micromechanical tests. One type involved the application of ten cycles of
loading–unloading at a maximum normal load of 1.5 N (CP tests), while the second type
involved preloading, in which case cycle-1 was applied at 10 N of normal load, while
cycle-2 to cycle-10 were applied at 1.5 N of normal load (PP tests). Elastic and plastic
displacements (and their fractions) were defined upon unloading for each cycle. Major
conclusions from the study and recommendations for future research are summarized as:
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(1) In CP tests of rigid interfaces, LBS grains displayed predominantly elastic response
(accounting for only 14% of plastic displacements in cycle-1); however, for CDG,
a significant portion of the total displacement was plastic in cycle-1 (80%), and in
consecutive cycles, the portion of plastic displacements, despite some fluctuations,
stabilized (around 20%). These differences were attributed to the rougher texture
and the presence of coating of microparticles on the surfaces of the CDG grains. For
BLS, even though their behavior was similar compared to that of LBS in cycle-2 to
cycle-10, they displayed greater plastic displacements owing to their rougher texture.
A major difference between BLS and CDG was that consecutive cycles resulted in
extremely small plastic fractions of displacement for BLS, whereas the cycle number
had a continuous influence, with resultant plastic displacement for CDG. These data
suggested that the heavy coating of microparticles might be a more prevalent factor
controlling the normal contact behavior of the grains.

(2) The data suggested that while for the CP tests, the behavior of the rigid grain contacts
was majorly elastic–plastic (i.e., the plasticity of asperities contributes to the measured
irreversible strains as well as the irrecoverable compression of the coating), in PP tests,
some brittle type of response also contributes to the normal contact behavior of rigid
interfaces, especially for CDG.

(3) The composite (rigid–soft) interfaces displayed similar behavior in cycle-2 to cycle-10,
which was found almost independent on sand grain type, even though differences
were observed in cycle-1. The composite interfaces also displayed some level of plastic
deformations, which was subsequently discussed to be an additional mechanism
of plastic behavior as observed in element-size experimental tests of sand–rubber
mixtures as reported in the literature.

(4) Theoretical analysis of the developed contact stresses in CP tests (maximum normal
load of 10 N) revealed that rigid interfaces (using data on LBS) had much greater
developed contact stresses of the order of 150 MPa, while the contact stresses were
reduced to 10% of these estimated values for rigid–soft interfaces. This theoreti-
cal analysis provided a mechanism of mitigation of stress concentration in binary
mixtures preventing sand grain breakage.

(5) Quantification of the normal contact stiffness revealed very high values for LBS
contacts compared with CDG and BLS, even though all the rigid contacts had at least
one order of magnitude higher stiffness compared with that of rigid–soft interfaces.
These data may provide some useful guide as input values in DEM simulations
of binary (composite) granular materials. The viscoelastic nature of rubber grains
also contributed to significantly non-linear behavior in the unloading curves of the
composite interfaces, which, as also discussed for other polymeric-based materials in
the literature, was attributed to the relaxation of the rubber grains.

(6) The data from the present study comprise a solid basis for future research on com-
posite interfaces. One of these directions can be the investigation of sand–rubber
interactions accounting for the potential influence of loading rate (or loading fre-
quency) as well as the influence of temperature on the contact behavior of rigid–soft
interfaces. More systematic studies into the behavior of rigid–soft interfaces would
also be promising by examining different types of polymeric materials (other than
granulated rubber).
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