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Abstract: We used atomistic molecular dynamics (MD) simulations to study polyelectrolyte brushes
based on anionic α,L-glutamic acid and α,L-aspartic acid grafted on cellulose in the presence of
divalent CaCl2 salt at different concentrations. The motivation is to search for ways to control
properties such as sorption capacity and the structural response of the brush to multivalent salts.
For this detailed understanding of the role of side-chain length, the chemical structure and their
interplay are required. It was found that in the case of glutamic acid oligomers, the longer side
chains facilitate attractive interactions with the cellulose surface, which forces the grafted chains to lie
down on the surface. The additional methylene group in the side chain enables side-chain rotation,
enhancing this effect. On the other hand, the shorter and more restricted side chains of aspartic acid
oligomers prevent attractive interactions to a large degree and push the grafted chains away from the
surface. The difference in side-chain length also leads to differences in other properties of the brush
in divalent salt solutions. At a low grafting density, the longer side chains of glutamic acid allow the
adsorbed cations to be spatially distributed inside the brush resulting in a charge inversion. With an
increase in grafting density, the difference in the total charge of the aspartic and glutamine brushes
disappears, but new structural features appear. The longer sides allow for ion bridging between the
grafted chains and the cellulose surface without a significant change in main-chain conformation.
This leads to the brush structure being less sensitive to changes in salt concentration.

Keywords: mineralization; polyelectrolyte brushes; poly(amino acids); poly-(α,L-glutamic acid);
poly-(α,L-aspartic acid); cellulose; molecular dynamics simulation

1. Introduction

It is well known that chemical modifications of surfaces of a material allow for tun-
ing and controlling many of their properties and structure. One common modification
is grafting polyelectrolyte molecules on the surface [1]. Conformations of the grafted
polyelectrolyte molecules, or polyelectrolyte brush, depend on properties such as osmotic
pressure of counterions, electrostatic repulsion, and steric interaction [2]. For example,
brush-like structures can be used to provide a low friction coefficient for the development
of new lubricant materials [3]. Moreover, the polyelectrolyte nature of the grafted chains
makes brush structures tunable by external conditions, e.g., pH and ionic strength of the
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solution, electromagnetic field, or presence of multivalent salt, allowing for the design of
stimuli-responsive materials. Adhesive properties of polyelectrolyte brushes make them
usable for a wide range of applications, including water treatment [4], development of
anticorrosion agents [5], antifouling materials [6], drug delivery [7] sensors [8], and tissue
engineering materials [9].

The balance between two opposite factors determines the size of the brush: Osmotic
pressure of counterions and elasticity of the grafted chains [10]. According to the theory for
polyelectrolyte brushes in the presence of salt suggested by Zhulina et al. [10,11], increasing
salt concentration leads to decreasing osmotic pressure and, consequently, the size of the
brush reduces. In the case of multivalent counterions in solution, ion bridges between the
charged groups of the polyelectrolyte start to play an important role in the formation of
the brush structure. Brettmann et al. have shown that ion bridges between grafted chains
lead to a significant reduction in the brush size [12]. Moreover, in their subsequent studies,
Brettmann et al. demonstrated the formation of lateral irregularities in the brush structure
caused to ion bridging—this has a significant effect on brush height [13,14].

Theories describing polyelectrolyte brush behavior do not consider the details of
the brushes’ chemical structures, which determine rigidity and interactions between the
grafted chains. In some cases, the chemical structure may play a significant role in the
structure formation of the polymer brush. For example, Glova et al. discovered a nontrivial
brush structure based on oligomers of lactic acid [15–19]: An interplay between chemical
structure, persistence length, and dipole–dipole interactions between the residues of the
grafted chains lead to the emergence of hairpin-like structures.

In this work, we used MD simulations to investigate the structure of brushes based
on α,L-oligomers of anionic amino acids (glutamic and aspartic acid) grafted onto the
surface of nanocrystalline cellulose immersed in water and with multivalent salt solutions.
Anionic amino acids are promising for surface modifications due to their biocompatibility,
biodegradability, and relative cheapness [20]. Cellulose is the most common polymer that is
also biocompatible and biodegradable, and due to its complex hierarchical supramolecular
structure, crystalline cellulose has unique properties: Cellulose nanofibrils and nanocrystals
have excellent mechanical properties comparable to those of steel [21,22], making cellulose
an excellent candidate for reinforcing polymeric materials [23,24]. The biological and phys-
ical properties discussed above make cellulose a versatile material for medical applications,
particularly for wound dressings [25,26] and for diverse tissue scaffolds [27–29]. Materials
based on cellulose modified by poly(anionic acids) are also used for the development of
metal sorption membranes [30], equipment for virus-capturing [31], and bone scaffolds [9].

Despite a wide range of applications, the importance of choosing a particular type
of anionic poly(amino acid) for modifications has not been properly addressed. Recent
results show, however, that this issue requires further attention. For example, despite the
very similar chemical structures of the α,L-oligomers of glutamic and aspartic acids (Figure
S1a,b), it has been shown that they interact differently with multivalent salts [32–34], and
Thula et al. have demonstrated a significant difference in organic matrix mineralization by
various anionic poly(amino acids) [34]. Similarly, Picker et al. have shown that aspartic
and glutamic acids have qualitatively different effects on calcium carbonate crystalliza-
tion [33]. In our previous study, we demonstrated the formation of different structures
of organomineral complexes by polyaspartic and polyglutamic acids in the presence of
calcium salt solutions [32].

The differences in chemical structures can be the reason for the various brush struc-
tures taken by the different anionic poly(amino acids). The longer side chain of glutamic
acid leads to a higher density of the grafted layer at the same degree of substitution. Con-
sequently, the transition from the osmotic brush mode to the quasi-neutral mode (where
steric interactions start to play a significant role) should occur at a lesser degree of surface
modification for glutamic acid grafted chains. At lower grafting density, specific interac-
tions between the grafted chains and cellulose play an important role in determining the
brush structure; both amino acid and cellulose have active groups, which can be involved



Polymers 2021, 13, 1789 3 of 16

in specific interactions, H-bonds and dipole–dipole interactions in particular. These interac-
tions, however, could be prevented by long charged amino acid side chains (the chemical
structures are shown in Figure S1). Thus, the structure of the grafted interfacial layer
remains unclear, yet knowing it is crucial for determining the material’s properties and
response to changing conditions. Despite the prevalence of the investigated materials, the
importance of choosing the current anionic amino acid for cellulose modification has not
been discussed before. The aim of our work is to study the influence of grafted amino acid
oligomers’ chemical structures on the structure and properties of cellulose-based brushes in
both water and multivalent salt solution. Prediction of brush structures is challenging, and
atomistic MD simulations provide a feasible method to study the issue and the physical
origins of the different structures.

One particular difficulty concerning MD simulations is the presence of multivalent
ions, as this can lead to strong interactions that can severely restrict conformational transi-
tions. Several advanced techniques have been developed to overcome high energy barriers,
including replica exchange [35], metadynamics [36], and its variants [37–39]. In our previous
work [32], we performed Hamiltonian replica exchange simulations of anionic poly(amino
acids) in CaCl2 solution and showed the emergence of calcium bridges between carboxyl
groups in simulations of polyelectrolytes. This poses a severe obstacle to proper sampling.
To increase sampling, many replicas are needed, which is extremely resource-demanding
and makes a variation of the systems difficult. In this work, we used well-tempered meta-
dynamics [38] and unbiased MD simulations to overcome such problems.

2. Models and Methods
2.1. Model Parameters

The same model for a cellulose layer was used as in our previous study of miner-
alization of phosphorylate cellulose [40]. The model for native cellulose was based on
crystallographic data of cellulose Ib and the atomic coordinates of cellulose molecules in
a crystal cell with parameters a = 0.82 nm, b = 0.78 nm, c = 1.038 nm, β = 90◦, α = 90◦,
and γ = 96.6◦ [41]. The thickness of the layer was 2.3 nm (Figure 1). Cellulose molecules
were considered to be infinite, connected through periodic boundary conditions. The layer
consisted of 64 cellulose oligomers, each containing 16 glucose residues.
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Figure 1. Grafted cellulose model. Side view of a model cellulose layer in a simulation box (a). Spatial
distribution of grafted chains at 12% (b) and 25% (c) substitution. Green surface: cellulose crystal.
Red: oxygen; cyan: carbons; white: hydrogens; blue: nitrogen; pink: K+ ions. Water molecules are
not shown for clarity.

The cellulose surface was modified by replacing the primary hydroxyl groups attached
to the rings through the methylene groups; the experimental procedure to perform this
has been described in several studies [23,42–45]. Grafting was realized via the N-end of
amino acid. The C-termini of the grafted chains were terminated by a carboxyl group.
The degree of polymerization of the grafted chains was 6. This degree of polymerization
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corresponds to experimental studies of grafting of glutamic acid oligomers onto cellulose
nanocrystals [23]. The use of short chains allows for high grafting density.

Two levels of substitution, 12% and 25%, of primary hydroxyl groups corresponding
to grafting densities σ = 0.2 nm−2 and σ = 0.4 nm−2, were considered. The same degrees of
cellulose surface modification were used in our previous work devoted to the investigation
of the phosphorylated cellulose mineralization [40]. The choice of these modification
degrees allowed us to investigate two regimes of the grafting densities: the charged
mushroom regime and the osmotic regime. A preliminary simulation of a single grafted
chain showed that the inverse surface area occupied by one isolated chain is σ* ≈ 0.3 nm−2.
Thus, systems with σ = 0.2 nm−2 represent the charged mushroom regime (regime without
steric interactions between grafted chains) and systems with σ = 0.4 nm−2 represent the
osmotic regime [46]. All carboxyl groups were deprotonated, which corresponds to a
solution with pH > 7. This choice is based on the results of Terauchi et al. [47], who have
shown that with the increase of molecular weight, the pKa value increases and is 5.74 for
poly(aspartic acid) and 6.05 for poly(glutamic acid). At pH 7.4, the degree of ionization for
poly(aspartic acid) is 0.94 and 0.9 for poly(glutamic acid).

The initial dimensions of the simulation box were 8.7 nm × 8.9 nm × 10 nm. After
creating a chemically modified cellulose model, the free space of the box was filled with
water molecules. Part of the water molecules was randomly replaced by counterions to
ensure overall electroneutrality. Due to the reported artificially strong attractions between
Na+ ions and charged groups, which may cause unrealistic chain conformations [48–50], K+

ions were used as counterions. The systems and their compositions are shown in Table 1.

Table 1. List of brush structures considered in the simulations.

Brush Structures Considered in the Simulation

№ Amino Acid Degree of Primary Hydroxyl Group
Substitution, % (Grafting Density, 1/nm2)

Number of Grafted
Chains Number of K+ Ions

1
Glutamic acid

12% (0.2) 16 112
2 25% (0.4) 32 224
3 Aspartic acid 12% (0.2) 16 112
4 25% (0.4) 32 224

CaCl2 Concentrations Considered in the Simulations

№ Concentration of
CaCl2, mol/kg Number of Ca2+ Ions Number of Cl− Ions

1 0 0 0
2 0.07 24 48
3 0.15 48 96
4 0.30 96 192
5 0.62 192 384
6 0.94 288 576

After obtaining an equilibrium brush structure in an aqueous solution (the criteria of
the equilibration are discussed below), part of the water molecules was replaced with CaCl2
ions. Five concentrations representing a concentration range from partial neutralization
of the brush charge to excessive ion adsorption were used; see Table 1. Figure 1 shows an
example of a starting configuration with glutamic acid oligomers.

2.2. MD Simulation Parameters

All the simulations were performed with the Gromacs 2016.3 software [51]. For amino
acids and ions, the CHARMM27 force field (CHARMM22/CMAP) [52] was used, and
for cellulose CSFF (carbohydrate solution force field) [53] based on CHARMM22 was
employed. This combination of force fields has been successfully used in our previous
simulations of native and phosphorylated cellulose in salt solutions [40,54].
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For ion–ion interactions, we used the correction proposed by Church et al. [55]. This ap-
proach is based on modifying the Lennard-Jones σ-parameter for the interactions between
the Ca2+ ions and the carbonyl oxygens of the glutamic acid residues. This modification has
been shown to produce a correct representation of the interaction energy corresponding to
experimental NMR data [56,57].

For water molecules, the CHARMM compatible version of the TIP3P model was
used [58]. All simulations were performed in the isothermal-isobaric (NPT) ensemble
at p = 1 bar and T = 300 K. To maintain constant temperature and pressure, the Nosé-
Hoover thermostat [59,60] and the Parrinello-Rahman barostat [61] were used. Electrostatic
interactions were treated using the particle-mesh Ewald (PME) method [62]. The P-LINCS
algorithm [63] was used to constrain bond lengths involving hydrogen atoms. Visualization
of trajectories was performed using the Visual Molecular Dynamics (VMD) software [64].

Simulations of systems without salt were performed by unbiased MD. Each sys-
tem was simulated for 500 ns with a 2 fs time step. The first 100 ns were considered as
equilibration. Our previous studies have shown that this time is enough to achieve equilib-
rium [40,49] and it was also verified by measuring the distribution of K+ ions (Figure S2).
After the above 100 ns equilibration followed by the addition of CaCl2, preliminary equi-
libration was performed by unbiased 20 ns MD simulations. The final configurations of
these simulations were used as starting configurations for well-tempered metadynamics
simulations [38].

2.3. Metadynamics Simulation Parameters

Well-tempered metadynamics simulations were performed by Gromacs software
patched by PLUMED 2.4.2 [65]. One of the challenges in metadynamics is the determination
of the correct collective variables (CV). Since interactions between Ca2+ ions and carboxyl
groups play a key role in structure formation, we chose the number of the carboxyl
groups free from adsorbed Ca2+ ions as the collective variable. Free carboxyl groups were
defined via:

s =
1 −

(
r
r0

)6

1 −
(

r
r0

)12 (1)

where r is the distance between the carboxyl oxygen and a Ca2+ ion. The variable r0
is defined as the maximum of the radial distribution function between the oxygens of
carboxyl groups and a Ca2+ ion (the radial distribution function is shown in Figure S3). If
the function is equal to zero, the carboxyl group is considered to be free from Ca2+ ions.
Metadynamics is based on the addition of Gaussians to the energy landscape using CVs.
Here, the Gaussian width was set to 0.05 and the initial Gaussian deposition rate to 2 kJ/mol
per ps, with a bias factor of 20. The changing of CV during the time simulation is shown in
Figure S4. We have equilibrated for an additional 150 ns using metadynamics and used the
time interval 150–450 ns as a production run for collecting data. A similar approach has
been successfully used to simulate ion adsorption on phospholipid membranes [66] and
the formation of calcium phosphate prenucleation clusters [67].

3. Results
3.1. Structure of Brush in Pure Water

The difference between aspartic and glutamic acid oligomers grafted onto the surface
is already observed in the systems without salt. To investigate the effects of the side chain
length on the structure of the grafted layer, we studied component-wise density profiles,
Figure 2.

Figure 2 demonstrates the differences between the structures of the brushes based on
the two different amino acids. The additional methylene group in the glutamic acid residue
increases the total density of the grafting layer. The boundary of the glutamic acid brush
density is slightly shifted toward the cellulose surface. This may result from the specific
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interactions between grafted chains and the surface—this is discussed in later sections of
the paper. The differences in the distributions also lead to differences in hydration. Due to
the higher density of the glutamic acid brush, the amount of water is lower and water is
not evenly distributed inside the brush. Although the cellulose surface is well solvated,
the amount of water decreases with increasing brush density. Counterion distribution also
depends on the type of amino acid. In particular, K+ ion distribution in the glutamic acid
brush has a pronounced peak close to the surface (see the insets in Figure 2).
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To understand the origins of these effects, we analyzed the conformations of the
grafted chains; Figure 3 shows the chain end distributions. The carbon of the methylene
group of the main chain (Cα) of the last residue was chosen as the control atom for
the analysis.
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Figure 3 shows that the ends of the glutamic acid oligomers have a bimodal distri-
bution, while the chains of aspartic acid are mostly elongated. This can be explained by
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the differences in interactions with the cellulose layer. As the grafting density increases,
the glutamic acid oligomers become more elongated, and their ends are located farther
from the cellulose surface. Figure 4 shows the orientations of the chain residues in terms of
cosine of the angle between the vectors connecting Cα atoms of neighbor monomers and
the axis perpendicular to the surface. The orientation of the chain monomers confirms that
a large number of glutamic acid oligomers lie on the cellulose surface. For the system with
12% substitution (Figure 4a), the average cosine is close to zero and even negative (for the
second and third monomers), which indicates a vector directed towards the surface. With
an increase in grafting density (Figure 4b), the average cosine value increases, indicating
a change in the ratio of two states of the chains (lying on and directed from the surface).
Snapshots from simulations are shown in Figure 5.
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Figure 5. Illustrations of two typical conformations of a glutamic acid oligomer: (a) chain lying on
the cellulose surface and (b) chain directed away from the surface. Cellulose surface is green, the
side chains are illustrated by lines, CPK representation is used for the backbone, and Cα atoms of the
last residue are visualized using a larger size.

The reason for chains lying on the surface is specific interactions between the amide
groups of the main chain and the hydroxyl groups of the cellulose surface. This is demon-
strated in Figure 6, which shows the radial distribution function between the oxygen atoms
of the amide groups and the hydrogens of the hydroxyl groups. The radial distribution
function was calculated as

gAB(r) =
1

NAρB
∑NA

i⊂A ∑NB
j⊂A

δ
(
rij − r

)
4πr2 (2)

where ρB is the average density of type B atoms around atoms A, NA and NB are the number
of A and B atoms, respectively, rij is the distance between two atoms A and B, and δ is the
Kronecker delta function.
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groups) and amino acid backbone (O of amide groups). Solid lines: aspartic acid oligomers; dashed
lines: glutamic acid oligomers. (a) Systems with 12% substitution of primary hydroxyl groups and
(b) systems with 25% substitution.

Systems with bimodal distributions of the grafted chain conformations (see Figure 3)
are characterized by a peak in the radial distribution function for hydrogens of the surface
hydroxyl groups and oxygens of the amino acid backbones at short distances (r = 0.2). This
is typical for the H-bonds; however, a detailed analysis of H-bonds, including distance
and angle criteria, showed that only 30% of the contacts are hydrogen bonds. The rest
is the result of dipole–dipole interactions. In the case of a glutamic acid brush, only one
H-bond binds the lying chain onto the surface (distributions of the number of close contacts
between hydrogens of surface hydroxyl groups and oxygens of amide groups and H-bonds
between them are shown in Figure S5).

To confirm that the chains indeed lie on the surface due to the interactions with the
surface, we simulated an additional system in which we disabled partial atomic charges on
the cellulose molecules. For this purpose, the system with the highest number of chains
lying on the surface was chosen. The results and comparison with the systems with partial
charges present are shown in Figure 7.

As the figure shows, the oligomers extend away from the cellulose surface when the
partial charges are set to zero, i.e., dipole–dipole interactions and H-bonds cannot form.
Thus, the absence of attractive interactions between the oligomer and the cellulose surface
is the reason for the first peak in Figure 7 shifting to higher values. This result confirms
that the reason for the bimodal distribution of the glutamic acid oligomer conformation
shown in Figure 3 is H-bonding and dipole–dipole interactions between the grafted chain
and cellulose surface.

Side-chain length is a major reason for the different behaviors. A longer side chain may
prevent interactions with the surface; however, in the case of glutamic acid, the additional
methylene group in the side chain gives it an additional degree of freedom, which makes
it possible to rotate the side chains and allow for interactions between the main chains
of the grafted molecules and the cellulose surface. Moreover, the additional group in the
side chain helps to overcome the dihedral angle energy barriers and make the chain more
flexible; the energy barrier for transitions between dihedral angles of aspartic acid is over
kT higher than for glutamic acid. The potential of mean force obtained from the dihedral
distribution is shown in Figure S6.
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3.2. The Structure of the Brush in CaCl2 Solution

The addition of CaCl2 in the solution leads to changes in the brush structures. Figure 8
shows the typical distributions of the components at the CaCl2 concentration of 0.15 mol/kg.

Polymers 2021, 13, 1789 10 of 17 
 

 

 
Figure 8. Number density profiles of the brush for (a,b) aspartic acid brushes and (c,d) glutamic 
acid brushes. The density profiles of cellulose, brush, Ca2+, K+, and Cl- ions are shown by green, 
purple, black, red, and blue lines, respectively. Insets show close-ups of brush distributions. (a,c) 
Systems with 12% substitution of primary hydroxyl groups and (b,d) systems with 25% substitu-
tion. CaCl2 concentration is 0.15 mol/kg. 

Figure 8 shows that Ca2+ ions are adsorbed in the brush. Together with cations, Cl- 
ions also penetrate the brush, partly compensating for the cation charge. Interestingly, the 
location of the Ca2+ ions differs from the location of K+ ions. A significant part of the K+ 
ions is located deeper inside the brush. This result correlates well with our previous work 
on mineralization of phosphorylated surfaces, where it was shown that Na+ ions are lo-
cated deeper in the cellulose layer than Ca2+ ions [40]. The cellulose surface layer has a 
significantly lower dielectric constant, making the localization of ions energetically pref-
erable; however, the sizes of ions with their respective hydration shells are too large to 
penetrate this layer. Unlike Ca2+ ions, monovalent ions can lose water from the hydration 
shell, allowing them to move deeper into the cellulose surface layer and establish ion–ion 
and ion–dipole interactions at a lower dielectric constant. Similar behavior has also been 
reported for lipid membranes [68]. Figure 9 shows the dependence of the number of ions 
(per one carboxyl group) inside the brush as a function of CaCl2 concentration. 

 
Figure 9. Dependence of the number of ions per carboxyl group (Ca2+, K+, Cl−) on CaCl2 concentra-
tion. Ca2+, K+, and Cl− ions are shown by black, red, and blue lines, respectively. Solid lines: aspar-
tic acid brushes; dashed lines: glutamic acid brushes. (a) Systems with 12% substitution of primary 
hydroxyl groups and (b) systems with 25% substitution. 

Figure 8. Number density profiles of the brush for (a,b) aspartic acid brushes and (c,d) glutamic acid brushes. The density
profiles of cellulose, brush, Ca2+, K+, and Cl− ions are shown by green, purple, black, red, and blue lines, respectively.
Insets show close-ups of brush distributions. (a,c) Systems with 12% substitution of primary hydroxyl groups and (b,d)
systems with 25% substitution. CaCl2 concentration is 0.15 mol/kg.

Figure 8 shows that Ca2+ ions are adsorbed in the brush. Together with cations, Cl−

ions also penetrate the brush, partly compensating for the cation charge. Interestingly,
the location of the Ca2+ ions differs from the location of K+ ions. A significant part of the
K+ ions is located deeper inside the brush. This result correlates well with our previous
work on mineralization of phosphorylated surfaces, where it was shown that Na+ ions
are located deeper in the cellulose layer than Ca2+ ions [40]. The cellulose surface layer
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has a significantly lower dielectric constant, making the localization of ions energetically
preferable; however, the sizes of ions with their respective hydration shells are too large to
penetrate this layer. Unlike Ca2+ ions, monovalent ions can lose water from the hydration
shell, allowing them to move deeper into the cellulose surface layer and establish ion–ion
and ion–dipole interactions at a lower dielectric constant. Similar behavior has also been
reported for lipid membranes [68]. Figure 9 shows the dependence of the number of ions
(per one carboxyl group) inside the brush as a function of CaCl2 concentration.
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Figure 9. Dependence of the number of ions per carboxyl group (Ca2+, K+, Cl−) on CaCl2 concentra-
tion. Ca2+, K+, and Cl− ions are shown by black, red, and blue lines, respectively. Solid lines: aspartic
acid brushes; dashed lines: glutamic acid brushes. (a) Systems with 12% substitution of primary
hydroxyl groups and (b) systems with 25% substitution.

As CaCl2 concentration increases, the divalent Ca2+ ions replace the monovalent
K+ ones; however, the K+ ions located deeper in the layer remain there even at high
concentration levels. In addition, as the number of the adsorbed Ca2+ ions increases,
so does the number of Cl− ions. As Figure 10 shows, at some concentrations, there is
an overcompensation of charge inside the brush. It is important to mention that the
sorption capacity of the brush per chain decreases as the degree of surface modification
increases. The same dependence has been observed for phosphorylated cellulose in CaCl2
solution [40]. In the case of high grafting density, the adsorbed Ca2+ ions repel each other,
and, consequently, they cannot occupy all vacant carboxyl groups.
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Figure 10. Total charge of the brush as a function of CaCl2 concentration. Solid lines: aspartic acid
brushes; dashed lines: glutamic acid brushes. (a) Systems with 12% substitution of primary hydroxyl
groups and (b) systems with 25% substitution.

Although there is no significant difference between the adsorption of individual
types of ions by aspartic-acid-based and glutamic-acid-based brushes, the difference in
the total charge of the brush is more distinguishable. Despite the fact that the absolute
number of adsorbed ions at high concentrations is different for different degrees of surface
modification, the ratio between the cations and anions gives a similar total charge. In the
case of 12% substitution of hydroxyl groups, the total charge of the brushes reach saturation
with the increase of the CaCl2 concentration starting from 0.3 mol/kg (Figure 10a); in the
case of this low grafting density (the so-called charged mushroom mode), there is enough
space inside the brush layer, and the longer side chains of glutamic acid are able to adsorb
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more ions. As the grafting density increases (transition to osmotic mode), the space becomes
limited for both glutamic and aspartic acids, and the differences between brushes become
indistinguishable (Figure 10b).

The different side-chain lengths also affect the response to salt concentration. Figure 11
shows the brush height as a function of CaCl2 concentration. It was calculated using

H =

∫ ∞
0 zρ(z)dz∫ ∞
0 ρ(z)dz

− z0, (3)

where ρ(z) is the density profile of the brush along the z-coordinate and z0 is the coordinate
of the grafting point.

Polymers 2021, 13, 1789 11 of 17 
 

 

As CaCl2 concentration increases, the divalent Ca2+ ions replace the monovalent K+ 
ones; however, the K+ ions located deeper in the layer remain there even at high concen-
tration levels. In addition, as the number of the adsorbed Ca2+ ions increases, so does the 
number of Cl- ions. As Figure 10 shows, at some concentrations, there is an overcompen-
sation of charge inside the brush. It is important to mention that the sorption capacity of 
the brush per chain decreases as the degree of surface modification increases. The same 
dependence has been observed for phosphorylated cellulose in CaCl2 solution [40]. In the 
case of high grafting density, the adsorbed Ca2+ ions repel each other, and, consequently, 
they cannot occupy all vacant carboxyl groups. 

 
Figure 10. Total charge of the brush as a function of CaCl2 concentration. Solid lines: aspartic acid 
brushes; dashed lines: glutamic acid brushes. (a) Systems with 12% substitution of primary hy-
droxyl groups and (b) systems with 25% substitution. 

Although there is no significant difference between the adsorption of individual 
types of ions by aspartic-acid-based and glutamic-acid-based brushes, the difference in 
the total charge of the brush is more distinguishable. Despite the fact that the absolute 
number of adsorbed ions at high concentrations is different for different degrees of surface 
modification, the ratio between the cations and anions gives a similar total charge. In the 
case of 12% substitution of hydroxyl groups, the total charge of the brushes reach satura-
tion with the increase of the CaCl2 concentration starting from 0.3 mol/kg (Figure 10a); in 
the case of this low grafting density (the so-called charged mushroom mode), there is 
enough space inside the brush layer, and the longer side chains of glutamic acid are able 
to adsorb more ions. As the grafting density increases (transition to osmotic mode), the 
space becomes limited for both glutamic and aspartic acids, and the differences between 
brushes become indistinguishable (Figure 10b). 

The different side-chain lengths also affect the response to salt concentration. Figure 
11 shows the brush height as a function of CaCl2 concentration. It was calculated using 𝐻 = ( )∞ ( )∞ 𝑧  , (3) 

where ρ(z) is the density profile of the brush along the z-coordinate and z0 is the coordinate 
of the grafting point. 

 
Figure 11. Dependence of the brush height on CaCl2 concentration. Solid lines: aspartic acid 
brushes; dashed lines: glutamic acid brushes. (a) Systems with 12% substitution of primary hy-
droxyl groups and (b) systems with 25% substitution. 

Figure 11. Dependence of the brush height on CaCl2 concentration. Solid lines: aspartic acid brushes;
dashed lines: glutamic acid brushes. (a) Systems with 12% substitution of primary hydroxyl groups
and (b) systems with 25% substitution.

At low grafting density (Figure 11a), the changes in the structure of the aspartic
acid brush are more significant. The brush height decreases rapidly with the addition of
salt at low concentrations of CaCl2 and partially recovers at higher concentrations. This
behavior is similar to what has been reported for chain sizes of free polyelectrolytes in
multivalent solutions [32,69,70]. Moreover, similar to the behavior of anionic poly (amino
acid) chains [32], glutamic acid brushes remain folded over a wider concentration range
than aspartic acid brushes. These similarities are associated with the low grafting density
that, to a large degree, eliminates steric interactions.

As the grafting density increases (Figure 11b), the differences in the heights of the
aspartic and glutamic acid brushes become more pronounced. The behavior of aspartic
acid brush is qualitatively similar to the brush behaviors at low CaCl2 concentration
(Figure 11a), the brush size decreases, and with a further increase in concentration, it is
partly restored. This result is in qualitative agreement with the theoretical prediction for
brush height versus concentration proposed by Brettmann et al. [12]. In the case of high
grafting density, the concentration region of the collapsed aspartic acid brush is much
wider due to the large number of carboxyl groups. The glutamic acid brushes at 25%
surface modification show qualitatively different behavior: The glutamic acid brush is
almost independent of salt concentration, and with an increase of salt concentration, the
brush size increases. This result contradicts the theory [12], which does not predict an
increase in brush height with the addition of a multivalent salt. This behavior is associated
with the longer side chain, which can form calcium bridges without folding the chain,
whereas the ideal polyelectrolyte (without side chains) considered by the theory does not
have this ability.

Calcium ions in the brush tend to interact with two carboxyl groups connecting them
and form long-living bridges [32]. At 25% surface modification, the distance between the
grafting points is 1 nm (see Figure 1c), which is very close to the distance between the
backbones of the grafted glutamic acid oligomers connected by a Ca2+ bridge. Thus, the
formation of a Ca2+ bridge between adjacent grafted chains occurs practically without
folding. With an increase in concentration, some of the surface-lying chains become directed
away from the surface, trying to form the most energetically favorable intermolecular
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contacts with Ca2+ ions. This is reflected in the total height of the brush. The changes in
the chain end distributions at different CaCl2 concentrations are shown in Figure S7. In
the case of the aspartic acid brush, the formation of Ca2+ bridges between grafted chains
brings them closer to each others’ main chains and decreases the brush size. Intermolecular
Ca2+ bridges in aspartic acid and glutamic acid brushes are illustrated in Figure 12.
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Figure 12. Snapshots illustrating Ca2+ bridges in (a) glutamic acid and (b) aspartic acid brushes.

Cellulose modified by anionic molecules is used for the synthesis of organomineral
composites [9]. The distribution of Ca2+ ions and its dependence on brush structure is
an important factor, which allows determining the structure for the formation of min-
erals in the brush [71,72]. To check how the differences between glutamic and aspartic
brushes (Figure 11) influence the Ca2+ ion distributions, we analyzed the Ca2+-Ca2+ ra-
dial distribution functions for the systems at the highest considered CaCl2 concentration
(Figure 13).
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Figure 13. Ca2+-Ca2+ radial distribution functions for the systems with 0.94 mol/kg CaCl2 concen-
tration. Solid lines: aspartic acid brushes; dashed lines: glutamic acid brushes. (a) Systems with 12%
substitution of primary hydroxyl groups and (b) systems with 25% substitution.

At lower grafting density (Figure 13a), the distribution of Ca2+ ions is practically the
same, and at the higher grafting density (Figure 13b), some differences arise primarily in
the peak intensities.

4. Conclusions

We have performed unbiased MD and well-tempered metadynamics simulations
of polymer brushes based on two anionic amino acid oligomers, α,L-glutamic acid and
α,L-aspartic acid, grafted onto cellulose surface in water and CaCl2 solutions. The results
show that the structure and behavior of the polyelectrolyte brushes depend on the chain
length, grafting density, and chemical structure.

In the case of the shorter aspartic acid oligomers, the side chains with the charged
carboxyl groups prevent interactions with the cellulose surface, and they are pushed away
from the surface. The glutamic acid oligomers show different behavior: their longer length
and conformational freedom of the side chain due to the additional methylene group
together with lower energy barriers between different states of the dihedral angles allow
the side chains to rotate and to establish specific interactions with the cellulose surface. Due
to this, the grafted chains display two populations: (1) chains lying on the surface of the
cellulose and (2) chains directed away from the surface. This result is important from the
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point of view of chemical modifications. Chains lying on the surface can make it difficult
to access the surface and any new free grafting points. This can become the limiting step
that determines the maximum degree of chemical modifications of the cellulose surface.
Moreover, the bimodal distribution of the chains leads to an uneven availability of end
groups of the grafted chains. End group availability is important for the synthesis of
copolymers on the cellulose surface or when using the “grafting from” approach [73],
which consists of chain polymerization straight from the surface. In this case, the uneven
availability of end groups leads to an uneven chemical modification of the surface.

The differences in the side chains also lead to a difference in brush structures in CaCl2
solutions. In the case of low grafting density at which the grafted chains do not interact by
steric interactions, the behavior of the chains is similar to the behavior of polyelectrolyte
chains in a multivalent salt [32,69,70]. The longer side chain of glutamic acid helps to
spatially distribute the adsorbed ions inside the brush. This has an important effect on the
total charge of the brush: the glutamic acid brush displays charge inversion; however, as
the grafting density increases, the length of the side chain ceases to play a significant role
in the total charge of the brush due to the lesser free volume in it.

At high grafting density, the presence of longer side chains makes the brush less sensi-
tive to the environment. The grafted chains are able to adsorb ions and form intermolecular
Ca2+ bridges. This allows the brush to absorb Ca2+ ions without significant changes in the
brush height. Moreover, we have shown that the brush height increases with the addition
of salt due to changes in the bimodal chain end bimodal distribution, as discussed above.
Although the brush structures based on the two different amino acids are different, the
distribution of mineral ions in them is similar, suggesting that both brushes should induce
mineralization with a similar structure. It is plausible that the results of this investigation of
the response of the brush structure on the presence of CaCl2 salt may be treated as a guide
for the design of cellulose-based membranes for water purification and the development of
mineral composites for tissue engineering.
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between hydrogens of surface hydroxyl groups and oxygens of amide groups and H-bonds between
them. Figure S6: Dihedral angle distributions of the side chain and potential of mean force obtained
from the distributions. Figure S7: Density profiles of the ends of the grafted oligomers of aspartic
and glutamic acids at different CaCl2 concentrations.

Author Contributions: Conceptualization, D.T., N.L., S.L., M.K.; methodology, D.T., G.M., M.K.;
software, D.T., G.M.; validation, D.T., G.M.; formal analysis, D.T., N.L., G.M., S.L.; investigation,
D.T., N.L., G.M., S.L., M.K.; resources, S.L., M.K.; data curation, D.T., N.L., G.M., S.L., M.K.; writing—
original draft preparation D.T., N.L., G.M., S.L., M.K.; writing—review and editing, D.T., N.L., S.L.,
M.K.; visualization, D.T., N.L., G.M.; supervision, D.T., M.K.; project administration, D.T.; funding
acquisition, D.T. All authors have read and agreed to the published version of the manuscript.

Funding: The investigation was performed within the framework of the Project No 19-73-00283 of
the Russian Science Foundation (RSF). Computational Resources were provided by the Institute
of Macromolecular Compounds of the Russian Academy of Sciences, the resources of the federal
collective usage center Complex for Simulation and Data Processing for Mega-science Facilities at
NRC “Kurchatov Institute” http://ckp.nrcki.ru/ accessed date: 9 March 2021 (Ministry subvention
under agreement RFMEFI62117X0016), and SharcNet/Compute Canada.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/polym13111789/s1
https://www.mdpi.com/article/10.3390/polym13111789/s1
http://ckp.nrcki.ru/


Polymers 2021, 13, 1789 14 of 16

References
1. Das, S.; Banik, M.; Chen, G.; Sinha, S.; Mukherjee, R. Polyelectrolyte brushes: Theory, modelling, synthesis and applications.

Soft Matter 2015, 11, 8550–8583. [CrossRef] [PubMed]
2. Chen, W.-L.; Cordero, R.; Tran, H.; Ober, C.K. 50th Anniversary Perspective: Polymer Brushes: Novel Surfaces for Future

Materials. Macromolecules 2017, 50, 4089–4113. [CrossRef]
3. Xu, X.; Billing, M.; Ruths, M.; Klok, H.-A.; Yu, J. Structure and Functionality of Polyelectrolyte Brushes: A Surface Force

Perspective. Chem. Asian J. 2018, 13, 3411–3436. [CrossRef] [PubMed]
4. Wilts, E.M.; Herzberger, J.; Long, T.E. Addressing water scarcity: Cationic polyelectrolytes in water treatment and purification.

Polym. Int. 2018, 67, 799–814. [CrossRef]
5. Migahed, M.; Rashwan, S.; Kamel, M.; Habib, R. Synthesized polyaspartic acid derivatives as corrosion and scale inhibitors in

desalination operations. Cogent Eng. 2017, 4, 1366255. [CrossRef]
6. Jiang, T.; Yu, X.; Carbone, E.J.; Nelson, C.; Kan, H.M.; Lo, K.W.-H. Poly aspartic acid peptide-linked PLGA based nanoscale

particles: Potential for bone-targeting drug delivery applications. Int. J. Pharm. 2014, 475, 547–557. [CrossRef]
7. Sattari, S.; Tehrani, A.D.; Adeli, M. pH-Responsive Hybrid Hydrogels as Antibacterial and Drug Delivery Systems. Polymers 2018,

10, 660. [CrossRef]
8. Boyaciyan, D.; Krause, P.; Von Klitzing, R. Making strong polyelectrolyte brushes pH-sensitive by incorporation of gold

nanoparticles. Soft Matter 2018, 14, 4029–4039. [CrossRef]
9. Stepanova, M.; Averianov, I.; Serdobintsev, M.; Gofman, I.; Blum, N.; Semenova, N.; Nashchekina, Y.; Vinogradova, T.;

Korzhikov-Vlakh, V.; Karttunen, M.; et al. PGlu-Modified Nanocrystalline Cellulose Improves Mechanical Properties, Bio-
compatibility, and Mineralization of Polyester-Based Composites. Materuals 2019, 12, 3435. [CrossRef]

10. Zhulina, E.B.; Birshtein, T.M.; Borisov, O.V. Theory of Ionizable Polymer Brushes. Macromolecules 1995, 28, 1491–1499. [CrossRef]
11. Zhulina, E.B.; Borisov, O.V.; Birshtein, T.M. Polyelectrolyte Brush Interaction with Multivalent Ions. Macromolecules 1999, 32,

8189–8196. [CrossRef]
12. Brettmann, B.K.; Laugel, N.; Hoffmann, N.; Pincus, P.; Tirrell, M. Bridging contributions to polyelectrolyte brush collapse in

multivalent salt solutions. J. Polym. Sci. Part A Polym. Chem. 2015, 54, 284–291. [CrossRef]
13. Yu, J.; Jackson, N.E.; Xu, X.; Brettmann, B.K.; Ruths, M.; De Pablo, J.J.; Tirrell, M. Multivalent ions induce lateral structural

inhomogeneities in polyelectrolyte brushes. Sci. Adv. 2017, 3, eaao1497. [CrossRef] [PubMed]
14. Brettmann, B.; Pincus, P.; Tirrell, M. Lateral Structure Formation in Polyelectrolyte Brushes Induced by Multivalent Ions.

Macromolecules 2017, 50, 1225–1235. [CrossRef]
15. Birshtein, T.; Polotsky, A.; Glova, A.; Amoskov, V.; Mercurieva, A.; Nazarychev, V.; Lyulin, S. How to fold back grafted chains in

dipolar brushes. Polymers 2018, 147, 213–224. [CrossRef]
16. Glova, A.; Falkovich, S.G.; Larin, S.V.; Mezhenskaia, D.A.; Lukasheva, N.V.; Nazarychev, V.M.; Tolmachev, D.A.; Mercurieva, A.A.;

Kenny, J.M.; Lyulin, S.V. Poly(lactic acid)-based nanocomposites filled with cellulose nanocrystals with modified surface: All-atom
molecular dynamics simulations. Polym. Int. 2016, 65, 892–898. [CrossRef]

17. Glova, A.D.; Larin, S.V.; Falkovich, S.G.; Nazarychev, V.M.; Tolmachev, D.A.; Lukasheva, N.V.; Lyulin, S.V. Molecular dynamics
simulations of oligoester brushes: The origin of unusual conformations. Soft Matter 2017, 13, 6627–6638. [CrossRef] [PubMed]

18. Glova, A.D.; Larin, S.V.; Nazarychev, V.M.; Karttunen, M.; Lyulin, S.V. Grafted Dipolar Chains: Dipoles and Restricted Freedom
Lead to Unexpected Hairpins. Macromolecules 2019, 53, 29–38. [CrossRef]

19. Mikhailov, I.; Amoskov, V.; Darinskii, A.; Birshtein, T. The Structure of Dipolar Polymer Brushes and Their Interaction in the Melt.
Impact of Chain Stiffness. Polymers 2020, 12, 2887. [CrossRef]

20. Thombre, S.M.; Sarwade, B.D. Synthesis and Biodegradability of Polyaspartic Acid: A Critical Review. J. Macromol. Sci. Part A
2005, 42, 1299–1315. [CrossRef]

21. Xie, H.; Du, H.; Yang, X.; Si, C. Recent Strategies in Preparation of Cellulose Nanocrystals and Cellulose Nanofibrils Derived from
Raw Cellulose Materials. Int. J. Polym. Sci. 2018, 2018, 1–25. [CrossRef]

22. Wang, W.; Sabo, R.C.; Mozuch, M.D.; Kersten, P.; Zhu, J.Y.; Jin, Y. Physical and Mechanical Properties of Cellulose Nanofibril
Films from Bleached Eucalyptus Pulp by Endoglucanase Treatment and Microfluidization. J. Polym. Environ. 2015, 23, 551–558.
[CrossRef]

23. Averianov, I.; Stepanova, M.A.; Gofman, I.V.; Nikolaeva, A.L.; Korzhikov-Vlakh, V.A.; Karttunen, M.; Korzhikova-Vlakh, E.G.
Chemical modification of nanocrystalline cellulose for improved interfacial compatibility with poly(lactic acid). Mendeleev Commun.
2019, 29, 220–222. [CrossRef]

24. Mao, H.; Wei, C.; Gong, Y.; Wang, S.; Ding, W. Mechanical and Water-Resistant Properties of Eco-Friendly Chitosan Membrane
Reinforced with Cellulose Nanocrystals. Polymers 2019, 11, 166. [CrossRef]

25. Fürsatz, M.; Skog, M.; Sivlér, P.; Palm, E.; Aronsson, C.; Skallberg, A.; Greczynski, G.; Khalaf, H.; Bengtsson, T.; Aili, D.
Functionalization of bacterial cellulose wound dressings with the antimicrobial peptide ε-poly-L-Lysine. Biomed. Mater. 2017,
13, 025014. [CrossRef]

26. Sulaeva, I.; Henniges, U.; Rosenau, T.; Potthast, A. Bacterial cellulose as a material for wound treatment: Properties and
modifications. A review. Biotechnol. Adv. 2015, 33, 1547–1571. [CrossRef]

27. Saska, S.; Barud, H.S.; Gaspar, A.M.M.; Marchetto, R.; Ribeiro, S.J.L.; Messaddeq, Y. Bacterial Cellulose-Hydroxyapatite Nanocom-
posites for Bone Regeneration. Int. J. Biomater. 2011, 2011, 175362. [CrossRef] [PubMed]

http://doi.org/10.1039/C5SM01962A
http://www.ncbi.nlm.nih.gov/pubmed/26399305
http://doi.org/10.1021/acs.macromol.7b00450
http://doi.org/10.1002/asia.201800920
http://www.ncbi.nlm.nih.gov/pubmed/30080310
http://doi.org/10.1002/pi.5569
http://doi.org/10.1080/23311916.2017.1366255
http://doi.org/10.1016/j.ijpharm.2014.08.067
http://doi.org/10.3390/polym10060660
http://doi.org/10.1039/C8SM00411K
http://doi.org/10.3390/ma12203435
http://doi.org/10.1021/ma00109a021
http://doi.org/10.1021/ma981811e
http://doi.org/10.1002/pola.27959
http://doi.org/10.1126/sciadv.aao1497
http://www.ncbi.nlm.nih.gov/pubmed/29226245
http://doi.org/10.1021/acs.macromol.6b02563
http://doi.org/10.1016/j.polymer.2018.05.076
http://doi.org/10.1002/pi.5102
http://doi.org/10.1039/C7SM01419H
http://www.ncbi.nlm.nih.gov/pubmed/28926071
http://doi.org/10.1021/acs.macromol.9b02288
http://doi.org/10.3390/polym12122887
http://doi.org/10.1080/10601320500189604
http://doi.org/10.1155/2018/7923068
http://doi.org/10.1007/s10924-015-0726-7
http://doi.org/10.1016/j.mencom.2019.03.036
http://doi.org/10.3390/polym11010166
http://doi.org/10.1088/1748-605X/aa9486
http://doi.org/10.1016/j.biotechadv.2015.07.009
http://doi.org/10.1155/2011/175362
http://www.ncbi.nlm.nih.gov/pubmed/21961004


Polymers 2021, 13, 1789 15 of 16

28. Baklagina, Y.G.; Lukasheva, N.V.; Khripunov, A.K.; Klechkovskaya, V.V.; Arkharova, N.A.; Romanov, D.P.; Tolmachev, D.A.
Interaction between nanosized crystalline components of a composite based on Acetobacter xylinum cellulose and calcium
phosphates. Polym. Sci. Ser. A 2010, 52, 419–429. [CrossRef]

29. Buyanov, A.; Gofman, I.; Saprykina, N. High-strength cellulose–polyacrylamide hydrogels: Mechanical behavior and structure
depending on the type of cellulose. J. Mech. Behav. Biomed. Mater. 2019, 100, 103385. [CrossRef]

30. Hestekin, J.A.; Bachas, A.L.G.; Bhattacharyya, D. Poly(amino acid)-Functionalized Cellulosic Membranes: Metal Sorption
Mechanisms and Results. Ind. Eng. Chem. Res. 2001, 40, 2668–2678. [CrossRef]

31. Sun, M.; Wang, H.; Li, X. Modification of cellulose microfibers by polyglutamic acid and mesoporous silica nanoparticles for
Enterovirus 71 adsorption. Mater. Lett. 2020, 277, 128320. [CrossRef]

32. Tolmachev, D.; Lukasheva, N.; Mamistvalov, G.; Karttunen, M. Influence of Calcium Binding on Conformations and Motions of
Anionic Polyamino Acids. Effect of Side Chain Length. Polymers 2020, 12, 1279. [CrossRef]

33. Picker, A.; Kellermeier, M.; Seto, J.; Gebauer, D.; Cölfen, H. The multiple effects of amino acids on the early stages of calcium
carbonate crystallization. Z. Kristallogr. Cryst. Mat. 2012, 227, 744–757. [CrossRef]

34. Thula, T.T.; Svedlund, F.; Rodriguez, D.E.; Podschun, J.; Pendi, L.; Gower, L.B. Mimicking the Nanostructure of Bone: Comparison
of Polymeric Process-Directing Agents. Polymers 2010, 3, 10–35. [CrossRef]

35. Sugita, Y.; Kamiya, M.; Oshima, H.; Re, S. Replica-Exchange Methods for Biomolecular Simulations. Methods Mol. Biol. 2019, 2022,
155–177. [CrossRef] [PubMed]

36. Barducci, A.; Bonomi, M.; Parrinello, M. Metadynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 826–843. [CrossRef]
37. Meli, M.; Colombo, G. A Hamiltonian Replica Exchange Molecular Dynamics (MD) Method for the Study of Folding, Based on

the Analysis of the Stabilization Determinants of Proteins. Int. J. Mol. Sci. 2013, 14, 12157–12169. [CrossRef] [PubMed]
38. Barducci, A.; Bussi, G.; Parrinello, M. Well-Tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method.

Phys. Rev. Lett. 2008, 100, 020603. [CrossRef] [PubMed]
39. Galvelis, R.; Sugita, Y. Replica state exchange metadynamics for improving the convergence of free energy estimates.

J. Comput. Chem. 2015, 36, 1446–1455. [CrossRef] [PubMed]
40. Lukasheva, N.V.; Tolmachev, D.A.; Karttunen, M. Mineralization of phosphorylated cellulose: Crucial role of surface structure

and monovalent ions for optimizing calcium content. Phys. Chem. Chem. Phys. 2019, 21, 1067–1077. [CrossRef]
41. Nishiyama, Y.; Langan, P.; Chanzy, H. Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-ray

and Neutron Fiber Diffraction. J. Am. Chem. Soc. 2002, 124, 9074–9082. [CrossRef] [PubMed]
42. Majoinen, J.; Walther, A.; McKee, J.R.; Kontturi, E.; Aseyev, V.; Malho, J.M.; Ruokolainen, J.; Ikkala, O. Polyelectrolyte Brushes

Grafted from Cellulose Nanocrystals Using Cu-Mediated Surface-Initiated Controlled Radical Polymerization. Biomacromolecules
2011, 12, 2997–3006. [CrossRef]

43. Li, M.; Liu, Z.; Wang, L.; James, T.D.; Xiao, H.-N.; Zhu, W.-H. A glutamic acid-modified cellulose fibrous composite used for the
adsorption of heavy metal ions from single and binary solutions. Mater. Chem. Front. 2017, 1, 2317–2323. [CrossRef]

44. Kang, H.; Liu, R.; Huang, Y. Graft modification of cellulose: Methods, properties and applications. Polymers 2015, 70, A1–A16.
[CrossRef]

45. Abushammala, H.; Mao, J. A Review of the Surface Modification of Cellulose and Nanocellulose Using Aliphatic and Aromatic
Mono- and Di-Isocyanates. Molcules 2019, 24, 2782. [CrossRef] [PubMed]

46. Borisov, O.V.; Birshtein, T.M.; Zhulina, E.B. Collapse of grafted polyelectrolyte layer. J. Phys. II 1991, 1, 521–526. [CrossRef]
47. Terauchi, M.; Tamura, A.; Tonegawa, A.; Yamaguchi, S.; Yoda, T.; Yui, N. Polyelectrolyte Complexes between Polycarboxylates

and BMP-2 for Enhancing Osteogenic Differentiation: Effect of Chemical Structure of Polycarboxylates. Polymers 2019, 11, 1327.
[CrossRef] [PubMed]

48. Melcr, J.; Martinez-Seara, H.; Nencini, R.; Kolafa, J.; Jungwirth, P.; Ollila, O.H.S. Accurate Binding of Sodium and Calcium to a
POPC Bilayer by Effective Inclusion of Electronic Polarization. J. Phys. Chem. B 2018, 122, 4546–4557. [CrossRef]

49. Tolmachev, D.A.; Boyko, O.S.; Lukasheva, N.V.; Martinez-Seara, H.; Karttunen, M. Overbinding and Qualitative and Quantitative
Changes Caused by Simple Na+ and K+ Ions in Polyelectrolyte Simulations: Comparison of Force Fields with and without NBFIX
and ECC Corrections. J. Chem. Theory Comput. 2019, 16, 677–687. [CrossRef] [PubMed]

50. Venable, R.M.; Luo, Y.; Gawrisch, K.; Roux, B.; Pastor, R.W. Simulations of Anionic Lipid Membranes: Development of Interaction-
Specific Ion Parameters and Validation Using NMR Data. J. Phys. Chem. B 2013, 117, 10183–10192. [CrossRef]

51. Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular
simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [CrossRef]

52. Mackerell, A.D., Jr.; Feig, M.; Brooks, C.L. Extending the treatment of backbone energetics in protein force fields: Limitations
of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.
J. Comput. Chem. 2004, 25, 1400–1415. [CrossRef] [PubMed]

53. Kuttel, M.; Brady, J.W.; Naidoo, K.J. Carbohydrate solution simulations: Producing a force field with experimentally consistent
primary alcohol rotational frequencies and populations. J. Comput. Chem. 2002, 23, 1236–1243. [CrossRef]

54. Lukasheva, N.V.; Tolmachev, D.A. Cellulose Nanofibrils and Mechanism of their Mineralization in Biomimetic Synthesis of
Hydroxyapatite/Native Bacterial Cellulose Nanocomposites: Molecular Dynamics Simulations. Langmuir 2015, 32, 125–134.
[CrossRef] [PubMed]

http://doi.org/10.1134/S0965545X10040115
http://doi.org/10.1016/j.jmbbm.2019.103385
http://doi.org/10.1021/ie000572s
http://doi.org/10.1016/j.matlet.2020.128320
http://doi.org/10.3390/polym12061279
http://doi.org/10.1524/zkri.2012.1569
http://doi.org/10.3390/polym3010010
http://doi.org/10.1007/978-1-4939-9608-7_7
http://www.ncbi.nlm.nih.gov/pubmed/31396903
http://doi.org/10.1002/wcms.31
http://doi.org/10.3390/ijms140612157
http://www.ncbi.nlm.nih.gov/pubmed/23743827
http://doi.org/10.1103/physrevlett.100.020603
http://www.ncbi.nlm.nih.gov/pubmed/18232845
http://doi.org/10.1002/jcc.23945
http://www.ncbi.nlm.nih.gov/pubmed/25990969
http://doi.org/10.1039/C8CP05767B
http://doi.org/10.1021/ja0257319
http://www.ncbi.nlm.nih.gov/pubmed/12149011
http://doi.org/10.1021/bm200613y
http://doi.org/10.1039/C7QM00210F
http://doi.org/10.1016/j.polymer.2015.05.041
http://doi.org/10.3390/molecules24152782
http://www.ncbi.nlm.nih.gov/pubmed/31370227
http://doi.org/10.1051/jp2:1991186
http://doi.org/10.3390/polym11081327
http://www.ncbi.nlm.nih.gov/pubmed/31405005
http://doi.org/10.1021/acs.jpcb.7b12510
http://doi.org/10.1021/acs.jctc.9b00813
http://www.ncbi.nlm.nih.gov/pubmed/31755710
http://doi.org/10.1021/jp401512z
http://doi.org/10.1016/j.softx.2015.06.001
http://doi.org/10.1002/jcc.20065
http://www.ncbi.nlm.nih.gov/pubmed/15185334
http://doi.org/10.1002/jcc.10119
http://doi.org/10.1021/acs.langmuir.5b03953
http://www.ncbi.nlm.nih.gov/pubmed/26652774


Polymers 2021, 13, 1789 16 of 16

55. Church, A.T.; Hughes, Z.E.; Walsh, T.R. Improving the description of interactions between Ca2+ and protein carboxylate groups,
including γ-carboxyglutamic acid: Revised CHARMM22* parameters. RSC Adv. 2015, 5, 67820–67828. [CrossRef]

56. Daniele, P.G.; Foti, C.; Gianguzza, A.; Prenesti, E.; Sammartano, S. Weak alkali and alkaline earth metal complexes of low
molecular weight ligands in aqueous solution. Coord. Chem. Rev. 2008, 252, 1093–1107. [CrossRef]

57. Prorok, M.; Castellino, F.J. Thermodynamics of Binding of Calcium, Magnesium, and Zinc to theN-Methyl-d-aspartate Receptor
Ion Channel Peptidic Inhibitors, Conantokin-G and Conantokin-T. J. Biol. Chem. 1998, 273, 19573–19578. [CrossRef] [PubMed]

58. MacKerell, A.D.; Bashford, D.; Bellott, M.; Dunbrack, R.L.; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; et al.
All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B 1998, 102, 3586–3616.
[CrossRef]

59. Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [CrossRef]
60. Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984, 52, 255–268. [CrossRef]
61. Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52,

7182–7190. [CrossRef]
62. Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys.

1993, 98, 10089–10092. [CrossRef]
63. Hess, B. P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 116–122.

[CrossRef] [PubMed]
64. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [CrossRef]
65. Tribello, G.A.; Bonomi, M.; Branduardi, D.; Camilloni, C.; Bussi, G. PLUMED 2: New feathers for an old bird. Comput. Phys.

Commun. 2014, 185, 604–613. [CrossRef]
66. Martí, J. Free-energy surfaces of ionic adsorption in cholesterol-free and cholesterol-rich phospholipid membranes. Mol. Simul.

2018, 44, 1136–1146. [CrossRef]
67. Garcia, N.A.; Malini, R.I.; Freeman, C.L.; Demichelis, R.; Raiteri, P.; Sommerdijk, N.A.J.M.; Harding, J.H.; Gale, J.D. Simulation of

Calcium Phosphate Prenucleation Clusters in Aqueous Solution: Association beyond Ion Pairing. Cryst. Growth Des. 2019, 19,
6422–6430. [CrossRef]

68. Pöyry, S.; Róg, T.; Karttunen, M.; Vattulainen, I. Mitochondrial Membranes with Mono- and Divalent Salt: Changes Induced by
Salt Ions on Structure and Dynamics. J. Phys. Chem. B 2009, 113, 15513–15521. [CrossRef]

69. Kundagrami, A.; Muthukumar, M. Theory of competitive counterion adsorption on flexible polyelectrolytes: Divalent salts.
J. Chem. Phys. 2008, 128, 244901. [CrossRef]

70. Wei, Y.-F.; Hsiao, P.-Y. Effect of chain stiffness on ion distributions around a polyelectrolyte in multivalent salt solutions.
J. Chem. Phys. 2010, 132, 24905. [CrossRef]

71. Grohe, B.; Hug, S.; Langdon, A.; Jalkanen, J.; Rogers, K.A.; Goldberg, H.A.; Karttunen, M.; Hunter, G.K. Mimicking the
Biomolecular Control of Calcium Oxalate Monohydrate Crystal Growth: Effect of Contiguous Glutamic Acids. Langmuir 2012, 28,
12182–12190. [CrossRef]

72. Kahlen, J.; Peter, C.; Donadio, D. Molecular simulation of oligo-glutamates in a calcium-rich aqueous solution: Insights into
peptide-induced polymorph selection. CrystEngComm 2015, 17, 6863–6867. [CrossRef]

73. Minko, S. Grafting on solid surfaces: “Grafting to” and “grafting from” methods. In Polymer Surfaces and Interfaces—
Characterization, Modification and Applications, 1st ed.; Stamm, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 215–234.

http://doi.org/10.1039/C5RA11268K
http://doi.org/10.1016/j.ccr.2007.08.005
http://doi.org/10.1074/jbc.273.31.19573
http://www.ncbi.nlm.nih.gov/pubmed/9677382
http://doi.org/10.1021/jp973084f
http://doi.org/10.1103/PhysRevA.31.1695
http://doi.org/10.1080/00268978400101201
http://doi.org/10.1063/1.328693
http://doi.org/10.1063/1.464397
http://doi.org/10.1021/ct700200b
http://www.ncbi.nlm.nih.gov/pubmed/26619985
http://doi.org/10.1016/0263-7855(96)00018-5
http://doi.org/10.1016/j.cpc.2013.09.018
http://doi.org/10.1080/08927022.2017.1391383
http://doi.org/10.1021/acs.cgd.9b00889
http://doi.org/10.1021/jp905915m
http://doi.org/10.1063/1.2940199
http://doi.org/10.1063/1.3284785
http://doi.org/10.1021/la3018985
http://doi.org/10.1039/C5CE00676G

	Introduction 
	Models and Methods 
	Model Parameters 
	MD Simulation Parameters 
	Metadynamics Simulation Parameters 

	Results 
	Structure of Brush in Pure Water 
	The Structure of the Brush in CaCl2 Solution 

	Conclusions 
	References

