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Abstract: In this work, a green approach was implemented to prepare polymer composites using
polyvinyl alcohol polymer and the extract of black tea leaves (polyphenols) in a complex form with
Co2+ ions. A range of techniques was used to characterize the Co2+ complex and polymer compos-
ite, such as Ultraviolet–visible (UV-Visible) spectroscopy, Fourier transform infrared spectroscopy
(FTIR), and X-ray diffraction (XRD). The optical parameters of absorption edge, refractive index (n),
dielectric properties including real and imaginary parts (εr, and εi) were also investigated. The FRIR
and XRD spectra were used to examine the compatibility between the PVA polymer and Co2+-
polyphenol complex. The extent of interaction was evidenced from the shifts and change in the
intensity of the peaks. The relatively wide amorphous phase in PVA polymer increased upon
insertion of the Co2+-polyphenol complex. The amorphous character of the Co2+ complex was
emphasized with the appearance of a hump in the XRD pattern. From UV-Visible spectroscopy,
the optical properties, such as absorption edge, refractive index (n), (εr), (εi), and bandgap energy (Eg)
of parent PVA and composite films were specified. The Eg of PVA was lowered from 5.8 to 1.82 eV
upon addition of 45 mL of Co2+-polyphenol complex. The N/m* was calculated from the optical
dielectric function. Ultimately, various types of electronic transitions within the polymer composites
were specified using Tauc’s method. The direct bandgap (DBG) treatment of polymer composites
with a developed amorphous phase is fundamental for commercialization in optoelectronic devices.

Keywords: metal complex; small bandgap PVA composites; XRD and FTIR; UV-vis study; localized
density of state; bandgap study

1. Introduction

The utilization of polymer materials instead of metallic ones has become more
widespread in recent years [1]. This is due to the structural characteristics of the for-
mer, such as the tunability of optical bandgaps [2]. Polymer composites with enhanced
optical properties have been utilized in various applications, such as optical networking
and sensors, light-emitting diodes, solar panels, data storage systems, polarizers, and even
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biomedical applications. Polymers, especially inorganic, nanocomposite ones, can be
fabricated by incorporating inorganic nanoparticles that are then used in optoelectronic
systems [3], making it possible manipulate their optical properties [4].

This modification in optical properties by increasing absorption intensity is caused by
electrostatic interactions between the nanofillers and the host polymers [5]. It is believed
that nanofillers introduce localized charge carrier levels within the polymer matrices
as trapping sites. Thus, it is now possible to accurately measure the optical constant.
Pollution caused by heavy metals is one of the most significant environmental concerns
today [6]. Heavy metals are defined as metals and metalloids with an atomic density greater
than 4000 kg m−3; in other words, five times greater than that of water [7]. In principle,
sorption is a mass transfer process through which a substance transports from the liquid
phase to the solid surface. The solid surface on a substance of interest is bound by physical
and/or chemical interactions [6]. One well-known method of removing toxic heavy metals
is precipitation. Accordingly, the solubility difference of metal precipitates can be exploited
for separating by adding suitable selective anions [8]. This traditional means of removal of
heavy metals is not free of drawbacks; for instance, considerable surface land contamination
occurs, and a sludge dewatering facility, skillful operators, and a multiple basin design are
required. Several methodologies are available for heavy metal removal from wastewater,
such as biosorption, neutralization, precipitation, ion exchange, adsorption, biosorption,
neutralization, precipitation, ion exchange, and adsorption [9]. The straightforward and
easy way involves the use of a selective precipitating agent. Several appropriate bio
sorbents, such as potato peels, sawdust, black gram husk, eggshell, seed shells, coffee husks,
sugar-beet pectin gels, or citrus peels, have been studied in this respect [10]. Plant materials
have shown their potential in nanoparticle synthesis, especially in the biosynthesis process,
acting as both reducing and capping agents. Moreover, almost all parts of the plants can
be utilized for nanoparticle synthesis, including the leaves, flowers, seeds, stems, fruits,
latex, and calli. Furthermore, dead and dried plants can also be used for the synthesis
of nanoparticles [11].

Photonic materials that are highly efficient and photostable can also be helpful in
biophotonic applications, such as dye-doped polymers. Unique applications of these
materials include optical microscopy and nanoscopy, as these methods provide relatively
long observation times and improved spatial resolution [12]. For example, duvenhage-
PMMA is doped with Alq3 for utilization in optoelectronics.

Polyvinyl alcohol PVA is a water-soluble crystalline polymer that is nontoxic and
biocompatible. It is therefore cheap and readily degradable. It has excellent chemical and
mechanical stability, making ideal for applications such as electrochemical and optoelec-
tronic devices. Also, due to its polarity and hydrophilic properties, PVA can interact with a
variety of organic and inorganic materials [13–17]. It is worth noting that the degradation
of organometallic and conjugated polymers is fast, resulting in reduced device performance
and efficiency [18]. Thus, it is of great importance to modify PVA by narrowing the bandgap
polymer by metal complex incorporation. This opens a new perspective for research in
optical materials and developing optoelectronic and photonic devices.

A remarkable drop in optical bandgap was observed in our previous work regarding
polymer a composite based on the aluminum (III) metal polyphenol complex in a PVA
polymer [19]. Also, adding Co2+-polyphenol metal into polymer matrices to enhance their
optical properties represented novel research.

In materials science, to change magnetic, transport optical, dielectric, and structural
properties, the focus is typically on molecular charge-transfer materials. One can determine
the optical, electrical, and photoelectrical properties from the charge transfer mechanism in
complexes, as is required in many electro-physical and optical processes [20].

Herein, black tea extract solutions are used to sustainably synthesize a Co2+-polyphenol
complex. These solutions are enriched with polyphenols that interact strongly with the
Co2+ ion to produce the Co2+-polyphenol complex. The main constituents of tea leaves,
such as caffeine and polyphenols, were documented by Zielinski et al. [21].
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It should be noted that the coordination chemistry has complex coordinated,
complex compounds or only complexes. Coordination compounds are recognized as
the lights and empty orbital metallic centers coordinated by donors of electron pairs [22].

It has previously been documented that electrical double-layer capacitor (EDLC)
devices can be modified via the incorporation of a chitosan-based polymer electrolyte of
the Zn2+-polyphenol complex, yielding improvements in performance [23,24].

In this work, we incorporated a Co2+-polyphenol complex into a PVA polymer in order
to achieve the desired optical properties. In this report, it is shown that the amorphous
phase of PVA composites can be increased and the optical band gap energy (Eg) reduced.
The green methodology and desired optical properties, notably, the small Eg of the polymer
composite, indicate the significance of the present study.

2. Materials and Methods
2.1. Materials

Two raw materials were purchased from Sigma-Aldrich (Kuala Lumpur, Malaysia),
and used without modification: polyvinyl alcohol (PVA) powder (99% purity) with an average
molecular weight of (85,000 to 124,000) and cobalt (II) nitrate hexahydrate [Co (NO3)2·6H2O
(99.99% purity) (291.03 g/mol). Black tea leaves were acquired from the market.

2.2. Metal Complex Synthesis and Composite Fabrication

In the extraction process, distilled water was used as a solvent for extracting the tea
leaf components; 50 g of black tea leaf was added to 250 mL distilled water, maintained at a
temperature at 90 ◦C and kept away from sunlight. The extraction process of the black tea
leaves lasted 10 min. Then, filtration was carried out using Whatman filter paper (Whatman
41, cat. no. 1441) with an average pore radius of 20 µm. In a separate solution, 10 g of
cobalt (II) nitrate hexahydrate [Co (NO3)2]·6H2O was dissolved in 200 mL of distilled
water. Both solutions were mixed at 80 ◦C and then stirred for around 10 min to produce a
Co2+-polyphenols complex.

Finally, the Co2+-polyphenol complex solution was identified from the physical ap-
pearance of a green precipitate in the form of a turbid solution that settled out from the
solution of the dark-colored tea leaves. The solution was allowed to cool to room tempera-
ture, and then then washed using distilled water several times. To disperse the synthesized
Co2+-polyphenol complex materials, 100 mL of distilled water was used.

The composite samples were prepared from PVA and the Co2+-polyphenol complex
as raw materials using the casting method. In this methodology, 1 g of PVA powder
was added to 40 mL of distilled water; the mixture was then stirred for 60 min using a
magnetic stirrer, and maintained at a temperature of around 80 ◦C. Afterward, this solution
was left to cool to room temperature. In the incorporation process, two portions of Co2+-
polyphenol complexes were added to the PVA homogenous solution in steps of 30 mL
from 0–60 mL solution. To homogenize these solutions, stirring was conducted for around
50 min. The samples were labelled as SPMC_0, SPMC_1, and SPMC_2, corresponding to
PVA portions with 0, 30, and 60 mL of Co2+-polyphenol complexes. The casting process
was performed by adding these solutions to a series of Petri dishes and leaving them at
room temperature. To make the films dried, and before characterizations were performed,
a desiccator containing blue silica gel was used. The thickness of pure PVA and composite
films was estimated to be between 0.012 and 0.015 cm.

2.3. X-ray Diffraction

The X-ray diffraction patterns for the pure PVA and composite films were obtained
at room temperature, using a Bruker AXS with a working voltage and current of 40 kV
and 45 mA, respectively. The monochromic beam of X-ray radiation was set at 1.5406 Å,
with glancing angles (2θ) between 10◦ and 80◦ and a step size of 0.05◦.
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2.4. Fourier Transform Infrared Spectroscopy (FTIR)

To determine the nature of the interaction between the composite components, an
FTIR spectrophotometer was used in the range 400–4000 cm−1 at a resolution of 2 cm−1.

2.5. UV-Visible Spectroscopy

The UV-Visible absorption spectra of the composite films were recorded using a Jasco
V-570 UV-Visible spectrophotometer.

3. Result and Discussion

3.1. UV-Vis Study of Co2+-Polyphenol Complex

The absorption spectrum of the Co2+-polyphenol complex colloidal suspension so-
lution is shown in Figure 1. The absorption spectrum occupies the entire visible range,
which begins in the visible range and ends in the UV range. The main features of the absorp-
tion spectrum of organometallic-based materials and semiconductors are well-known [25].
Wang et al. [26] documented Fe2+-polyphenol complexes from extractions of rosemarinus
officinalis, eucalyptus tereticornis, and melaleuca, and found that the UV-Vis spectrum for
the Co2+-polyphenol complex was in agreement with that of the Fe2+-polyphenol complex.
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Figure 1. Absorption spectra versus wavelength for the Co2+-polyphenol complexes.

According to the spectrum observed at 200 and 350 nm, the reaction in this range can
be attributed the electronic transition of n–π* in methylxanthines and catechins, which are
composed of theophylline, theobromine, and caffeine. The band absorption at ~278 nm
correlates to the C=O chromophore in caffeine [27–29]. Metal nanoparticles are mainly char-
acterized by absorption of the surface plasmon resonance (SPR) in the UV-Visible range [30].
It is interesting to note that no sign of SPR absorption of the Co2+-polyphenol complex
is seen (Figure 1). This may be attributable to the absence of metal characteristics in the
Co2+-polyphenol complex due to the polyphenol capping phenomenon. However, an SPR
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peak for chitosan-based polymer electrolytes was recorded between 500 to 800 nm, due to
the presence of copper nanoparticles [31].

3.2. FTIR Study of Black Tea and Co2+-Polyphenol Complex

Figure 2 presents the FTIR spectra for the black tea extract. The appearance of multiple
peaks is the main characteristic of the FTIR spectrum. Peaks in the range of 2916–2851 cm−1

may be attributed to the C-H stretching of aliphatic groups and carboxylic acid [32,33].
Also, a band at 1623 cm−1 was assigned to C=C stretching in the aromatic ring. [32,34]. It is
worth noting that the whole FTIR spectrum agrees well with those obtained in previous
studies [33,35]. It was recently discovered that the caffeine spectrum includes many
variations in the region of 1700–400 cm−1 (see Figure 3). These modifications indicate the
presence of a variety of functional groups that have binding and stretching motions, such as
methyl, carbonyl, pyrimidine fragments, and imidazole [36,37]. According to the FTIR
spectra, carboxylic acid, polyphenol, and amino acids are the main functional groups in
tea. It has been reported in the literature that polyphenols can interact strongly with metal
cations, particularly cobalt, forming colloidal Co2+ polyphenol complex suspensions [38].
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Figure 2. FTIR spectra for black tea leaf extract.
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The FTIR spectrum of the Co2+-polyphenol complex is shown in Figure 3. Figures 2 and 3
show a series of peaks in the region of 1700–400 cm−1, the intensities of which were typi-
cally altered.

This work mainly focuses on Co2+ ion colloidal as one of the properties of the Co2+

polyphenol complex using FTIR. Wang et al. [39] studied an extract of eucalyptus leaves in
the synthesis of Fe-polyphenols complex. It was noted that the complex was formed via
interaction between Fe2+ and polyphenols.

The mixture consists of a green solution (filtrate) and colloidal suspension at the top
and the bottom, respectively, confirming the formation of the Co2+-polyphenol complex.
The characteristic bands of black tea are repeated in the FTIR spectrum of Co2+-polyphenol
complexes; however, the peak intensities decreased (see Figure 3).

Interestingly, the bands at 2916 and 2851 cm−1 in black tea shifted when the Co2+

polyphenol complexes formed, instead appearing at 2913 and 2844 cm−1, respectively.
This can be explained by the formation of coordination bonds between Co2+ ions and
polyphenols where vibrational reduction occurs, leading to an increase in reducing mass.
The coordination bond formation between and polyphenols results from the attraction
between the ligand pairs and empty orbitals in the Co2+ ions [21]. The coordination mecha-
nism between Co2+ ion and the ligands of interest will be schematically depicted in the next
section. Wang et al. [26] documented the synthesis and characterization of iron-polyphenol
complexes using various extracts, including eucalyptus tereticornis, melaleuca nesophila,
and rosemarinus. The authors showed that iron ions react with polyphenols, leading to the
formation of iron-polyphenol complexes. ÓCoinceanainn et al. reported the complexation
of aluminum (III) with theaflavin using FTIR. The polyphenolic compounds are ligands
found in the extracts of black tea [40].

The nature of the interaction between Co2+ ions and caffeine and polyphenols of
tea extracts can be assessed using FTIR analysis, as shown in Figure 4. The chemistry of
interaction between Co2+ ion and tea extracts comprises several complexes (see Figure 4).
These interactions between metal ions and tea constituents have been confirmed previ-
ously [20,41–43]. Three possible complexes are shown in Figure 4. As usual, the Co2+-
polyphenol complex is strongly anticipated (see Figure 4A), as is that of Co2+- caffeine
(Figure 4C).

Furthermore, as shown in Figure 4B, there is a possibility of interactions between Co2+

and polyphenol and caffeine in a complex. Previously, the EPR method has been used
to investigate the formation of complexes by metal ions and polyphenols of extracts of
black tea [41]. In the current study, the nature of metal complex formation was studied
using FTIR.
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3.3. XRD and FTIR Study of PVA Based Composites

The XRD patterns of Co2+-polyphenol complex, neat PVA and PVA composite films
are shown in Figure 5a,b. It is seen (Figure 5a) that the structure of the synthesized Co2+-
polyphenol complex is mainly amorphous, as evidenced by the absence of crystalline
peaks over the 2θ degree range. The hump which appeared in the XRD pattern of Co2+-
polyphenol complex is characteristic of amorphous materials. On the other hand, two peaks
can be distinguished in the XRD pattern of neat PVA and their composites (see Figure 5b).
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The two peaks lie at 2θ = 20◦ and 40◦ in the XRD pattern of neat PVA, and are separated
completely, correlating with crystalline phase [44,45]. Despite the intense decrease of these
peaks, in the doped PVA spectra, we observed the appearance of one and disappearance and
broadening of another, especially at 2θ = 40◦. These changes in intensity and broadening
of the peak, in particular that at 2θ = 20◦, designates amorphous phase development
within the PVA matrix [46–48]. It was previously demonstrated that the addition of Zn2+-
polyphenol complex into a chitosan polymer-based electrolyte significantly extended the
amorphous area [17].

Polymers 2021, 13, x FOR PEER REVIEW 8 of 28 
 

 

The XRD patterns of Co2+-polyphenol complex, neat PVA and PVA composite films are 
shown in Figure 5a,b. It is seen (Figure 5a) that the structure of the synthesized Co2+-poly-
phenol complex is mainly amorphous, as evidenced by the absence of crystalline peaks over 
the 2θ degree range. The hump which appeared in the XRD pattern of Co2+-polyphenol 
complex is characteristic of amorphous materials. On the other hand, two peaks can be dis-
tinguished in the XRD pattern of neat PVA and their composites (see Figure 5b). The two 
peaks lie at 2θ = 20° and 40° in the XRD pattern of neat PVA, and are separated completely, 
correlating with crystalline phase [44,45]. Despite the intense decrease of these peaks, in the 
doped PVA spectra, we observed the appearance of one and disappearance and broadening 
of another, especially at 2θ = 40°. These changes in intensity and broadening of the peak, in 
particular that at 2θ = 20°, designates amorphous phase development within the PVA matrix 
[46–48]. It was previously demonstrated that the addition of Zn2+-polyphenol complex into 
a chitosan polymer-based electrolyte significantly extended the amorphous area [17]. 

 

Figure 5. XRD pattern for (a) Co2+-polyphenol complex and (b) neat PVA and composite samples. 

At this stage, it was of crucial importance to study the XRD spectra in an attempt to 
distinguish between the amorphous and crystalline peaks [49]. It is intuitive that broad-
ened peaks are characteristic of the amorphous phase; on the other hand, a narrow (or 
sharp) peak is a feature of the crystalline phase. It can be seen that the crystalline peaks in 
SPMC 1 and SPMC 2 declined and broadened as the concentration of Co2+-polyphenol 

0

50

100

150

200

10 20 30 40 50 60 70 80
2θ (degree)

In
te

ns
ity

 (a
.u

)

(a)

0

200

400

600

800

1000

1200

1400

10 20 30 40 50 60 70 80

2θ (degree)

In
te

ns
ity

 (a
.u

)

SPMC-2

SPMC-1

SPMC-0

(b)

Figure 5. XRD pattern for (a) Co2+-polyphenol complex and (b) neat PVA and composite samples.

At this stage, it was of crucial importance to study the XRD spectra in an attempt to
distinguish between the amorphous and crystalline peaks [49]. It is intuitive that broadened
peaks are characteristic of the amorphous phase; on the other hand, a narrow (or sharp)
peak is a feature of the crystalline phase. It can be seen that the crystalline peaks in SPMC
1 and SPMC 2 declined and broadened as the concentration of Co2+-polyphenol complex
increased. As seen in SPMC 2, adding 60 mL of Co2+-polyphenol complex induced a major
difference in peak form, resulting in decreasing intensity of the crystalline peak (see Figure 5b).

The main features of the present XRD pattern are in good agreement with those previ-
ously recorded [50,51]. Wang et al. [26] used various extracts to fabricate Fe-polyphenol
complexes, such as eucalyptus tereticornis, melaleuca nesophila, and rosemarinus offici-
nalis. The authors confirmed the presence of the amorphous phase of the Fe- polyphenol
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complexes from the XRD spectra, in which no prominent diffraction peaks were seen for
the three plants.

The FTIR spectra of parent PVA and PVA doped with Co2+-polyphenol complex are
shown in Figure 6. As shown, the absorption peak at 824 cm−1 is caused by C-H rocking
of pure PVA [44]. The spectra of doped samples show both a shift and a decrease of the
peak position and intensity. In pure PVA, -CH2 wagging yields an absorption peak at
1410 cm−1 [52]. In the spectrum of pure PVA, a band at 2908 cm−1 occurred, due to the
presence of C-H asymmetric stretching vibrations [53,54]. In the spectra of doped samples,
the peak changes position and becomes faint, respectively. Two types of interactions can be
taken into consideration: the reaction between the Co2+-polyphenol complex colloidal and
PVA functional groups, and the adsorption of the Co2+-polyphenol complex colloidal on
the PVA functional groups. The vibrational modes of functional groups become weak as a
consequence of the formation of bulky molecular systems. [46]. Table 1 presents various
vibrational modes.
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Table 1. FTIR results of PVA and doped PVA with Co2+-metal complex.

Attributions
Wavenumber (cm−1)

SPMC_0 SPMC_1 SPMC_2

O-H stretching 3310 3308 3305
C–H stretching 2908 2915 2916
C=O stretching 1640 1648 1647
C=C stretching 1623 1624 1630
CH2 Wagging 1410 1418 1423
C-O-H bands 1150 1158 1162
C–H rocking 824 826 828

3.4. Optical Properties of PVA Composites
3.4.1. Transmittance and Absorbance Analysis

The transmittance of parent and doped PVA with various quantities of Co2+-polyphenol
complex is presented in Figure 7. Pure PVA possesses relatively high transparency beyond
the visible region, i.e., over 98%, whereas below the visible region, the transparency
drops due to the high absorption of the films. PVA doped with 30 and 60 mL Co2+-
polyphenol complex exhibited lower transparency, reaching almost 45% at the UV region,
while transparency increased to 0.98% in the visible region. This may be attributed to the
scattering and relatively high refractive index of highly doped films at lower λ (nm). It was
noted that the spectrum possessed a shoulder in the parent PVA (UV region); on the other
side, this shoulder did not exist. This indicates strong interactions between the functional
groups within the polymer chains and the added Co2+-polyphenol complex, causing a
drop in the transparency of the doped films. Molkenova et al. [55] reported on Europium
metal thin films doped with titanium oxide (TiO2). Their findings revealed a transmittance
percent of 83.3% for Eu doped film in the visible range. Also, the transparency value for the
blend polymers of poly (propylene carbonate) PPC and poly (ethyl cyanoacrylate) PECA
with caffeic acid was found to be around 80%, as documented by Quilez-Molina et al. [56].
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The absorption spectra of both parent PVA and doped PVA are shown in Figure 8.
It may be seen that the responses of the absorption spectra of the PVA doped samples
cover almost all UV-visible regions, extending to the near-infrared range. Pure PVA has
no absorption response in the visible to near-infrared range because of the absence of free
electrons, causing it to be almost transparent. Furthermore, the relatively high-energy (UV
region) photons result in electron transport across the bandgap between the valence and
conduction bands.
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Figure 8. Absorption spectra of parent PVA (SPMC_0) and PVA composites absorption spectra.

From both the absorption spectra of pure PVA and doped PVA samples, it is seen
that composite samples containing Co2+-polyphenol complex display extreme absorption
throughout the entire UV-Visible range. It may also be seen that as the content of the
Co2+-polyphenol complex increased in the PVA, and the absorption band position shifted
to a greater wavelength (i.e., lesser energy). It is vital technologically that the synthesized
polymer composites have the desired optical characteristics for applications in various in-
dustries, for instance, photonics, solar cells, and optoelectronic instruments [57]. To achieve
high-power conversion efficiency in solar cells, the light-harvesting potential needs to be
manipulated via the absorption band widening and shifting the position of absorption
bands to near IR region responses, which, in turn, increase the extinction coefficient [58].

3.4.2. Absorption Edge Study

At this stage, it is worthwhile to discuss optical absorption, including both the struc-
ture and shift of the absorption edge. It is also helpful to have a comprehensive under-
standing of the potential mechanism of crystalline and noncrystalline materials that are
optically induced. Analyses can further verify improvements due to the structures of en-
ergy band changes [59]; despite intensive studies on the optical characteristics of polymer
composites. [60,61], there is still work to be done on polymer composites based on the
Co2+-polyphenol metal complex.
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The optical absorption spectra help determine and estimate the optical bandgap of the
film. The absorption coefficient can be calculated using the following relationship based on
the transmittance and reflectance results [54]:

α =
1
t

Ln

√ (1− R)4 + 4T2R2 − (1− R)2

2TR2

 (1)

where α is the absorption coefficient, T is the transmittance, and t and R the thickness and
reflectance. To determine T, Beer’s law (T = 10−A) can be used. In general, responses to
the transmission light from one medium to another include reflection and diffraction,
light-transmitting from air to a solid medium, and absorption. As the beam strikes the
second medium surface, the responses must be proportional to the summation of the
absorption beam IA, reflected beam intensity IR, and transmitted beam IT, as shown in the
following relationship:

I0 = IR + IA + IT (2)

The intensity of radiation is designated as W m−2. Energy transfer over time and
area units indicated the propagation direction at a right angle. As a result of Equation (2),
the following relationship is obtained:

R + A + T = 1 (3)

where R represents the reflectivity (IR/Io), A is the absorptivity (IA/Io), and T is the transmis-
sivity (IT/Io). In other words, R, A, and T refer to reflection, absorption and transmittance,
respectively [62]. Thus, reflectance (R), as a crucial parameter, can be determined from
the refractive index using Equation (3). From an analysis of the optical absorption, the ab-
sorption edge is shown to be a decisive parameter in specifying the electronic structure
within the material. Optical absorption spectra denote the response of the indirect and
direct transition within the bandgap [63].

Figure 9 shows the absorption coefficient for a variety of photon energies; the absorp-
tion edge values are summarized in Table 2. The absorption edge for pure PVA was found
to be about 6.3 eV. A broad shift toward a lower photon energy range was observed after
incorporating the Co2+-polyphenol complex into the system.
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Table 2. Absorption edge values for the (SPMC-0). (SPMC-1), and (SPMC-2) samples.

Films Absorption Edge (eV)

SPMC-0 6.3
SPMC-1 1.83
SPMC-2 1.75

A modification of the absorption edge resulted from the dispersion of the complex of
Co2+-polyphenol within the PVA matrix. In the present study, the value of the absorption
edge was in good agreement with that reported previously [62].

Throughout the literature, it has been confirmed that narrowed optical band gaps
can be obtained by introducing localized levels inside the energy gap as a consequence of
trapping charged species [64]. There is a similarity between this shifting and broadening of
the absorption edge to a lower energy range, as in the current results, and those documented
for organic and inorganic semiconductors. Organic semiconductors are used extensively in
photonic and electronic instruments [65].

3.4.3. Study of the Refractive Index

The refractive index value (n) of optical materials is one of the key properties,
showing the extent of light-speed changes from one medium to another. For applica-
tion in optoelectronic instruments, the n value of the material of interest must be known.
Fundamentally, at constant temperature and pressure, the refractive index (n) is dependent
upon both density and polarizability of the medium [66]. Therefore, the refractive index of
a material is a decisive parameter in determining its optical efficiency. The representation
of the complex refractive index of a sample may be summarized as follows:

n*(λ) = n(λ) + k(λ) (4)
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The relationship between n and k is formulated as follows [54]:

n =

[
(1 + R)
(1− R)

]
+

√
4× R

(1− R)2 − K2 (5)

In Equations (4) and (5), K is the extinction coefficient equal to αλ/4πt, and t is the
film thickness.

Variable n can be determined using different techniques. Based on the type of syn-
thesis, two methodologies are widely applied; heavy atoms, such as the polymer matrices,
are doped with sulfur and/or halogens [67], and the synthesis of materials of relatively large
n values from the incorporation of metal or inorganic nanoparticle into polymers [68–70].
Two significant challenges are faced in both cases. Firstly, two obstacles exist in the first
methodology: the complexity and cost of incorporating heavy atoms into matrices of
polymers [71]. Secondly, the aggregation phenomenon occurs with the incorporation
of nanofillers comprising inorganic nanoparticles into polymer matrices, for instance,
ZrO2 (zirconium oxide) [68], TiO2 (titanium oxide) [69], and Au (gold) [72]. This leads
to the formation of high surface energy and low compatibility with the polymer host.
Therefore, in the present research, to change the (n) value, a dopant of the Co2+-polyphenol
complex was inserted into the PVA polymer.

The value of (n) compared to the wavelength is shown in Figure 10. It was confirmed
that larger n values can be achieved with incorporated films, indicating considerable dopant
dispersion. Figure 10 also shows that as the Co2+-polyphenol complex concentration is
increased, as is the value of n.
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Polymers and polymer composites of relatively high n are desirable, and have been the
focus of many research groups, as their mass, large formability, and flexibility are superior
to those of inorganic materials. Many applications of polymers with high (n) value have
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been noted, including in optical storage devices [73], lenses [74], antireflective coatings [75],
and optical immersion lithography [76].

3.4.4. Study of the Dielectric Constant

The advantages of polymers, such as their mass, low cost, and minimal dielectric
loss, make them ideal for use in energy storage devices. Polymer materials must have
a high dielectric constant (εr) for use in energy storage applications (i.e., if a large spe-
cific capacitance is to be achieved). Composite polymeric materials are among the most
reliable methods to modify the εr value of polymers; however, several other approaches
have been applied. Effectively, nanoparticles can be incorporated into polymers to make
polymer nanocomposites. Therefore, polymer nanocomposites (NCs) have been utilized in
energy storage capacitors [77–80] as solid alternatives to battery management systems in
microgrids in order to reduce pollution [81,82].

The real and imaginary responses of εr are well-established in a relationship in which
both values of (n) and (k) are involved, as shown below [83]:

εr = n2 − k2 (6)

The εr spectra against wavelength for pure PVA and composite samples are shown
in Figure 11. It is seen that as the quantity of Co2+-polyphenol complexes increases,
εr increases as well. This is related to the formation of the density of states within the
polymeric film forbidden gap [31].
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Figure 11. Dielectric constant spectrum against wavelength for the (SPMC-0). (SPMC-1), and (SPMC-
2) samples.

It is worth noting that modifications in the optical dielectric constant are responsible
for the fundamental optical transition in polymer composites. This may be divided into
two parts: real, (εr) and imaginary, (εi). The optical dielectric constant is the measure of
the feasibility of losing energy by an electron as it travels through the surface of the bulk
material. The real (εr) and imaginary (εi) parts of the spectra reflect this property. On the
one hand, the real part measures the ability of a specific material to attenuate the speed
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of the electromagnetic wave. On the other hand, the imaginary part shows the energy
absorption efficiency due to polarization.

The value of εr is obtained from the refractive index (n) of the medium (εr = n2 − k2),
while εi is derived from the extinction coefficient (k) (εi = 2nk).

The dielectric response (ε∞) of the materials at high frequency (short wavelengths)
can be determined from the relationship between the wavelength and refractive index,
based on the Spitzer–Fan model [84,85]:

εr = n2 − k2 = ε∞ − (
e2

4π2 C2 εo
) × (

N
m∗

)λ2 (7)

where εo denotes the dielectric constant of free space, N is the number of charge carriers, m* is
the effective mass (assumed to be 1.16 me), and e, and c have their standard meanings [85,86].

The relationship between the values of εr and λ2 in the visible wavelength region is a
straight line, as shown in Figure 12. Herein, one can determine the values of ε∞ and N/m*
from the slope and intercept of the line in the y axis, respectively, using the parameters
presented in Table 3. The values of ε∞, N/m*, and N can be estimated from Equation (7),
as summarized in Table 4.
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Table 3. A variety of physical parameters used for the calculation of localized density of states (N/m*)
for PVA containing Co2+ metal complex.

Physical Parameters Values

me 9.109 × 10−31 Kg
e 1.602 × 10−19 coulombs
Eo 8.85 × 10−12 F/m
π 3.14
c 2.99 × 108 m/s

m* 10.566 × 10−31 Kg

Table 4. The localized density of states (N/m*) and optical dielectric constant for PVA containing Co2+

metal complex.

Film Code N/m* × 1055 (m3/kg) E∞ ωp × 1014

SPMC-0 4.91 1.35 3.76
SPMC-1 12.3 1.51 5.95
SPMC-2 22.1 1.66 7.99

From Table 4, it can be seen that as the filler concentration increases, the values
of charge carriers/m* of parent PVA film increase 20 fold, i.e., from 3.68 × 1055 to
109 × 1055 atoms/m3, and the value of ε∞ increases from 1.4 to 3.6. These increasing
values of both charge carriers/m* and the ε∞ can be considered indicators of increasing
free charge carriers that vigorously participate in the polarization process. In the current
study, the values that were estimated for the localized density of states (N/m*) are in good
accordance with those reported in the literature using Equation (7) [87,88].

3.4.5. Band Gap Study

Bandgap analyses, i.e., optical band gap energy (Eg), are informative, based on the
optical dielectric loss (εi). It is necessary to determine the electronic transition behavior
using Tauc’s model, as the material’s band structure does not have a significant effect on
the optical dielectric function. Indeed, the material band structure and optical dielectric
function (ε*) exhibit a strong relationship. Thus, the band structures of materials can be
clarified from the determination of ε* using UV-vis spectroscopy [31,46,71,89].

The imaginary part of the ε* relies on n and k values, as shown in the following
relationship [27]:

εi = 2nk (8)

It is essential to mention that the appearance of the peak in the εi spectra is the result
of interband transitions [90–92]. From the analysis of the εi spectra, one can determine the
real Eg from the intersection of linear portions of the (s) and horizontal axis (hv).

In the meantime, complex dielectric function ε* will provide a better understanding
of the optical properties of a material. It characterizes the linear reaction of the substance
to electromagnetic radiation. The ε* value reflects the essence of the medium in response
to electromagnetic wave transmissions. The real transitions between the occupied Ψν

k
and unoccupied Ψc

k wave functions are represented by the imaginary part ε2, which is
given by [93]:

ε2 =
4π2e2

m2ω2V ∑
ν, c,k

∣∣〈Ψν
k
∣∣p→i |Ψ c

k
〉∣∣δ(EΨc

k
− EΨν

k
− }ω

)
(9)

Equation (9) shows an apparent direct proportionality between ε2 or εi and the band
structure

(
EΨc

k
− EΨν

k

)
from the QM perspective. The CDF can be evaluated using simple

equations, and intercorrelated to other optical parameters (n and extinction coefficient).
Figure 13 exhibits the plots of εi versus hν for parent PVA and composite films. It is

seen that there are distinct peaks for all the films. The appearance of the peak in the
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ε2 part of the dielectric function can be directly related to interband transitions [94,95].
Therefore, the intercept of linear parts below the peaks on the hν axis can be regarded as an
accurate bandgap value. The electron transition processes between the bands of a solid
are well-defined by the interband absorption process. Furthermore, the absorption edge
is caused by the onset of optical transitions through the fundamental bandgaps of a solid
material [96]. Yu et al. [97] recently reported that the fundamental absorption edge from
dielectric loss against photon energy should be equal, or somewhat similar, to that obtained
from Tauc’s relationship.
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The optical characteristics of solids can be preliminarily estimated from the CDF,
which can be linked to the detectable optical quantities using straightforward equations [88].
Previous studies have emphasized the existence of a strong relationship between the opti-
cal dielectric functions (εr and εi) and the density of localized electronic states within the
forbidden gap of the composite films [72,98,99]. Many other decisive parameters, for in-
stance, relaxation time (τ), plasma frequency (ωp) and electrical resistivity (ρ), can easily
be estimated from the Drude free electron model using the εi parameter with the help of
(N/m*) values:

εi = J (
1
τ
)λ3, J =

e2

8π3c3εo

N
m∗ (10)

Figure 14 shows that variation of εi corresponds to λ3 for parent PVA films at different
Co2+ metal complex quantities in the region where linear behavior is achieved. By inserting
the value of N/m* obtained from Equation (10) and the slope of εi versus λ3, the relaxation
time (τ) values may be calculated. In addition, all other optical properties, such as the
optical mobility (µopt), electrical resistivity (ρopt), and plasma angular frequency of the
electron, can be computed from the following relations [100]:

µopt =
eτ

m∗
(11)

ρopt =
1

eµoptNc
(12)
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wp =
e2N
εom∗ (13)
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The values of τ and ωp are presented in Table 5. It should also be noted that adding the
Co2+ metal complex to parent PVA reduces the relaxation time (τ), optical mobility (µopt),
and optical resistivity (ρopt), resulting in a faster relaxation response of the nanocomposites
to the incident optical electric field in comparison to the unfilled one.

Table 5. Variations of τ and ωp, (µopt), and (ρopt), obtained from the slope of εi versus λ3.

Film Code N/m* τ µ(opt) ρ(opt)

SPMC-0 4.91 × 10+55 4.25 × 10−15 6.41 × 10−4 1.88 × 10−4

SPMC-1 1.23 × 10+56 8.85 × 10−15 13.35 × 10−4 3.61 × 10−5

SPMC-2 2.21 × 10+56 1.59 × 10−14 24.04 × 10−4 1.12 × 10−5

These low τ, µopt and ρopt values are linked to an increase in n; in other words,
the velocity of light decreases in the medium with a higher refractive index. The addition
of the Co2+ metal complex also results in an up to 20-fold amplification of the plasma
frequency (ωp) of the electron, i.e., from 0.32 × 1015 to 1.77 × 1015 Hz. Fortunately, this is
in accordance with data documented for polymer nanocomposites and the verified impact
of a strong local electric field in the dipole moment of the nanofillers, enhancing the
polarization of the material being exposed to an incident electric field [87,98]. This is not
the only means by which to estimate the bandgap from optical dielectric loss function;
other optical parameters can be determined, as mentioned previously. All these are crucial
for choosing suitable materials for optoelectronic applications.
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Tauc’s equation can be used to determine the Eg of pure PVA, as well as that of PVA
doped with Co2+-polyphenol metal complex [25,26]:

(αhυ) = B(hυ− Eg)
γ (14)

In Equation (14), the B value relies on the interband transition probability,(hv) de-
notes the incident photon energy, and (γ) is an exponent that specifies the electronic
transition type [31].

Figure 18 shows several electronic transitions which occur between the conduction
band (CB) and valence band (VB) that are Tauc’s model-dependent [101]. Indeed, when γ is
0.5 or 2, direct electron and indirect transitions, respectively, may occur. If γ is 1.5 or 3,
direct and indirect transitions, respectively, cannot occur [31].

In Figures 15–17, from the extrapolated intersections of the linear part of the (αhυ)1/γ

plots, in contradiction with hυ on the horizontal axis, it is straightforward to determine the
value of Eg [31]. It has previously been confirmed that the decrease in Eg results from the
introduction of several located states (i.e., trap states) into the forbidden bandgap by the
insertion of fillers into the polymer matrix [31,102].
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Table 6 presents the values of Eg, which decrease when Co2+-polyphenol complex
insertion is increased. This may be due to the electronic structure rearrangement of the PVA
polymer after addition of Co2+-polyphenol complex, leading to imperfections in the PVA
polymer [104]. Consequently, the level trapping phenomenon occurs within the bandgap,
mediating electron transitions from VB to CB [102]. The two decisive parameters, i.e., Eg and
the cut-off energy, can be obtained from Tauc’s model (see Figures 15, 16 and 18) and εi
(see Figure 13). Based on the values of both parameters, one can determine the electron
transition types in the materials [31]. The most likely types of transitions in parent PVA and
PVA doped with Co2+-polyphenol complex films are direct allowed (γ = 1/2) and forbidden
(γ = 2/3) transitions. The material of choice must have a dominant direct bandgap if it is to
be used in light-emitting diodes (LEDs), laser diodes, and photovoltaic cells.

Table 6. Presents the Eg values from Tauc’s method and εi plot.

Sample Code γ = 2/3 γ = 2 γ = 1/2 Dielectric Loss

SPMC_0 6.22 6.4 6.2 6.35
SPMC_1 1.76 2.45 1.6 1.85
SPMC_2 1.6 2.1 1.5 1.65

Three materials effectively lower the Eg, i.e., copper nanoparticles, copper powder,
and Co2+-polyphenol complex. Aziz et al. [60] prepared a polystyrene composite system
based on PS-Cu using up to 6 wt.%. copper powder dissolved in PS. It was shown that
that the optimum Cu powder is 6 wt.%, in which the Eg value can be decreased from
4.05 eV to around 3.65 eV. Aziz et al. [61] also reported a nanocomposite system based on
methylcellulose (MC) as a host polymer and doped with copper (II) sulfide nanoparticles.
It was documented that the Eg of MC could be manipulated, dropping from 6.2 eV to 2.3 eV
when a quantity of 0.08 M of the (CuS) nanoparticles was used as a dopant.

In the present study, the Eg of PVA was lowered from 6.3 to 1.6 eV when 60 mL Co2+-
polyphenol complex was added. Interestingly, it was shown that the Co2+-polyphenol
complex was effective at lowering the Eg and superior to both copper nanoparticles and
powder incorporations. Furthermore, bandgap manipulation was made possible due to the
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incorporation of the cobalt complex, giving rise to a low value of Eg, and an environmentally
sustainable approach for the synthesis of polymer composites.

The refractive index dispersion of the prepared films was analyzed using experi-
mental data fitting based upon the Wemple–DiDomenico (WDD) single oscillator model.
The refractive index and its dispersion behavior are among the key optical material prop-
erties to be studied. The refractive index dispersion is crucial in evaluating the optical
communication for spectral dispersion [105].

In the normal region, the single oscillator model presented by WD can be implemented
to examine the refractive index dispersion [106,107]. This is carried out by introducing
a dispersion energy parameter (Ed) to gauge the force of interband optical transition.
This parameter combines both the coordination number and the charge allocation in each
unit cell, and correlates with chemical bonding [108,109]. However, a single oscillator
parameter (Eo) is directly proportional to the oscillator energy (i.e., the average energy
bandgap). The refractive index and the photon energy below the interband absorption
edge may be related, as shown in the following semiempirical equation:(

n2 − 1
)−1

=
Eo

Ed
−
(

1
EoEd

)
(hγ)2 (15)

where Eo and Ed are constants denoting the single-oscillator and dispersive energies,
respectively. Parameters Eo and Ed relate to the average excitation energy and structure
disorder, enhancing the optical transition within the material’s band structure.

The
(

1
EoEd

)
values are obtained from the slope of the linear portion of

(
n2 − 1

)−1

verses (hγ)2. The Eo
Ed

values are determined from the intersection of the graph with the
y-axis, as shown in Figure 19.
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The values of Eo, Ed, and parameters determined from the Wemple-Didomenic model
are summarized in Table 7.
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Table 7. Optical bandgap from the theoretical Wemple-DiDomenico single oscillator model.

Sample Code Ed Eo

SPMC-0 1.214707 6.693037
SPMC-1 0.728961 2.39828
SPMC-2 0.699263 2.15373

4. Conclusions

In conclusion, it seems that the black tea leaf extract can be used successfully in
the preparation of a polymer composite of Cd2+-polyphenol complex after synthesis of
the PVA-Co2+-polyphenol composite. The fundamental characteristics of the polymer
composite have been characterized, including the type of transitions and gap energy
(Eg), absorption edge, refractive index (n), dielectric constant (εr), and dielectric loss (εi).
The optical bandgap could be determined using optical dielectric loss, whereas the types
of electronic transitions could be estimated by applying Tauc’s model. Thus, the optical
dielectric loss has been precisely analyzed. The composite of the PVA-Co2+-polyphenol
complex was shown to alter Eg, i.e., a relatively low value was obtained. A direct bandgap
enhancement of the polymer composite was observed in the amorphous structure. The XRD
outcome indicated a decline in peak intensity of neat PVA after the incorporation of Co2+-
polyphenol complex. The change in the intensity of the FTIR bands in the PVA after the
addition of the Co2+-polyphenol complex can be considered strong evidence of the extent
of interaction among the polymer composite components. The easy and green nature of the
methodology is significant, with potential for large-scale applications in electronic devices.
This composite may enhance the performance of electrochemical energy storage devices.
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