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Abstract: Some crop by-products are considered to be promising materials for the development
of novel biobased products for industrial applications. The flammability of these alternatives to
conventional materials is a constraint to expanded applications. Polylactide (PLA) composites
containing a combination of oxidized corn pith fiber (OCC) and a biobased flame retardant (PA-
THAM) have been prepared via an in situ modification method. SEM/EDS, FTIR and TGA were
performed to establish that PA-THAM was coated onto the surface of OCC. The mechanical properties,
thermal stability and fire behavior of PLA-based biocomposites were investigated. The incorporation
of 5 phr PA-THAM imparted biocomposite good interfacial adhesion and increased decomposition
temperature at 10% mass loss by 50 ◦C. The flame retardant properties were also improved, as
reflected by an increased LOI value, a UL-94 V-2 rating, reduction of PHRR, and increased formation
of char residue. Therefore, the introduction of 5 phr PA-THAM can maintain a good balance between
flame retardancy and mechanical properties of this PLA/OCC system.

Keywords: biobased material; corn pith fiber; polylactide; flame retardancy; thermal stability

1. Introduction

Currently, environmental and sustainable awareness is stimulating the development
of novel eco-friendly materials, which possess acceptable properties, biodegradability, low
density and low cost [1]. Among these alternatives, natural fiber reinforced plastic compos-
ites (NPCs) are finding increasing acceptance and demand for structural applications [2–4].

The matrix plays an important role in a fiber-reinforced composite, most of which are
thermoplastics. Among biobased materials, polylactide (PLA) is one of the main thermo-
plastics for the preparation of NPCs, and many efforts have been undertaken to investigate
the preparation and properties of biocomposite for this matrix [5,6]. The introduction of
two kinds of fiber into PLA generates a material that exhibits tensile specific strength, and
stiffness increased by 116% and 62%, respectively, in comparison with the same properties
for unreinforced PLA [7]. As a nucleating agent [8], the presence of natural cellulosic
fiber enhances the crystallinity and melt strength of PLA-based biocomposites. A natural
fiber/PLA system containing a phosphorus flame retardant, which has a metal–organic
framework (MOF) structure, shows a 43% reduction in smoke production after combustion
and improvement in tensile and impact strength compared to the same properties for pure
PLA. A 5 wt % loading of flame retardant was required [9].

Recently, some crop by-products have been utilized in the furniture and building
fields [10,11]. Corn, as a dominant industrial crop, can yield abundant corn stalk residue af-
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ter harvest. Burning of this residue is still a common practice. Recycling of this by-product
is an effective way to solve both an environmental and energy problem. A new biocom-
posite based on magnesium phosphate cement and corn stalk fiber has been developed
for applications in insulation and structural units [12], which exhibits a better thermal and
mechanical properties than the comparable material from hemp and cement. As a raw
material [13], corn stalk residue was processed to extract a xerogel, which was incorpo-
rated into an epoxy system. This epoxy composition exhibits a high thermal stability, and
upon decomposition yields significant char residue at 600 ◦C. The durability properties of
concretes containing corn stalk residue have been studied [14]. It was determined that the
utilization of biobased fillers can improve many engineering properties of concrete.

In addition, as a promising new generation material, the flammability of NPCs must
be addressed. To enhance the fire resistance of NPC, the introduction of flame retardants
is considered as an efficient and simple method [15]. Many phosphorus- and nitrogen-
containing flame retardants can dramatically improve the fire resistance of polymeric
materials due to their cooperative effects [16,17]. A novel eco-friendly flame retardant
(PA-THAM) containing phosphorus and nitrogen has been synthesized [18]. The effect of
the presence of PA-THAM on the properties of PLA has been assessed. Incorporation of
only 3 wt % loading of this flame retardant produces a PLA biocomposite with excellent fire
resistance and significant lubrication, with little change of mechanical properties. As the
affinity between filler and matrix is also a crucial factor for the properties of a multi-phase
system, PA-THAM was proposed to improve both the interfacial compatibility and flame
retardant properties of the biocomposite.

An efficient in situ modification of natural fiber from corn stalk to incorporate novel
eco-friendly flame retardant has been developed. The fiber structure after modification
was characterized. This modified fiber was introduced into a PLA matrix. The mechanical
properties, thermal stability, and fire behavior of the reinforced PLA were also investigated.
Moreover, the relevant values of pure PLA, which was obtained previously under the same
experiment conditions [18], are also listed to assess the effect of the combination of OCC
and PA-THAM.

2. Materials and Methods
2.1. Materials

Polylactide (PLA, 4043D), extrusion grade, was supplied by NatureWorks (Min-
netonka, MN, USA). NaOH (pellets, 98%) was purchased from Alfa Aesar (Waltham,
MA, USA). Biobased flame retardant (PA-THAM), which was previously synthesized from
Trometamol (THAM) and phytic acid (PA), was used directly in this study. The corn stalk
residue was collected from a field in Castelló d’Empúries in the north of Catalonia.

2.2. Preparation of Oxidized Corn Pith Fiber (OCC)

Corn pith fiber (CC) was extracted from the soft, spongy tissue, which is at the interior
of the corn stalk and has a noticeably low density. In order to improve the reactivity
and thermal stability, this fiber was pre-treated by physical and chemical methods [19].
CC of millimeter size was obtained by mechanical milling; then oxidization was carried
out in NaOH aqueous solution (PH = 11) at room temperature for 12 h with continuous
stirring [20]. Finally, OCC was collected by filtration and washed with deionized water
until neutral.

2.3. Modification of OCC with Flame Retardant

As shown in Figure 1, OCC was modified via in situ reaction of PA and THAM in
suspension. THAM was firstly dissolved in ethanol at 70 ◦C; then added OCC and stirred
to achieve a good dispersion. A corresponding equivalent of PA was dropped into the
solution. The modified material was collected by filtration and washed with ethanol to
remove the residual reagents; finally, OCC modified with different content of PA-THAM
was obtained after drying at 80 ◦C and reduced pressure.
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Figure 1. Scheme diagram of OCC modification with PA-THAM.

2.4. Preparation of Natural Fiber Reinforced Plastic Composites (NPCs)

Based on Table 1, PLA-based NPCs were fabricated via melt mixing method on a
micro-compounder machine (MC 15, Xplore) at 170 ◦C for 3 min with a speed of 80 rpm.
All the testing specimens were hot-pressed at 170 ◦C for 5 min into required dimensions
according to correlative measurements. All involved materials were dried in a reduced
pressure atmosphere at 80 ◦C for 8 h before use.

Table 1. Formulations for PLA-based NPCs.

Sample PLA/(wt %) OCC/(wt%) PA-THAM */(phr)

NPC0 90 10 /
NPC1 90 10 3
NPC2 90 10 5
NPC3 90 10 7

* PA-THAM was fixed with phr on the basis of total composite mass.

2.5. Characterization

Scanning electron microscopy coupled with energy dispersive spectrometer (SEM/EDS)
was carried out to investigate the morphology and elements of OCC and NPCs on an appa-
ratus (Helios NanoLab 600i, FEI: Waltham, MA, USA). The surface of both fiber and impact
fracture of biocomposites was coated with 15 nm gold layer before observation at 10 kV
accelerating voltage.

Fourier transforms infrared spectrometry (FTIR, Nicolet iS50: Waltham, MA, USA)
technique was used to characterize the structure of OCC. The spectrum was recorded by
scanning a range from 4000 cm−1 to 500 cm−1 on KBr powder. Thermogravimetric analysis
(TGA) was conducted on an equipment (Q50, TA Instruments: New Castle, DE, USA)
under a nitrogen flow of 90 mL/min. Samples with 10 ± 0.5 mg were placed in the furnace
with a heating rate of 10 ◦C/min from room temperature to 700 ◦C. Furthermore, TGA
connected with FTIR (TGA/FTIR) was also driven to investigate the pyrolyzed volatiles
during thermal degradation, and all the experimental conditions were set as the same as
previous FTIR and TGA tests.

Tensile test of PLA-based NPCs was performed by using the instruments INSTRON
3384 USA (Norwood, MA, USA) according to ASTM D 638-2014 with a crosshead speed of
5 mm/min at room temperature. Meanwhile, un-notched Charpy impact test was carried
out on an impact equipment CEAST-Germany according to ISO 179-1-2010. For each
formulation, at least 5 specimens were prepared and the average values were reported.

Dynamic mechanical analysis (DMA) was used to study the thermo-dynamic behavior
on an instrument (TA Q800, single-cantilever mode). The testing conditions were set at the
temperature from −40–120 ◦C with a heating rate 2 ◦C/min in frequency 1 Hz.

The limiting oxygen index (LOI), UL-94 vertical burning (UL-94) and cone calorimeter
test (CCT) were carried out to characterize the fire performance of PLA-based biocompos-
ites. LOI test was performed for specimens with the dimensions of 127.0 mm × 6.5 mm
× 3.0 mm on an apparatus (FTT, UK: West Sussex, RH19 2HL, UK) according to ASTM D
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2863-2013. UL-94 was conducted for the plate sheets with 127.0 mm × 13.0 mm × 3.0 mm
on a fire instrument (FTT, UK) in accordance with ASTM D 3801-2010 procedure. CCT was
used for samples (100.0 mm × 100.0 mm × 3.0 mm) on the basis of ISO 5660-1-2016 with a
heat flux of 35 kW/m2.

3. Results and discussion
3.1. Analysis of Chemical Composition for Untreated and Treated OCC

Images from Figure 2 illustrates the microstructure of untreated and treated OCC.
There was obvious difference between untreated and treated fiber surface. OCC exhibited
a smooth surface with 73.31 wt % of carbon, 26.66 wt % of oxygen and little phosphorus
which might result from the original composition in the corn pith. After modification,
some small particles were coated on the surface of natural fiber, and additional elements
comprised 6.07 wt % of phosphorus and 0.47 wt % of nitrogen were detected except carbon
and oxygen.
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Figure 2. Images from SEM/EDS for the surface of OCC before and after modification.

In order to further confirm the micro-structure of fiber surface, FTIR was utilized
to determine the relative absorption peaks of functional groups. In comparison with the
untreated OCC, some obvious changes can be observed in the curve of modified OCC
except the typical absorption spectrum from natural fiber [21]. As shown in Figure 3, a
wider and stronger absorbance from 4000 cm−1 to 3000 cm−1 is due to the formation of
more hydrogen-bonded bands between PA-THAM and OCC. Bands at 2940 cm−1 caused
by the stretching vibration of -NH3 in ammonium salts and 1530 cm−1 due to bending
vibration of N-H were also detected [22]. Meanwhile, other obvious absorption peaks
from stretching vibration of O-P-O and stretching vibration of P-O-H were observed at
1630 cm−1 and 890 cm−1, respectively [23]. Besides, the overlap from bending modes of
C-O and C-N bonds leads to another wide and strong characteristic band occurred around
1060 cm−1, which shifted to higher wavenumber owing to the formation of hydrogen-
bonded bands [23,24]. The appearance of these additional elements and characteristic
peaks proves that the PA-THAM was coated onto the surface of OCC.
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3.2. Thermal Degradation Behavior of Untreated and Treated OCC

The thermal behavior of OCC before and after modification was studied by thermo-
gravimetric analysis, shown in Table 2 and Figure 4. Both untreated and treated OCC
comprised three stages during degradation process [25]. The evaporation of free water
occurs at around 100 ◦C. Secondary stage between 200 ◦C and 350 ◦C is caused by hemi-
cellulose and cellulose decomposition; then the last thermal event is attributed to the
degradation of lignin, which exhibited a small and slow mass loss at a wide range of
temperature [26]. After modification with PA-THAM, the temperature corresponding to
the decomposition of hemicellulose and cellulose moved to a lower value, which can be
attributed to the premature decomposition of these two contents caused by PA-THAM.
However, the maximum degradation rate was reduced, and more than 30 wt % residue
was left after 300 ◦C. This is because PA-THAM releases phosphoric acid products at lower
temperature to induce carbonization of the corn pith fiber by dehydration reaction; then the
formation of char layer protects the inner materials from further decomposition [27,28]. On
account of thermal behavior, the modified corn pith fiber can be used as the filler for PLA.

Table 2. Results from TGA of OCC with and without FR (PA-THAM).

Sample T1 */(◦C) T2 */(◦C)
Residue (wt %) at

400 ◦C 700 ◦C

OCC 120 240–282 30.5 25.5
OCC with 3phr FR 110 209–262 35.9 29.4
OCC with 5phr FR 109 210–262 38.5 31.1
OCC with 7phr FR 109 209–261 40.8 34.1

T1 *: the temperature at free water’s evaporation. T2 *: the temperature at hemicellulose and cellulose’s decomposition.

3.3. Mechanical Properties

The variation of tensile and impact properties for PLA and PLA-based NPCs is listed
in Table 3. Generally, the introduction of corn pith fiber into PLA decreased the mechanical
properties of NPCs except Young’s Modulus. This is attributed to the incompatibility
between fiber and matrix. Compared with NPC0, tensile properties of sample with 5 phr
content of PA-THAM was hardly affected, which varied from 3.1% to 3.0% for elongation
at break and from 54.1 MPa to 53.7 MPa for tensile strength, as well as had same value for
Young’s modulus. This can be explained that the small loading of flame retardant had little
effect on the crystallinity of biocomposites.
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Table 3. Mechanical properties of PLA-OCC NPCs.

Sample Elongation at
Break/(%)

Tensile
Strength/(MPa)

Young’s
Modulus/(GPa)

Impact
Strength/(kJ/m2)

PLA * 4.1 ± 0.1 67.3 ± 1.5 2.2 ± 0.2 23.6 ± 2.0
NPC0 3.1 ± 0.1 54.1 ± 2.0 2.4 ± 0.1 11.7 ± 1.0
NPC1 2.9 ± 0.1 52.4 ± 1.0 2.4 ± 0.2 12.1 ± 0.5
NPC2 3.0 ± 0.1 53.7 ± 1.0 2.4 ± 0.1 13.0 ± 0.2
NPC3 2.1 ± 0.2 45.7 ± 2.0 2.3 ± 0.1 11.8 ± 0.2

* The values of pure PLA are from the reference [18]. Copyright 2020. Reproduced with permission from Express
Polymer Letters.

However, an initial upward and following downward trend was illustrated by impact
strength data of NPCs. The sample NPC0 exhibited a value of 11.7 kJ/m2. After incor-
porating modified OCC into PLA, this performance was enhanced by a higher value of
13.0 kJ/m2 at 5 phr loading of PA-THAM. While the further addition of flame retardant re-
sulted in a reduction, which presented 11.8 kJ/m2 for NPC3 with 7 phr PA-THAM. In order
to elucidate this phenomenon, SEM was performed to investigate the micro-morphology of
the biocomposites (shown in Figure 5), which is of importance to investigate the properties
for multiphase material system.

According to Figure 5a, NPC0 with only PLA and OCC demonstrated a poor compati-
bility with many smooth holes and clean fiber surface. As a result, these defects in weak
region is prone to lead a prior failure and debonding. After introducing the modified OCC
into PLA, Figure 5b,c illustrated that the debonding holes decreased and were replaced
by fibers adhered with PLA resin; meanwhile, the continuous matrix-phase also changed
from a flat surface to a rough one. Additionally, the fiber was embedded well in the matrix
with an obscured boundary, and homogeneous morphology with little aggregation was
achieved. These phenomena indicates that the incorporation of PA-THAM increased the
interfacial affinity and resulted in a good dispersion simultaneously [29–31]. As a com-
patibilizer, when PA-THAM was further added into the PLA-based biocomposite (NPC3),
some big agglomerates and discontinuous droplets were observed in Figure 5d. This is
probably because when the ratio between OCC and PA-THAM exceeds some range, the
interfacial interaction is dominated by PLA and PA-THAM in this ternary system [32,33].
Thus, an optimum addition of 5 phr PA-THAM can maintain the mechanical properties
of biocomposites.
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From the curves in Figure 6, all the PLA-based biocomposites illustrated two similar
thermo-dynamic relaxation processes. The first peak around 60 ◦C is due to the glass-
to-rubber transition, and the other one at approximate 110 ◦C is attributed to secondary
transition behavior derived from the crystal phase. With respect to the storage modulus of
PLA-based NPCs, all the samples presented a constant value in the glassy region. When the
temperature rose up to 60 ◦C, the value declined significantly caused by glass-transition,
and then increased a little at around 110 ◦C corresponding to the cold crystallization [34].

Polymers 2021, 13, x FOR PEER REVIEW 8 of 15 
 

 

 

Figure 6. Results from DMA test for PLA-based NPCs. 

However, the curves from Tan Delta, which is correlated with polymer chains 

relaxation, demonstrated a higher value of tan δ peak height with the content of PA-

THAM. This is because the incorporation of PA-THAM introduces the polar groups, and 

more time is needed to overcome the friction between the molecular chains [35]. When the 

addition of PA-THAM continuously increased, the peak intensity of tan δ fell down, 

which is because the lubrication effect from PA-THAM weakens the intermolecular 

interaction [36,37]. Moreover, the peak width at half height of the biocomposites, which is 

considered as a criterion for hinting interaction between components in the multiphase 

system, increased with the content of PA-THAM [37]. This can be also clarified with a 

good interaction between PLA and fillers, as was analyzed in the previous part [38]. 

3.4. Thermal Stability 

An obvious difference in thermal stability can be seen in Figure 7 before and after 

incorporation of PA-THAM. Compared with pure PLA (T10%: 330 °C), a premature 

decomposition of NPC0 occurred at a lower temperature (T10%) of 255 °C due to poor 

thermal stability of fiber. While the decomposition temperature at 10% mass loss of PLA-

based biocomposites increased significantly by 50 °C after adding the fiber modified with 

PA-THAM. This is owing to the phosphorylation of corn pith fiber by reacting with PA-

THAM rather than premature thermal degradation induced by corn pith fiber [39,40]. 

Additionally, a protective char layer forms to restrict the penetration of volatiles out from 

the material at the early stage and lessen further thermal degradation [41]. 

 

Figure 7. Results from thermal gravimetric analysis for PLA-based NPCs. 

Figure 6. Results from DMA test for PLA-based NPCs.

However, the curves from Tan Delta, which is correlated with polymer chains relax-
ation, demonstrated a higher value of tan δ peak height with the content of PA-THAM.
This is because the incorporation of PA-THAM introduces the polar groups, and more time
is needed to overcome the friction between the molecular chains [35]. When the addition of
PA-THAM continuously increased, the peak intensity of tan δ fell down, which is because
the lubrication effect from PA-THAM weakens the intermolecular interaction [36,37]. More-
over, the peak width at half height of the biocomposites, which is considered as a criterion
for hinting interaction between components in the multiphase system, increased with the
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content of PA-THAM [37]. This can be also clarified with a good interaction between PLA
and fillers, as was analyzed in the previous part [38].

3.4. Thermal Stability

An obvious difference in thermal stability can be seen in Figure 7 before and after
incorporation of PA-THAM. Compared with pure PLA (T10%: 330 ◦C), a premature decom-
position of NPC0 occurred at a lower temperature (T10%) of 255 ◦C due to poor thermal
stability of fiber. While the decomposition temperature at 10% mass loss of PLA-based bio-
composites increased significantly by 50 ◦C after adding the fiber modified with PA-THAM.
This is owing to the phosphorylation of corn pith fiber by reacting with PA-THAM rather
than premature thermal degradation induced by corn pith fiber [39,40]. Additionally, a
protective char layer forms to restrict the penetration of volatiles out from the material at
the early stage and lessen further thermal degradation [41].

Polymers 2021, 13, x FOR PEER REVIEW 8 of 15 
 

 

 

Figure 6. Results from DMA test for PLA-based NPCs. 

However, the curves from Tan Delta, which is correlated with polymer chains 

relaxation, demonstrated a higher value of tan δ peak height with the content of PA-

THAM. This is because the incorporation of PA-THAM introduces the polar groups, and 

more time is needed to overcome the friction between the molecular chains [35]. When the 

addition of PA-THAM continuously increased, the peak intensity of tan δ fell down, 

which is because the lubrication effect from PA-THAM weakens the intermolecular 

interaction [36,37]. Moreover, the peak width at half height of the biocomposites, which is 

considered as a criterion for hinting interaction between components in the multiphase 

system, increased with the content of PA-THAM [37]. This can be also clarified with a 

good interaction between PLA and fillers, as was analyzed in the previous part [38]. 

3.4. Thermal Stability 

An obvious difference in thermal stability can be seen in Figure 7 before and after 

incorporation of PA-THAM. Compared with pure PLA (T10%: 330 °C), a premature 

decomposition of NPC0 occurred at a lower temperature (T10%) of 255 °C due to poor 

thermal stability of fiber. While the decomposition temperature at 10% mass loss of PLA-

based biocomposites increased significantly by 50 °C after adding the fiber modified with 

PA-THAM. This is owing to the phosphorylation of corn pith fiber by reacting with PA-

THAM rather than premature thermal degradation induced by corn pith fiber [39,40]. 

Additionally, a protective char layer forms to restrict the penetration of volatiles out from 

the material at the early stage and lessen further thermal degradation [41]. 

 

Figure 7. Results from thermal gravimetric analysis for PLA-based NPCs. Figure 7. Results from thermal gravimetric analysis for PLA-based NPCs.

However, due to the continuous heating, the protective layer starts to break down,
which results in further decomposition of PLA and fillers; then a higher value of maximum
decomposition rate in biocomposites with PA-THAM was observed than that in NPC0 [42].
When the temperature was up to 400 ◦C, the amount of char residue in the biocomposite
with flame retardant was also more than that in the sample NPC0.

In order to analyze the significant improvement in thermal stability, TGA/FTIR was
carried out to investigate the evolution of volatile products during thermal degradation
process of PLA-based biocomposites. From Figure 8a, it can be seen that the incorporation
of PA-THAM did not change the main thermal decomposed products [43], but the intensity
of volatiles from NPC2 at 300 ◦C was much weaker that that from NPC0. Furthermore,
Figure 8b shows the curves of intensity versus time during the whole heating process,
which represents the evolution of relative concentration of hydrocarbon products [44]. It
is evident that NPC0 released higher amounts of volatiles at earlier stages than NPC2
did. These data elucidate that the introduction of PA-THAM significantly postpones the
degradation evolution of biocomposite and leads to an incomplete degradation, which is
consistent with the previous results.
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On the base of the analysis for thermal performance, it is indicated that the combi-
nation of OCC and PA-THAM can improve the thermal stability by forming a protective
layer and prevent a premature degradation of biocomposites [45,46].

3.5. Fire Behavior

The combustion behaviors were firstly evaluated by LOI and UL-94 tests, and the
results are presented in Table 4.

Table 4. Results from LOI and UL-94 tests for PLA-OCC biocomposites.

Sample LOI/(%)
UL-94

t1+t2/(s) Rate Ignition Dripping

PLA * 19.9±0.2 Burt out NR * Yes Yes
NPC0 19.0±0.2 Burt out NR Yes Yes
NPC1 22.0±0.2 10 + 60 NR Yes Yes
NPC2 25.2±0.1 13 + 14 V-2 Yes Yes
NPC3 26.1±0.1 14 + 0 V-2 Yes Yes

* NR: NO Rating. * The values of pure PLA are from the reference [18]. Copyright 2020. Reproduced with
permission from Express Polymer Letters.

In comparison with pure PLA, almost no enhancement was observed in sample NPC0,
showing a LOI value of 19.0 and burning out in UL-94 with no rating. However, it is
obvious that the presence of PA-THAM improved the LOI value as well as the rating in
UL-94 test. With the increasing concentration of PA-THAM, PLA-based biocomposites
illustrated an upward trend of LOI value and achieved V-2 rating in UL-94 test for NPC2
and NPC3. This is attributed to the cooperative effect between corn pith fiber and flame
retardant. Although the addition of 7 phr PA-THAM reduced the total flaming time, the
result in UL-94 test only conserved V-2 rating. This is due to the occurrence of flaming
dripping during combustion, which is caused by the extractable substance from corn pith
fiber [47].

As for cone calorimeter test, which well represents a developing fire scenario and is
widely used for researching the fire behavior of polymer materials [47,48], some important
parameters are summarized in Table 5 and Figure 9, such as heat release rate (HRR), peak
heat release rate (PHRR), time to ignition (TTI), total heat release (THR), average effective
heat of combustion (Av-EHC) and residue after combustion.
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Table 5. Results from CCT for PLA-OCC biocomposites.

Sample PHRR/(kW/m2) TTI/(s) THR/(MJ/m2) Av-EHC/(MJ/kg) Residue/(wt%)

PLA * 410 ± 5 61 ± 1 70 ± 1 15.7 ± 0.1 0.6
NPC0 428 ± 6 35 ± 2 65 ± 2 16.5 ± 0.1 0.5
NPC1 375 ± 5 43 ± 2 62 ± 1 16.6 ± 0.1 3.9
NPC2 337 ± 3 43 ± 2 58 ± 1 16.4 ± 0.1 6.2
NPC3 335 ± 4 44 ± 2 57 ± 2 16.1 ± 0.2 6.4

* The values of pure PLA are from the reference [18]. Copyright 2020. Reproduced with permission from Express
Polymer Letters.
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Sample NPC0 without PA-THAM exhibited a flammable behavior with starting to
ignition at 35 s, combusting completely, releasing THR of 65 MJ/m2 with a PHRR of
428 kW/m2 and only 0.5 wt % residue, which is even worse than the data from pristine
PLA [18,49]. This phenomenon results from the poor thermal stability of the fiber. Whereas
the addition of PA-THAM generally improved the flame retardant properties of PLA-based
biocomposites, especially for NPC2 with 5phr PA-THAM. Compared with NPC0, the value
of PHRR reduced by 21.3%, 6.2 wt % char residue left, and TTI was delayed by 8 s.

Ignition of polymer materials, as thermally thin PLA-based samples, can be analyzed
by physical and chemical characterization according to Equation (1) [50]. In this case,
the physical factors (ιρc) can be considered constant due to the same dimensions and
small loading of flame retardant. Nevertheless, on account of the same experimental
conditions, the TTI value of all the biocomposites with PA-THAM was higher than that
of the sample NPC0. Therefore, the chemical factor CHF, which corresponds to thermal
stability, would affect the final TTI value. This can be elucidated that the incorporation of
PA-THAM improves the thermal stability of biocomposite by forming carbonaceous layer;
and then prevents the premature decomposition of corn pith fiber as well as decreases the
concentration of volatiles [51], which is also consistent with the results from TGA.

TTI = ιρc
Tig − T0

q′′ext − CHF
(1)

where ι is the sample thickness; ρ is the density; c is the heat capacity; Tig and T0 are the
ignition temperature and initial ambient temperature, respectively; q′′ext is the experimental
heat flux, while CHF is the critical heat flux.

Furthermore, the value of Av-EHC, which indicates the amounts of released volatiles
during combustion, presented little change for all the samples. Consequently, the main
flame retardant mechanism can be determined by investigating char residue after cone
calorimeter test [52]. Figures 10 and 11 gave the digital photos for PLA-based NPCs and
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micro-morphology images for NPC0 and NPC2 after combustion, respectively. There was
a little char residue for NPC0, while higher amounts left for other biocomposites with
modified OCC and the value increased with the content of PA-THAM.
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(a-1) external part of NPC0; (a-2) internal part of NPC0; (a-3) EDS for NPC0 char residue; (b-1) external part of NPC2; (b-2)
internal part of NPC2; (b-3) EDS for NPC2 char residue.
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The residue of NPC0 demonstrated a discontinuous and loose surface with big voids.
By comparison, both external and internal surface of NPC2 presented a more continuous
and compact morphology structure. Additionally, more phosphorus and nitrogen elements
were detected in char residue of NPC2. Therefore, the investigation of char layer elucidates
that the combination of OCC and PA-THAM enables NPC2 to possess not only good
dispersion, but also better flame retardant properties, which is because of a cooperative
effect in the condensed phase [53,54].

4. Conclusions

A biobased flame retardant (PA-THAM) was successfully coated onto the surface of
oxidized corn pith fiber (OCC) via in situ modification. This modified OCC was introduced
to PLA to prepare natural fiber reinforced plastic composites (NPCs). Afterwards, the
effect of the combination of PA-THAM and OCC on the NPCs’ properties was investigated
systematically. In comparison with the sample NPC0, the biocomposite with 5 phr loading
of PA-THAM (NPC2) showed a 50 ◦C higher value of the decomposition temperature at
10% mass loss, and exhibited better impact strength. Moreover, the LOI value increased
from 19.0% to 25.2% and the classification in UL-94 varied from no rating to V-2 rating.
A 21.3% reduction of PHRR, increased char residue and delayed TTI were also observed
in CCT. When the content of PA-THAM rose up to 7 phr, the thermal stability and flame
retardancy of biocomposite (NPC3) were enhanced a little, while the mechanical properties
decreased obviously. In conclusion, to some extent, the presence of PA-THAM contributed
to an improvement of the NPC’s properties, and the 5 phr loading of PA-THAM can be
an optimum formulation for this NPC system to achieve the balance of flame retardancy,
thermal stability and mechanical properties.

Regarding to the PLA-based composite, although the combination of OCC and PA-
THAM did not offset the deterioration of the material’s performance caused by corn pith
fiber, the compatibility of corn pith fiber and PLA and flame retardancy were improved
indeed. Therefore, optimizing the original performance of corn pith fiber, such as parti-
cle size, could be the following research interest to further enhance the comprehensive
properties of this NPC composite.
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