Supporting Information: On the use of the Discrete Constant pH Molecular Dynamics to describe the Conformational Space of Peptides

Cristian Privat ¹, Sergio Madurga ^{1,*}, Francesc Mas ¹ and Jaime Rubio-Martínez ^{1,*}

¹ Department of Material Science and Physical Chemistry & Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, C/ Martí i Franquès 1, 08028, Barcelona, Spain

* Correspondence: jaime.rubio@ub.edu (J.R-M.); s.madurga@ub.edu (S.M.)

Anti-O1-protonated side-chain carboxyl

Syn-O1-protonated side-chain carboxyl

Figure S1. Protonatable sites in the side chain of the aspartic acid. There are four protonatable sites that correspond to the anti- or syn- position with respect to each oxygen of the carboxyl group. CPHMD method builds a residue with the four hydrogens, and only make one or none of them *effective* according to the protonation state.

Figure S2. Classification of the nine secondary structure regions (C₅, P_{II}, α D, β ₂, C₇^{eq}, α L, α' , α _R and C₇^{axial}) in the Ramachandran space by J. Rubio-Martinez et al.[1].

Figure S3. Gibbs free energies in the Ramachandran space of the blocked Tyr₂ tripeptide. The labelling indicates the residue, the simulation method (in the superscript) and the pH (only for the CPHMD simulations). Both sets of dihedrals (φ_1/ψ_1 from the N-terminal amino acid; φ_2/ψ_2 from the C-terminal amino acid) are illustrated. Protonated forms are in the left (CMD; top – CPHMD; bottom) and deprotonated ones in the right (CMD; top – CPHMD; bottom). Solid lines indicate an increase of 0.6 kcal/mol of the energy values.

Figure S4. Gibbs free energies in the Ramachandran space of the blocked Cys₂ tripeptide. The labelling indicates the residue, the simulation method (in the superscript) and the pH (only for the CPHMD simulations). Both sets of dihedrals (φ_1/ψ_1 from the N-terminal amino acid; φ_2/ψ_2 from the C-terminal amino acid) are illustrated. Protonated forms are in the left (CMD; top – CPHMD; bottom) and deprotonated ones in the right (CMD; top – CPHMD; bottom). Solid lines indicate an increase of 0.6 kcal/mol of the energy values.

Figure S5. Gibbs free energies in the Ramachandran space of the blocked His² tripeptide. The labelling indicates the residue, the simulation method (in the superscript) and the pH (only for the CPHMD simulations). Both sets of dihedrals (φ_1/ψ_1 from the N-terminal amino acid; φ_2/ψ_2 from the C-terminal amino acid) are illustrated. Protonated forms are in the left (CMD; top – CPHMD; bottom) and deprotonated ones in the right (CMD; top – CPHMD; bottom). Solid lines indicate an increase of 0.6 kcal/mol of the energy values.

Figure S6. Gibbs free energies in the Ramachandran space of the blocked Glu₂ tripeptide. The labelling indicates the residue, the simulation method (in the superscript) and the pH (only for the CPHMD simulations). Both sets of dihedrals (φ_1/ψ_1 from the N-terminal amino acid; φ_2/ψ_2 from the C-terminal amino acid) are illustrated. Protonated forms are in the left (CMD; top – CPHMD; bottom) and deprotonated ones in the right (CMD; top – CPHMD; bottom). Solid lines indicate an increase of 0.6 kcal/mol of the energy values.

Figure S7. Energy distributions of the blocked Tyr₂ tripeptide. Global, inner, van der Waals and electrostatics terms are illustrated. Dotted and dashed lines are CPHMD and CMD simulation methods, respectively.

Figure S8. Energy distributions of the blocked Cys₂ tripeptide. Global, inner, van der Waals and electrostatics terms are illustrated. Dotted and dashed lines are CPHMD and CMD simulation methods, respectively.

TYR^{CMD} ----- TYR^{CPHMD} pH 1

Figure S9. Energy distribution of the 1-4 and long-range electrostatics of the backbone and sidechain atoms of the blocked Tyr₂ tripeptide. Dotted and dashed lines are CPHMD and CMD simulation methods, respectively.

Figure S10. Energy distribution of the 1-4 and long-range electrostatics of the backbone and sidechain atoms of the blocked Tyr₂ tripeptide. Dotted and dashed lines are CPHMD and CMD simulation methods, respectively.

Figure S11. Energy distributions of the blocked His² tripeptide. Global, inner, van der Waals and electrostatics terms are illustrated. Dotted and dashed lines are CPHMD and CMD simulation methods, respectively.

Figure S12. Energy distribution of the 1-4 and long-range electrostatics of the backbone and sidechain atoms of the blocked His² tripeptide. Dotted and dashed lines are CPHMD and CMD simulation methods, respectively. Labels δ - and ϵ -STATE refer to the partial charges used for the computation of the side chain electrostatic energies.

Figure S13. Energy distributions of the blocked Glu₂ tripeptide. Global, inner, van der Waals and electrostatics terms are illustrated. Dotted and dashed lines are CPHMD and CMD simulation methods, respectively.

Figure S14. Energy distribution of the 1-4 and long-range electrostatics of the backbone and sidechain atoms of the blocked Glu₂ tripeptide. Dotted and dashed lines are CPHMD and CMD simulation methods, respectively.

Figure S15. Gibbs free energies in the sidechain-orientation space of the blocked Lys₂ tripeptide. The labelling indicates the residue, the simulation method (in the superscript) and the pH (only for the CPHMD simulations). Four sets of dihedral angles are used in this plot, using the θ dihedral angle (CE1-CA-CA-CE1) in conjunction with the phi (φ) or psi (ψ) of each monomer (φ_1/ψ_1 from N-terminal amino acid; φ_2/ψ_2 from the C-terminal amino acid). Protonated forms are in the left and deprotonated ones in the right. Solid lines indicate an increase of 0.6 kcal/mol of the energy values.

Figure S16. Gibbs free energies in the sidechain-orientation space of the blocked Tyr₂ tripeptide. The labelling indicates the residue, the simulation method (in the superscript) and the pH (only for the CPHMD simulations). Four sets of dihedral angles are used in this plot, using the θ dihedral angle (CE1-CA-CA-CE1) in conjunction with the phi (φ) or psi (ψ) of each monomer (φ_1/ψ_1 from N-terminal amino acid; φ_2/ψ_2 from the C-terminal amino acid). Protonated forms are in the left and deprotonated ones in the right. Solid lines indicate an increase of 0.6 kcal/mol of the energy values.

Figure S17. Gibbs free energies in the sidechain-orientation space of the blocked Cys₂ tripeptide. The labelling indicates the residue, the simulation method (in the superscript) and the pH (only for the CPHMD simulations). Four sets of dihedral angles are used in this plot, using the θ dihedral angle (CE1-CA-CA-CE1) in conjunction with the phi (φ) or psi (ψ) of each monomer (φ_1/ψ_1 from N-terminal amino acid; φ_2/ψ_2 from the C-terminal amino acid). Protonated forms are in the left and deprotonated ones in the right. Solid lines indicate an increase of 0.6 kcal/mol of the energy values.

Figure S18. Gibbs free energies in the sidechain-orientation space of the blocked Glu₂ tripeptide. The labelling indicates the residue, the simulation method (in the superscript) and the pH (only for the CPHMD simulations). Four sets of dihedral angles are used in this plot, using the θ dihedral angle (CE1-CA-CA-CE1) in conjunction with the phi (φ) or psi (ψ) of each monomer (φ_1/ψ_1 from N-terminal amino acid; φ_2/ψ_2 from the C-terminal amino acid). Protonated forms are in the left and deprotonated ones in the right. Solid lines indicate an increase of 0.6 kcal/mol of the energy values.

Figure S19. Gibbs free energies in the sidechain-orientation space of the blocked Asp² tripeptide. The labelling indicates the residue, the simulation method (in the superscript) and the pH (only for the CPHMD simulations). Four sets of dihedral angles are used in this plot, using the θ dihedral angle (CE1-CA-CA-CE1) in conjunction with the phi (φ) or psi (ψ) of each monomer (φ_1/ψ_1 from N-terminal amino acid; φ_2/ψ_2 from the C-terminal amino acid). Protonated forms are in the left and deprotonated ones in the right. Solid lines indicate an increase of 0.6 kcal/mol of the energy values.

Figure S20. Distribution of the atomic distance between the atoms of the side chain selected for the construction of the θ dihedral angle.

ATOM	GLH	GLU	pH12	P-sO ₂	P-aO ₂	P-sO1	P-aO1	ATOM	ASH	ASP	pH12	P-sO ₂	P-aO ₂	$P-sO_1$	cP-aO1
Z	-0,4157	-0,5163	-0,4157	-0,4157	-0,4157	-0,4157	-0,4157	Ζ	-0,4157	-0,5163	-0,4157	-0,4157	-0,4157	-0,4157	-0,4157
Н	0,2719	-0,2936	0,2719	0,2719	0,2719	0,2719	0,2719	Н	0,2719	0,2936	0,2719	0,2719	0,2719	0,2719	0,2719
CA	0,0145	-0,0397	0,0145	0,0145	0,0145	0,0145	0,0145	CA	0,0341	-0,0381	0,0341	0,0341	0,0341	0,0341	0,0341
ΥH	0,0779	0,1105	0,0779	0,0779	6/0/0	0,0779	0,0779	ΑH	0,0864	-0,088	0,0864	0,0864	0,0864	0,0864	0,0864
CB	-0,0071	0,056	-0,0398	-0,0071	-0,0071	-0,0071	-0,0071	CB	-0,0316	-0,0303	-0,1783	-0,0316	-0,0316	-0,0316	-0,0316
HB2	0,0256	-0,0173	-0,0173	0,0256	0,0256	0,0256	0,0256	HB2	0,0488	-0,0122	-0,0122	0,0488	0,0488	0,0488	0,0488
HB3	0,0256	-0,0173	-0,0173	0,0256	0,0256	0,0256	0,0256	HB3	0,0488	-0,0122	-0,0122	0,0488	0,0488	0,0488	0,0488
CG	-0,0174	0,0136	0,0136	-0,0174	-0,0174	-0,0174	-0,0174	CG	0,6462	0,7994	0,7994	0,6462	0,6462	0,6462	0,6462
HG2	0,0430	-0,0425	-0,0425	0,0430	0,0430	0,0430	0,0430	0D1	-0,5554	-0,8014	-0,8014	-0,5554	-0,5554	-0,5554	-0,5554
HG3	0,0430	-0,0425	-0,0425	0,0430	0,0430	0,0430	0,0430	OD2	-0,6376	-0,8014	-0,8014	-0,6376	-0,6376	-0,6376	-0,6376
CD	0,6801	0,8054	0,8054	0,6801	0,6801	0,6801	0,6801	HD21	0,4747	I	0,0000	0,4747	0,0000	0,0000	0,0000
OE1	-0,5838	-0,8188	-0,8188	-0,5838	-0,5838	-0,5838	-0,5838	С	0,5973	0,5366	0,5973	0,5973	0,5973	0,5973	0,5973
OE2	-0,6511	-0,8188	-0,8188	-0,6511	-0,6511	-0,6511	-0,6511	0	-0,5679	-0,5819	-0,5679	-0,5679	-0,5679	-0,5679	-0,5679
HE2	0,4641	ı	0,0000	0,4641	0,0000	0,0000	0,0000	HD22	I	I	0,0000	0,0000	0,4747	0,0000	0,0000
С	0,5973	0,5366	0,5973	0,5973	0,5973	0,5973	0,5973	HD11	I	I	0,0000	0,0000	0,0000	0,4747	0,0000
0	-0,5679	-0,5819	-0,5679	-0,5679	-0,5679	-0,5679	-0,5679	HD12	I	I	0,0000	0,0000	0,0000	0,0000	0,4747
HE22	ı	ı	0,0000	0,0000	0,4641	0,0000	0,0000								
HE11		ı	0,0000	0,0000	0,0000	0,4641	0,0000								
HE12	ı	ı	0,0000	0,0000	0,0000	0,0000	0,4641								

Table S1. Partial charges of the protonated and deprotonated forms of the Glu and Asp amino acids in CMD and CPHMD simulations. pH(X) and p-(X) refers to the partial charges used in the CPHMD method while other labels correspond to the CMD residues. Both Glu and Asp amino acids have four protonated states: the syn- (P-sO_x) and anti- (P-aO_x) position on the two oxygens (O₁ or O₂) of the carboxyl group.

ATOM	ΓλΝ	LYS	pH1	pH14	ATOM	TYR	pH1	ATOM	СҮМ	CYS	pH1	pH12	ATOM	HID	HIE	HIP	pH1	pH12ε	pH128
Z	-0,416	-0,3479	-0,3479	-0,3479	Z	-0,4157	-0,4157	Z	-0,4160	-0,4160	-0,4160	-0,4160	Z	-0,416	-0,4160	-0,3480	-0,3480	-0,3480	-0,348
Η	0,272	0,2747	0,2747	0,2747	Η	0,2719	0,2719	Н	0,2720	0,2720	0,2720	0,2720	Н	0,2720	0,2720	0,2750	0,2750	0,2750	0,2750
CA	-0,072	-0,2400	-0,2400	-0,2400	CA	-0,0014	-0,0014	CA	-0,0350	0,0210	0,0210	0,0210	CA	0,0190	-0,0580	-0,1350	-0,1350	-0,1350	-0,1350
HA	0,099	0,1426	0,1426	0,1426	HA	0,0876	0,0876	HA	0,0510	0,1120	0,1120	0,1120	ΗA	0,0880	0,1360	0,1210	0,1210	0,1210	0,1210
CB	0,048	-0,0094	-0,0094	-0,1096	CB	-0,0152	-0,0152	CB	-0,2410	-0,1230	-0,1230	-0,3590	CB	-0,0460	-0,0070	-0,0410	-0,0410	-0,1110	-0,1012
HB2	0,034	0,0362	0,0362	0,0340	HB2	0,0295	0,0295	HB2	0,1120	0,1110	0,1110	0,1110	HB2	0,0400	0,0370	0,0810	0,0810	0,0402	0,0367
HB3	0,034	0,0362	0,0362	0,0340	HB3	0,0295	0,0295	HB3	0,1122	0,1112	0,1112	0,1112	HB3	0,0402	0,0367	0,0810	0,0810	0,0402	0,0367
CG	0,06612	0,0187	0,0187	0,0661	CG	-0,0011	-0,0011	SG	-0,8844	-0,3119	-0,3119	-0,8844	CG	-0,0266	0,1868	-0,0012	-0,0012	-0,0266	0,1868
HG2	0,01041	0,0103	0,0103	0,0104	CD1	-0,1906	-0,1906	HG	ı	0,1933	0,1933	0,0000	ND1	-0,3811	-0,5432	-0,1513	-0,1513	-0,3811	-0,5432
HG3	0,01041	0,0103	0,0103	0,0104	HD1	0,1699	0,1699	С	0,5973	0,5973	0,5973	0,5973	HD1	0,3649	ı	0,3866	0,3866	0,3649	0,0000
CD2	ı	-0,0479	-0,0479	-0,0377	CE1	-0,2341	-0,2341	0	-0,5679	-0,5679	-0,5679	-0,5679	CE1	0,2057	0,1635	-0,0170	ı	0,2057	0,1635
HD2	0,01155	0,0621	0,0621	0,0115	HE1	0,1656	0,1656						HE1	0,1392	0,1435	0,2681	0,2681	0,1390	0,1435
HD3	0,01155	0,0621	0,0621	0,0115	CZ	0,3226	0,3226						NE2	-0,5727	-0,2795	-0,1718	-0,1718	-0,5727	-0,2795
CE2	0,32604	-0,0143	-0,0143	0,3260	НО	-0,5579	-0,5579						HE2	ī	0,3339	0,3911	0,3911	0,0000	0,3339
HE2	ı	0,1135	0,1135	-0,0336	ΗH	0,3992	0,3992						CD2	0,1292	-0,2207	-0,1141	-0,1141	0,1292	-0,2207
HE3	ı	0,1135	0,1135	-0,0336	CE2	-0,2341	-0,2341						HD2	0,1147	0,1862	0,2317	0,2317	0,1147	0,8620
NZ	ı	-0,3854	-0,3854	-1,0358	HE2	0,1656	0,1656						С	0,5973	0,5973	0,7341	0,7341	0,7341	0,7341
HZ1	ı	0,3400	0,3400	0,0000	CD2	-0,1906	-0,1906						0	-0,5679	-0,5679	-0,5894	-0,5894	-0,5894	-0,5894
HZ2	0,38604	0,3400	0,3400	0,3860	HD2	0,1699	0,1699												
HZ3	0,38604	0,3400	0,3400	0,3860	C	0,5973	0,5973												
C	0,5973	0,7341	0,7341	0,7341	НО	-0,5679	-0,5679												
0	-0,5679	-0,5894	-0,5894	-0,5894															

Table S2. Partial charges of the protonated and deprotonated forms of the Glu and Asp amino acids in CMD and CPHMD simulations. pH(X) and p-(X) refers to the partial charges used in the

System	Atomic distance		Dihedral angle	
	LYSCMD	11.89 ± 1.90		
IVC	LYS^{CPHMD_1}	11.87 ± 1.90	NIZ NIZ	NZCA CA NZ
LIS	LYNCMD	11.30 ± 2.34	INZ-INZ	NZ-CA-CA-NZ
	LYS ^{CPHMD} 14	11.39 ± 2.22		
TVD	TYR ^{CMD}	10.13 ± 3.02		
	TYR^{CPHMD_1}	10.07 ± 2.96	00-00	Оп-са-са-оп
	CYSCMD	6.71 ± 1.24		
CVS	CYS^{CPHMD_1}	6.68 ± 1.23		
C15	CYMCMD	7.04 ± 0.71	5G-5G	5G-CA-CA-5G
	CYS^{CPHMD}_{12}	7.08 ± 0.91		
	HIPCMD	9.10 ± 1.60		
	$HIPCPHMD_1$	9.12 ± 1.58		
HIP	HIECMD	7.63 ± 2.02	CE1-CE1	CEI-CA-CA-
	HIDCMD	8.49 ± 2.04		CEI
	HIPCPHMD ₁₂	8.42 ± 2.07		
	GLHCMD	8.34 ± 1.31		
CUI	$GL4^{CPHMD_1}$	8.75 ± 1.15		
	GLUCMD	8.23 ± 1.17	CD-CD	CD-CA-CA-CD
	$GL4^{CPHMD}_{12}$	8.79 ± 1.10		
	ASHCMD	6.95 ± 0.89		
ACD	$AS4^{CPHMD_1}$	7.05 ± 0.74		
ASI	ASPCMD	7.02 ± 0.81		CG-CA-CACG
	$AS4^{CPHMD_{12}}$	7.06 ± 0.57		

CPHMD method while other labels correspond to the CMD residues. The histidine amino acid has two states in the neutral form: the ϵ - (pH12- ϵ) and δ - (pH12- δ) state.

Table S3. Averages and standard deviations of the interatomic distance using the selected atoms at the extreme of the side chains. The construction of the θ angle for each amino acid is also indicated.

REFERENCES

1. Rubio-Martinez, J.; Tomas, M.S.; Perez, J.J. Effect of the solvent on the conformational behavior of the alanine dipeptide deduced from MD simulations. *J. Mol. Graph. Model.* **2017**, *78*, 118–128, doi:10.1016/j.jmgm.2017.10.005.