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Abstract: A high-molecular weight hyaluronan is oxidatively degraded by Cu(Il) ions and ascorbate—
the so called Weissberger biogenic oxidative system—which is one of the most potent generators of
reactive oxygen species, namely *OH radicals. Ergothioneine, hercynine, or histidine were loaded
into chitosan/hyaluronan composite membranes to examine their effect on skin wound healing in
ischemic rabbits. We also explored the ability of ergothioneine, hercynine, or histidine to inhibit
hyaluronan degradation. Rotational viscometry showed that ergothioneine decreased the degree
of hyaluronan radical degradation in a dose-dependent manner. While histidine was shown to be
potent in scavenging ®*OH radicals, however, hercynine was ineffective. In vivo results showed that
the addition of each investigated agent to chitosan/hyaluronan membranes contributed to a more
potent treatment of ischemic skin wounds in rabbits compared to untreated animals and animals
treated only with chitosan/hyaluronan membranes.

Keywords: free/*OH radicals; rotational viscometry; skin injuries; thiol compounds

1. Introduction

Hyaluronan (HA) is a glycosaminoglycan consisting of repeating D-glucuronic acid
and N-acetyl-D-glucosamine disaccharide units. HA is abundant in the human body with
over 50% present in the skin [1]. The residence time of HA is short, exhibiting a half-life of
1-2 days [2]. In skin exposed to UV irradiation, HA may act as a scavenger of free radicals
and an antioxidant in physiological conditions [3,4]. The high-molar-mass HA is also a
component of both the cartilage and synovial fluid. The degradation of high-molar-mass
HA occurs under inflammation and oxidative stress and is accompanied by the loss of
viscoelastic properties of synovial fluid [5]. In osteoarthritis, articular applications of
sterile HA solutions, termed viscosupplementation, diminish pain and disability and thus
enhance the function of joints and decrease cartilage degradation [6].

Wound healing is usually divided into several sequential phases, in which HA plays a
key role, that overlap such as homeostasis, inflammation, granulation, tissue formation,
and tissue remodeling [7]. In the inflammatory phase, HA binds to fibrinogen to begin
clotting. In the proliferative phase, HA draws fibroblasts to the wound site. It creates
cushioning and structural organization within the extracellular matrix. Furthermore, HA
can stimulate metalloproteinases for angiogenesis, while promoting keratinocyte migration
and proliferation. In the remodeling (granulation) phase, HA contributes to normal and
pathological scarring [8]. It is known that increased concentrations of HA in the serum in-
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dicate several inflammatory skin diseases, such as psoriasis, progressive systemic sclerosis,
and dermatomyositis [9].

Chitosan (Ch) is a 3-1,4-linked polymer of glucosamine and N-acetylglucosamine.
It is a derivative of chitin (poly-N-acetylglucosamine) [10]. Preparations of chitosan of
various molar masses and degrees of deacetylation have attracted much attention due to
their potentially beneficial biological properties [11,12]. The chitosan ability to bind with
red blood cells allows rapid clotting of the blood, and it was approved in the USA for
use in bandages comprising hemostatic agents [13]. Furthermore, chitosan modulates the
functions of inflammatory cells and subsequently promotes granulation and organization.
As a semipermeable biological dressing, it maintains a sterile wound exudate beneath a
dry scab, prevents dehydration and contamination of the wound. Chitosan is antimicrobial
due to its ability to destabilize the outer membrane of Gram-negative bacteria and its
ability to permeate the microbial plasma membrane [14] and has been used to deliver
bacteriocin [15].

Ergothioneine is a sulfur-containing amino acid discovered a century ago in the rye
ergot. The only organisms, which synthesize it are bacteria of the order Actinomycetales (for
example, mycobacteria) and fungi including Lentinus edodes (shiitake), Pleurotus ostreatus,
and Pleurotus eryngii. These microbes synthesize ergothioneine from histidine using an
intermediate hercynine, as shown in Figure 1.
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Figure 1. Biosynthetic pathway of ergothioneine under anaerobic conditions adapted from Valachova
et al. [16]: The enzyme EgtD converts the amino acid histidine into hercynine (Me, methyl group).
The enzyme EanB catalyzes the synthesis of ergothioneine directly from hercynine in the presence of
a sulphur donor under anaerobic conditions.

Mammals acquire ergothioneine exclusively through diet. Ergothioneine is tautomeric
and is present in the thione form in neutral aqueous solutions. Under in vitro conditions,
ergothioneine inhibits the formation of *OH radicals, O,*~, 1O, production, lipid peroxi-
dation, and peroxynitrite oxidative damage. It protects the skin against UV light [17,18].
It can bind to transition metal ions such as Fe?* /Fe** and Cu?*/Cu™ in forms unable to
catalyze redox reactions and protects cells from apoptosis. Humans have the ergothioneine
transporter protein (OCTN1). Human tissues, e.g., liver, kidney, central nervous system,
bone marrow, and red blood cells receive ergothioneine from dietary sources up to mil-
limolar concentrations [19-24]. Studies in animals and humans have found no toxicity
or adverse effects to be associated with ergothioneine administration even at high doses.
This is due to the presence of OCTNT1 [25]. Ergothioneine is commonly used in cosmetics
and skin care products [17]. Numerous investigations report that ergothioneine modulate
inflammation, protect against acute respiratory diseases, neuronal damage, lung and liver
fibrosis, mitigate damage to lungs, kidneys, liver, gastrointestinal tract and prevent en-
dothelial dysfunction, which are symptoms attributed to a new type of corona virus [26].
Sotgia et al. [27] showed for the first time that hercynine, the main biosynthetic precursor
and oxidative metabolite of ergothioneine, was detectable and measurable in beverages
such as tea, coffee, beer, and wine. They propose hercynine to be a possible contributor to
the antioxidant activity of ergothioneine.

Histidine acts as *OH radical and singlet oxygen scavenger. The daily requirement for
histidine is 8 to 12 mg/kg of body weight per day in adults. Free histidine and histidine
incorporated into peptides and proteins are essential components of the antioxidative
defense system. In plasma and other body fluids, histidine coexists with cysteine and
other thiol compounds [28]. Histidine acts on metal regulation and chelates different
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metal ions such as cobalt(Il), nickel(Il), copper(Il), zinc(Il) cadmium(Il), and iron(Il) [29].
Histidine permeates the skin to reach the full dermis, down to the keratinocytes, where it
renders several restorative functions [30]. Tan et al. [31] showed a beneficial effect of oral
histidine in the treatment of adult patients with atopic dermatitis. Rothkopf [32] reported
that histidine supplementation produced symptomatic improvement in the case of severe,
treatment-resistant eczema in patients.

In our previous studies, we prepared Ch/HA membranes loaded with edaravone,
which were characterized and examined in vivo in rats [33]. In 2018, Tamer et al. [34]
prepared and characterized membranes composed of chitosan, HA, and MitoQ, whereas
the addition of MitoQ had a beneficial effect on the structure of membranes and their
application on skin wounds of rats and ears of ischemic rabbits contributed to a more rapid
healing of the wounds. Similarly, tiopronin and captopril added to Ch/HA membranes
were potent to facilitate healing of lacerations in ischemic ears of rabbits [35]. The Ch/HA
membranes loaded with glutathione showed to be more beneficial in the treatment of skin
wounds in rats than in untreated rats and rats treated only with Ch/HA membranes [36].

The aim of this study is to examine the ability of ergothioneine, hercynine, and histi-
dine to inhibit reactive oxygen species-induced hyaluronan degradation and to determine
their effect on healing skin wounds in ischemic rabbits when incorporated in hyaluronan
chitosan membranes. We used ergothioneine since it is a special molecule—it is not toxic at
high levels, its half-life is 1 month, and it is not oxidized. It protects the skin from UV light
but it was not examined as a component of wound dressings. Histidine and hercynine are
components used for the synthesis of ergothioneine in bacteria.

2. Materials and Methods
2.1. Materials

HA (My = 1.69 MDa, My, /M, = 1.63) was purchased from Lifecore Biomedical
Inc., Chaska, MN, USA. Chitosan (molar mass range: 100,000-300,000 Da) was obtained
from ACROS Organics™, part of Thermo Fisher Scientific, Waltham, MA, USA. NaOH,
ethanol, formaldehyde solution, trypane blue, formalin, haematoxylin, and eosin were
purchased from Sigma-Aldrich, St. Louis, MO, USA. CuCl,-H;O p.a. and NaCl p.a.
were purchased from Slavus Ltd., Bratislava, Slovakia. Ascorbic acid was from Merck
KGaA, Darmstadt, Germany. De-ionized high-purity grade water, with conductivity of
<0.055 uS/cm, was made using the TKA water purification system (Water Purification
Systems GmbH, Niederelbert, Germany).

Twelve crossbred 6-month-old male rabbits HIL (2.5 & 0.5 kg) from the Department of
Toxicology and Breeding of Laboratory Animals at the Centre of Experimental Medicine in
Dobra Voda, Slovakia were used.

2.2. Preparation of Stock and Working Solutions

The working solutions of the HA samples (16 mg) were prepared in the dark at room
temperature in 0.15 mol/L NaCl in two steps: The first, 4.0 mL of the solvent was added,
then 3.90 or 3.85 mL of the solvent was added after 6 h. Stock solutions of ergothioneine,
hercynine, and histidine at a concentration of 16 mmol/L and their dilutions to 8.0, 1.6,
and 0.32 mmol/L were made in 0.15 mol/L of NaCl. Stock solutions of ascorbic acid
(16 mmol/L) and cupric chloride (160 umol/L) were made in 0.15 mol/L of NaCL

2.3. Hyaluronan Degradation

First, HA degradation was induced by an oxidative system comprising CuCl, (1.0 pmol/L)
and ascorbic acid (100 umol/L). The procedure was as follows: A volume of 50 pL. CuCl,
solution was added to the HA solution (7.90 mL), and stirred for 30 s. The mixture was
maintained unstirred for 7.5 min at room temperature. Then, 50 puL of ascorbic acid solution
was added to the HA solution, stirred for 30 s and followed by an immediate addition
into the Teflon® cup reservoir for viscometric measurements. The above procedure was
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repeated with 50 uL of ergothioneine, hercynine, or histidine (16, 8.0, or 1.6 mmol/L) added
to the HA solution before the HA degradation begins or 1 h later.

2.4. Rotational Viscometry

Dynamic viscosity of the reaction mixture (8 mL) containing HA (2 mg/mL), ascorbate
(100 umol/L) along with Cu(II) ions (1 umol/L) in the absence and presence of the exam-
ined compounds (10, 50, and 100 umol/L) was reported by a Brookfield LVDV-II+PRO
digital rotational viscometer (Brookfield Engineering Labs., Middleboro, MA, USA). The
parameters of the measurement were: Temperature 25.0 & 0.1 °C, shear rate of 237.6 57,
180 rpm, data report every 3 min within 5 h [37,38].

2.5. Preparation of Composite Membranes

Chitosan (0.5 g) was dissolved in 20 mL of aqueous acetic acid (2%, v/v). Hyaluro-
nan (50 mg) was dissolved overnight in 5 mL of water. Both solutions were then mixed
together, and 1 mL of the aqueous stock of ergothioneine, histidine, or hercynine solution
(1.47 mg/mL) were admixed into the homogeneous Ch/HA solution. Next, 1 mL of glyc-
erol as a plasticizer was added into the three component solution. This solution was then
cast on a Petri dish and the solvent was allowed to evaporate at room temperature over
72 h. The dry membrane, separated from the Petri dish, was rinsed for approx. 1 min in a
1 mol/L NaOH solution to remove traces of acetic acid. The membrane was then washed
for approx. 2 min in distilled water. Finally, the wet membrane was spread out and left to
dry for several days at room temperature. Two types of membranes were prepared: Control
Ch/HA membranes and Ch/HA membranes loaded with ergothioneine, hercynine, or
histidine. Membranes were sterilized by spraying them with 80% ethanol, and dried.

2.6. Skin Wound Healing in Ischemic Rabbits

Experiments were approved by the ethical committee of the Institute of Experimen-
tal Pharmacology and Toxicology in Bratislava, Slovakia (SK UCH 04018), followed by
the State Veterinary and Food Administration in Bratislava, Slovakia (2908-3/2020-220).
Ischemic wounds on rabbits’ ears were performed according to DiPietro’s and Burns’s
method [39]. Inside of each rabbit’s ear, two lacerations with a size of ca. 1 x 1 cm
and a complete removal of skin tissue were performed. Rabbits were divided into three
groups: First group—control (wound was covered with bandage only); second group—
animals treated with the Ch/HA membrane only; and third group—animals treated with
Ch/HA /ergothioneine, Ch/HA /hercynine, or Ch/HA /histidine membrane. Post opera-
tion animals underwent standard care. Animals were administered analgesics during the
study. Rabbits were maintained individually in cages with an area of 4200 cm? in daily 12 h
light-dark cycles. Animal wounds were covered with dehydrated membranes immediately
after the primary treatment of wounds. Each membrane was moisturized in saline and
disinfected with 80% ethanol. Membranes were renewed after 3, 6, 9, and 12 days. Wounds
were only washed with saline and in treated animals membranes were fastened to wounds
with standard plasters. All wounds were bandaged. Untreated animals and the efficacy of
Ch/HA and Ch/HA /ergothioneine, Ch/HA /hercynine, or Ch/HA /histidine membranes
on the healing of skin wounds were evaluated through the measurment of wound area. To
statistically evaluate the performance of the membranes an ANOVA test was carried out.
Results are shown as the average and standard deviation for each group of animals.

3. Results and Discussion

Figure 2 shows the predispostion of the HA macromolecule to degradation initiated by
Cu(Il) ions (1 umol/L) and ascorbate (100 pmol/L) with a viscosity decrease of 6.1 mPa-s
within 5 h (black curve, the reference). The addition of ergothioneine (panel A) at a
concentration of 100 umol/L results in retardation of the *OH radical-induced degradation
of HA (red curve). Ergothioneine at a concentration of 50 umol/L protects HA from
degradation for 1 h, after that there is a slow decrease in the dynamic viscosity of the HA
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solution (green curve). A decrease in the ergothioneine concentration to 10 umol/L (blue
curve) facilitates HA degradation, however, it is less rapid than the reference (black curve).
As shown in Figure 2B, ergothioneine also dose-dependently protects HA from free radical
degradation, when added to the HA reaction mixture 1 h later.
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Figure 2. Time-dependent changes in dynamic viscosity of the HA solution exposed to 1 pumol/L
Cu(II) ions and 100 umol/L ascorbic acid (black curve) and after the addition of ergothioneine (A,B),
histidine (C,D), hercynine (E,F) before HA degradation begins (left panels) and 1 h later (right panels).
The compounds were added at concentrations: 100 umol/L (red curve), 50 pumol/L (green curve),
10 pmol/L (blue curve).

Figure 2C shows that histidine at its highest concentration of 100 pmol/L significantly
inhibits the degradation of HA (red curve). Histidine retards HA degradation also at
concentrations of 50 and 10 umol/L (green and blue curve, respectively). As shown in
Figure 2D, histidine dose-dependently decreases the rate of HA degradation, when added
to the reaction mixture 1 h later.

However, hercynine does not exhibit a concentration-dependent inhibition of the
free radical-induced degradation of HA when added to the HA oxidative system before
HA degradation was initiated (Figure 2E) and 1 h later (Figure 2F). Unlike ergothioneine,
hercynine has no effect on the degradation of high-molar-mass HA. This is attributed to the
functional group —-SH in ergothioneine, which allows ergothioneine to be a potent donor of
*H, which interacts with *OH and retards the initial phase of free radical degradation of
HA. The OCTNI1 protein is a selective transporter of ergothioneine, and we postulate that
this may allow the possibility of a controlled release of ergothioneine into the blood stream.

The results in Figure 3 illustrate the percentage of healing of the untreated skin
wound and the skin wound treated with the Ch/HA membrane alone and loaded with
ergothioneine, hercynine, or histidine. On day 3 in control animals (untreated, white
column) the potency in healing injured skin is 4%. The treatment of the wounds with the
Ch/HA membrane (red column) enhanced the effect of healing up to 27%. The most potent
examined Ch/HA membrane is shown to be the one with the addition of ergothioneine
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(green column). The efficiency in wound healing reached 56.2%. The least effective
substance is histidine at 30%. On day 6, the healing increases in both control animals
(white) and animals treated with Ch/HA membranes (red). However, the addition of
the examined substances enhances the rate of healing, which is again the most potent for
wounds treated with the Ch/HA /ergothioneine membrane (green). The wounds heal up
to 80% efficacy, while the addition of histidine has the least benefit.
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Figure 3. Profiles of the wound healing in ischemic rabbits, when the wound was not treated (control),
the wound treated with the chitosan/HA (Ch/HA) membrane only (red), loaded with hercynine
(blue), ergothioneine (green), or histidine (grey). N = 6. $ indicates a significant difference between
the control and the Ch/HA membrane at p < 0.05. # indicates a significant difference between the
control and hercynine loaded membrane at p < 0.05. * indicates a significant difference between the
control and ergothioneine loaded membrane at p < 0.05. " indicates a significant difference between
the control and histidine loaded membrane. @ Indicates a significant difference between the Ch/HA
membrane and hercynine loaded membrane and & indicates a significant difference between the
Ch/HA membrane and ergothioneine loaded membrane. * Indicates a significant difference between
the Ch/HA membrane and histidine loaded membrane.

A more significant healing of skin wounds is seen on day 9, when the percentage
of healing increased up to 92% after loading Ch/HA composite membranes with ergoth-
ioneine (green column) and hercynine (blue column). The treatment of skin wounds with
the Ch/HA composite membranes loaded with histidine reached 81% (grey column). In
contrast, the percentage of healing skin wound with the Ch/HA membrane increases to
73% and in untreated animals the healing reaches only 28% efficacy (white column).

On day 12, the percentage of healing skin wounds treated with the Ch/HA membranes
loaded with the all examined substances reaches about 96%, which is slightly better than
the treatment of the skin wound with only the Ch/HA membrane (red column). While
on day 15, all animals treated with the Ch/HA membranes reach almost full healing
compared to the untreated animals (white column), which exhibit an 82% level of healing.
The statistical significance of these results are reported in Figure 3.

Figure 4A illustrates the tissue of the untreated animals (control group), which was in a
phase of inflammation/proliferation. In the histogram, one can see the vascular maturating
granular tissue (*), where a less amount of histocytes, leukocytes, hyperemic capillaries
with perivascular bleeding and perpendicular distribution of fibroblasts prevail. Further, in
animals treated with Ch/HA membranes (Figure 4B), it is seen that within 15 days the tissue
is in a proliferative phase. There is an obvious maturating granular tissue, which is assumed
to be composed particularly of leukocytes, macrophages, myxoid changes of the stroma,
plasmocytes, and fibroblasts due to the presence of acid mucopolysaccharides. There are
activated fibroblasts with the formation of collagen fibres (—) and newly formed veins (*).
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Figure 4. Histograms of the rabbit ischemic ear tissues from: Control experiment (A), after treatment with Ch/HA
membranes (B), after treatment with the Ch/HA composite membrane loaded with histidine (C), hercynine (D), or
ergothioneine (E). Ct: Cartilage; Ep: Epidermis.

Figure 4C illustrates the hypocelullar nonspecific granular tissue with a loss of inflam-
matory elements (*). The wound treated with Ch/HA /histidine composite membranes
is in a phase of proliferation/remodeling. The result of the treatment of the wound with
Ch/HA /hercynine composite membranes illustrates the periphery of the wound in is-
chemic area, as shown in Figure 4D. Changes are in a phase of remodulation. The presence
of fibroblasts/myofibroblasts is obvious. There is an absence of polymorphonuclear granu-
locytes and macrophages (*).

The result of the treatment of the wound with Ch/HA/ergothioneine composite
membranes displays the remodulation phase of wound healing, as shown in Figure 4E.
The wound is composed of hypocellular nonspecific granular tissue with the prevalence of
myofibroblasts and fibrous collagen.

Our study is the first, where ergothioneine has been explored as a component of
wound dressings used for the treatment of injured skin, and is the subject of a recent patent
application [40]. Ergothioneine is an established and very potent antioxidant species, which
functions in the organism as a bulwark and a potent cytoprotective compound [19].

4. Conclusions

In conclusion, ergothioneine and histidine are potent in attenuating free radical HA
degradation. In contrast, hercynine was ineffective. Results of in vivo experiments show
that the addition of ergothioneine and histidine to Ch/HA membranes contributes to a
quicker rate of healing of ischemic skin wounds in rabbits, with ergothioneine performing
the best of all, especially during the earlier phases of healing. It can be speculated that the
incorporation of ergothioneine and its subsequent release from biopolymeric membranes
allows its transport to the site of inflammation via the blood stream and this is mediated
by the OCTN1 protein. These findings are relevant as the skin contains a high content of
this ergothioneine.
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