Supplementary information

Thermal behaviour of common thermoresponsive polymers in phosphate buffer and in its salt solutions

Łukasz Otulakowski¹, Maciej Kasprów¹, Aleksandra Strzelecka¹, Andrzej Dworak¹, Barbara Trzebicka^{1*}

¹Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, Zabrze, 41-819, Poland

*Corresponding author: Barbara Trzebicka e-mail: btrzebicka@cmpw-pan.edu.pl

Figure S1. Transmittance versus temperature curves of aqueous solutions of a)PNIPAM, b) P(IPO-*co*-NPO) c) P(HEMA-*co*-OEGMA₃₀₀). Total solute concentration 0.5 g/L, heating/cooling rate 1 °C/min. Heating - black, cooling - red.

Figure S2. Representative pictures of precipitates formed in NaCl solution of a) PNIPAM, b) P(IPO-*co*-NPO) c) P(HEMA-*co*-OEGMA₃₀₀)

Figure S3. D_h⁹⁰ versus temperature plots of water solution of a)PNIPAM, b) P(IPO-*co*-NPO), c) P(HEMA-*co*-OEGMA₃₀₀). Total solute concentration 0.5 g/L. Heating - black, cooling - red.

Table S1. Diameters of polymers aggregates after gradual heating depicted from DLS at 70 °C.

	Hydrodynamic diameter at 70 °C [nm]				
Copolymer	Water	PBS	NaH_2PO_4 solution	Na₂HPO₄ solution	NaCl solution
PNIPAM	770	4370	750	1540	4000
P(IPO-co-NPO)	1120	4000	1600	3100	3050
P(HEMA-co-OEGMA ₃₀₀)	1480	3800	2230	3420	2650

Figure S4. D_h⁹⁰ and I⁹⁰ versus temperature plots of PNIPAM in a) monosodium phosphate, b) disodium phosphate, c) sodium chloride solutions. Polymer concentration 0.5 g/L, gradual heating.

Figure S5. D_h^{90} and I^{90} versus plots of P(IPO-*co*-NPO) in a) monosodium phosphate, b) disodium phosphate, c) sodium chloride solutions. Polymer concentration 0.5 g/L, gradual heating.

Figure S6. D_h^{90} and I^{90} versus temperature plots of P(HEMA-*co*-OEGMA₃₀₀) in a) monosodium phosphate, b) disodium phosphate, c) sodium chloride solutions. Polymer concentration 0.5 g/L, gradual heating.

Figure S7. D_h^{90} versus temperature plots during heating and cooling of PNIPAM in a) commercial PBS b) disodium phosphate, c) sodium phosphate d) sodium chloride solutions. Polymer concentration 0.5 g/L, gradual heating.

Figure S8. Particles size distribution of PNIPAM in abrupt heating a) in different solutions after 4h, b) in solution of NaCl after different times periods.