



## Enhanced Photovoltaic Properties of Perovskite Solar Cells by Employing Bathocuproine/Hydrophobic Polymer Films as Hole-Blocking/Electron-Transporting Interfacial Layers

Guan-Zhi Liu <sup>1</sup>, Chi-Shiuan Du <sup>1</sup>, Jeng-Yue Wu <sup>1</sup>, Bo-Tau Liu <sup>2,\*</sup>, Tzong-Ming Wu <sup>3</sup>, Chih-Feng Huang <sup>1</sup> and Rong-Ho Lee <sup>1,\*</sup>

- <sup>1</sup> Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; as798320@gmail.com (G.-Z.L.); justduit0831@gmail.com (C.-S.D.); s0916871303@gmail.com (J.-Y.W.); HuangCF@dragon.nchu.edu.tw (C.-F.H.)
- <sup>2</sup> Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
- <sup>3</sup> Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan; tmwu@nchu.edu.tw
- \* Correspondence: liubo@yuntech.edu.tw (B.-T.L.); rhl@dragon.nchu.edu.tw (R.-H.L.); Tel.: +886-4-22854308 (B.-T.L.); Tel.: +886-4-22854308 (R.-H.L); Fax: +886-4-22854734 (B.-T.L.); +886-4-22854734 (R.-H.L)



Figure S1. (a) UV–Vis absorption and (b) PL spectra of the MAPbI<sub>3</sub> perovskite film.

Citation: Liu, G.-Z.; Du, C.-S.; Wu, J.-Y.; Liu, B.-T.; Wu, T.-M.; Huang, C.-F.; Lee, R.-H. Enhanced Photovoltaic Properties of Perovskite Solar Cells by Employing Bathocuproine/Hydrophobic Polymer Films as Hole-Blocking/Electron-Transporting Interfacial Layers. *Polymers* 2020, *13*, 42. https://doi.org/10.3390/ Polym13010042

Received: 26 November 2020 Accepted: 22 December 2020 Published: 24 December 2020

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



**Copyright:** © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).



**Figure S2.** (**a**, **c**, **e**, **g**) Topographic and (**b**, **d**, **f**, **h**) phase AFM images of (**a**, **b**) BCP, (**c**, **d**) BCP/PMMA (10:1, w/w), (**e**, **f**) BCP/PMMA (5:1, w/w), and (**g**, **h**) BCP/PMMA (5:2, w/w) hole-block-ing/electron-transporting interfacial layers, recorded after thermal treatment (80 °C, 5 min).



**Figure S3.** (**a**, **c**, **e**, **g**) Topographic and (**b**, **d**, **f**, **h**) phase AFM images of (**a**, **b**) BCP, (**c**, **d**) BCP/PVP (10:1, w/w), (**e**, **f**) BCP/PVP (5:1, w/w), and (**g**, **h**) BCP/PVP (5:2, w/w) hole-blocking/electron-transporting interfacial layers, recorded after thermal treatment (80 °C, 5 min).



**Figure S4.** Photographs of water droplets on (**a**) BCP, (**b**) PC61BM, (**c**, **d**, **e**) BCP/PMMA (10:1, 5:1, and 5:2, *w/w*), and (**f**, **g**, **h**) BCP/PVP (10:1, 5:1, and 5:2, *w/w*) films.



**Figure S5.** Photographs of water droplets on  $(\mathbf{a}-\mathbf{c})$  BCP,  $(\mathbf{d}-\mathbf{f})$  BCP/PMMA (5:1, w/w), and  $(\mathbf{g}-\mathbf{i})$  BCP/PVP (5:1, w/w) films after storage at 30 °C and 35% relative humidity for 0, 5, and 10 days.





**Figure S6.** Time dependence of *V*<sub>oc</sub> and *J*<sub>sc</sub> of the PVSC I, PVSC III, and PVSC VI (measured at 30 °C and 35% relative humidity).



**Figure S7.** Storage-stability of PVSCs incorporating BCP, BCP/PMMA, and BCP/PVP (measured at 30 °C and 60% relative humidity).

**Table S1.** Crystal sizes of MAPbI<sub>3</sub> film coated with BCP, BCP/PMMA, and BCP/PVP layers after storage at 30 °C and 35% relative humidity for 0, 5, and 10 days.

| Sample | Interfacial<br>layer | Time (days) | Crystal size<br>(nm) |
|--------|----------------------|-------------|----------------------|
| I-1    | BCP                  | 0           | 34.21                |
| I-2    | BCP                  | 5           | 29.05                |
| I-3    | BCP                  | 10          | 28.25                |

| II    | BCP/PMMA (10:1) | 0  |       |
|-------|-----------------|----|-------|
| III-1 | BCP/PMMA (5:1)  | 0  | 30.65 |
| III-2 | BCP/PMMA (5:1)  | 5  | 27.78 |
| III-3 | BCP/PMMA (5:1)  | 10 | 26.94 |
| IV    | BCP/PMMA (5:2)  | 0  |       |
| V     | BCP/PVP (10:1)  | 0  |       |
| VI-1  | BCP/PVP (5:1)   | 0  | 32.93 |
| VI-2  | BCP/PVP (5:1)   | 5  | 28.68 |
| VI-3  | BCP/PVP (5:1)   | 10 | 27.78 |
| VII   | BCP/PVP (5:2)   | 0  |       |

**Table S2.** Surface roughnesses and CAs of films of BCP, BCP/PMMA, and BCP/PVP layers after storage at 30 °C and 35% relative humidity for 0, 5, and 10 days.

| Sample | Composition (w/w) | Time (days) | RMS (nm) | CA (°) |
|--------|-------------------|-------------|----------|--------|
| I-1    | BCP               | 0           | 3.27     | 74.5   |
| I-2    | BCP               | 5           | 2.76     | 49.0   |
| I-3    | BCP               | 10          | 7.55     | 37.8   |
| II     | BCP/PMMA (10:1)   | 0           | 3.25     | 75.5   |
| III-1  | BCP/PMMA (5:1)    | 0           | 3.18     | 78.4   |
| III-2  | BCP/PMMA (5:1)    | 5           | 5.14     | 74.4   |
| III-3  | BCP/PMMA (5:1)    | 10          | 5.31     | 72.3   |
| IV     | BCP/PMMA (5:2)    | 0           | 3.29     | 81.8   |
| V      | BCP/PVP (10:1)    | 0           | 3.12     | 58.4   |
| VI-1   | BCP/PVP (5:1)     | 0           | 3.09     | 53.5   |
| VI-2   | BCP/PVP (5:1)     | 5           | 26.45    | 43.9   |
| VI-3   | BCP/PVP (5:1)     | 10          | 38.32    | 35.7   |
| VII    | BCP/PVP (5:2)     | 0           | 3.15     | 43.0   |

**Table S3.** PV performances of previously reported PVSCs, compared with those measured in this present study.

| Device structure                                             | <b>PV performance</b>                                                                                              | Reference                                                        |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| ITO/PEDOT/MAPbI <sub>3</sub> /PC <sub>61</sub> BM/BCP:PVP/Ag | $V_{\rm OC}$ : 0.92 V; $J_{\rm SC}$ : 21.72<br>mA cm <sup>-2</sup> ; FF: 0.62; PCE:<br>12.41%.                     | This study                                                       |
| ITO/PEDOT/MAPbI3:CDHC/PC61BM/Ag                              | <i>V</i> <sub>OC</sub> : 0.96 V; <i>J</i> <sub>SC</sub> : 17.73<br>mA cm <sup>-2</sup> ; FF: 0.61; PCE:<br>10.38%. | Cellulose, 2019, 26, 9229-9239.                                  |
| ITO/PEDOT/MAPbI3/PC61BM/Al                                   | <i>V</i> <sub>OC</sub> : 0.78 V; <i>J</i> <sub>SC</sub> : 13.2 mA<br>cm <sup>-2</sup> ; FF: 0.60; PCE:<br>6.2%.    | Nanoscale, 2014,<br>6, 11403–11410.                              |
| ITO/PEDOT/MAPbI3:NH4Cl/PC61BM/Al                             | <i>V</i> <sub>OC</sub> : 0.88 V; <i>J</i> <sub>SC</sub> : 14.08<br>mA cm <sup>-2</sup> ; FF: 0.80; PCE:<br>9.93%.  | Nanoscale, 2014,<br>6, 9935–9938.                                |
| ITO/PEDOT/MAPbI3:PEOXA/PC61BM/Al                             | <i>V</i> <sub>OC</sub> : 1.04 V; <i>J</i> <sub>SC</sub> : 8.85 mA<br>cm <sup>-2</sup> ; FF: 0.65; PCE:<br>6.16%.   | RSC Adv., 2015, 5, 775–783.                                      |
| ITO/PEDOT/MAPbI <sub>3</sub> /PC <sub>61</sub> BM/A1         | $V_{\rm OC}$ : 0.88 V; $J_{\rm SC}$ : 14.16<br>mA cm <sup>-2</sup> ; FF: 0.60; PCE:<br>7.6%                        | Solar Energy Ma-<br>ter. Solar Cells,<br>2016, 155, 166–<br>175. |
| ITO/PEDOT/MAPbI3/PC61BM/Al                                   | <i>V</i> <sub>OC</sub> : 0.87 V; <i>J</i> <sub>SC</sub> : 11.4 mA<br>cm <sup>-2</sup> ; FF: 0.78; PCE:<br>7.79%.   | ACS Appl. Mater.<br>Interfaces, 2017,<br>9, 32957–32964.         |
| ITO/PEDOT/MAPbI <sub>3</sub> /PC <sub>61</sub> BM/Ag         | $V_{\rm OC}$ : 0.75 V; $J_{\rm SC}$ : 13.76 mA cm <sup>-2</sup> ; FF: 0.40; PCE: 4.13%.                            | J. Mater. Chem.<br>A, 2017, 5,<br>12811–12821.                   |

| 6 | of | 6 |
|---|----|---|
|---|----|---|

|                                                      | <i>V</i> <sub>OC</sub> : 0.95 V; <i>J</i> <sub>SC</sub> : 16.55 | ACS Appl. Mater.  |
|------------------------------------------------------|-----------------------------------------------------------------|-------------------|
| ITO/PEDOT/MAPbI <sub>3</sub> /PC <sub>61</sub> BM/Ag | mA cm <sup>-2</sup> ; FF: 0.59; PCE:                            | Interfaces, 2017, |
| _                                                    | 9.29%.                                                          | 9, 32957–32964.   |
|                                                      |                                                                 |                   |