

Article **Supplementary material**

Polystyrene Biodegradation by *Tenebrio molitor* Larvae: Identification of Generated Substances Using a GC-MS Untargeted Screening Method

Emmanouil Tsochatzis^{1,*}, Joao Alberto Lopes², Helen Gika^{3,4,5} and Georgios Theodoridis²

- ¹ Department of Food Science, Centre of Innovative Food Research (iFood), Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
- ² European Commission, Joint Research Centre (JRC), 2440,Geel, Belgium; Joao-Filipe.ALBERTO-LOPES@ec.europa.eu (J.A.L.); gtheodor@chem.auth.gr (G.T.)
- ³ Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; gkikae@auth.gr
- ⁴ Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- ⁵ FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
- * Correspondence: Emmanouil.tsochatzis@foodau.dk; Tel.: +45-4189-3130

Citation: Tsochatzis, E.; Lopes, J.A.; Gika, H.; Theodoridis, G. Polystyrene Biodegradation by *Tenebrio molitor* Larvae: Identification of Generated Substances Using a GC-MS Untargeted Screening Method. *Polymers* **2020**, *13*, 17. https://doi.org/ 10.3390/polym13010017

Received: 8 December 2020 Accepted: 21 December 2020 Published: 23 December 2020

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Figure S1. Total Ion chromatogram (TIC) from untargeted GC-EIC-MS analysis of insects biomass during biodegradation of polystyrene (day 3).

Analyte	Added (mg kg ^{-1*})	Linear regression coefficient (R²)	LOD (mg kg ^{-1*})	LOQ (mg kg ^{-1*})	RSD (%)	Recovery ^a (%)	
Styrene	40.0	0.99	0.012	0.030	9.3	94.7	
	500.0				2.9	96.9	
α -methyl styrene	40.0	0.991	0.011	0.032	15.2	100.3	
	500.0				4.5	96.7	
Acetophenone	40.0	0.990	0.012	0.030	8.3	94.5	
	300.0				6.6	96.4	
Cumyl alcohol	40.0	0.993	0.009	0.027	9.6	98.4	
	300.0				12.5	96.7	
Ethyl linoleate	40.0	0.990	0.011	0.026	2.1	96.6	
	300.0				8.9	100.9	
Ethyl hexadecanoate	40.0	0.991	0.013	0.036	14.9	104.3	
	300.0				9.0	99.1	
2,4-di-tert butyl phenol	40.0	0.994	0.010	0.027	13.3	99.2	
	300.0				15.9	103.9	
methyl-9,12-octadecadienoate	40.0	0.990	0.014	0,039	8.9	97.9	
	300.0				11.6	95.9	
2,4,6-triphenyl-1-hexene	40.0	0.990	0.011	0.032	12.0	99.4	
	300.0				13.1	93.4	
1,3,5-triphenylcyclohexane	40.0	0.991	0.008	0.025	10.1	96.7	
	300.0				9.3	99.0	
Tetradecanamide	40.0	0.994	0.012	0.034	9.7	100.5	
	300.0				12.1	84.0	
Hexadecanamide	40.0	0.995	0.011	0.031	10.2	99.4	
	500.0				7.6	94.8	
9-Octadecenamide	40.0	0.990	0.020	0.060	5.2	88.3	
	500.0				4.2	94.6	

Table S1. Analytical features together with precision and accuracy results of the validated analytical method.

*mg kg⁻¹ of dry weight sample.

^a Recovery was assessed in 2 mass fraction levels.