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Abstract: Polymethyl methacrylate plates are widely applied to buildings, producing significant fire
hazards. It lacks a theoretical basis for the fire risk assessment of polymethyl methacrylate in concave
building facades. Therefore, experimental methods are used to investigate combustion characteristics
of discrete polymethyl methacrylate plates in a concave building facade. Influences of fuel coverage
and structure factor are investigated, which is scant in previous works. When structure factor is
invariable, average flame height increases first and then decreases as fuel coverage increases, and the
turning point is between 0.64 and 0.76. In total, three different patterns of pyrolysis front propagation
are first observed for different fuel coverages. Flame spread rate first increases and then decreases
as fuel coverage rises, and the turning point is also between 0.64 and 0.76. When fuel coverage is
invariable, the flame spread rate first increases and then decreases with increasing structure factor,
and the turning point is 1.2. A model for predicting the flame spread rate of discrete polymethyl
methacrylate is also developed. The predicted values are consistent with experimental results. Fuel
spread rate of discrete polymethyl methacrylate rises as the fuel coverage increases. The above results
are beneficial for thermal hazard evaluation and fire safety design of polymethyl methacrylate used
in buildings.

Keywords: polymethyl methacrylate; thermodynamics and kinetics; combustion; discrete flame
spread; concave building facade

1. Introduction

Polymethyl methacrylate (PMMA) is widely used as a building roof and a curtain
wall for natural lighting, which can reduce building energy consumption by 33–78% [1,2].
Moreover, the thermal conductivity of PMMA is much lower than that of glass, leading
to the better thermal insulation properties. In addition, the chemical stability, mechanical
properties and weather resistance of PMMA are outstanding [3]. Therefore, PMMA is a
relatively important material in building thermal engineering. However, PMMA without
flame retardant is flammable, releasing a lot of toxic gas and resulting in rapid flame spread,
which enhances building fire hazards [4,5]. The fire hazard of PMMA is significantly
affected with distribution of materials and structures of building facade. Under most
conditions, the distribution of PMMA is discrete, rather than continuous (Figure 1a) [6].
As a common building structure, the concave facade obviously influences combustion
behaviors of building materials [7]. For example, in March 2019, a fire occurred in Kaifeng,
China (Figure 1b) [8]. Under the influence of the concave building facade, it took only
2 min for the fire to spread to the top of the building from the bottom. Therefore, it is
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necessary to investigate combustion behaviors of discrete PMMA plates with different
spacings in concave building facade.
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Figure 1. (a) Concave structure of a building; (b) a fire occurring in the concave structure.

Concerning different building structures, such as concave facade, ceiling inclination,
curtain wall channel [9], corner of wall, etc., some works have been conducted to investigate
their influences on combustion behaviors. Moreover, studies concerning flame spread over
PMMA plate are also reviewed in this section. A heat transfer model was proposed by Zhu
et al. [4,5] to predict the downward flame spread rate of PMMA in a curtain wall channel
with different spacings. Moreover, as the spacing increased, the flame height, preheating
zone length and mass loss rate all increased first and then decreased. Matsuoka et al. [10]
investigated the geometrical effects on the flame spread over thermally thick combustibles
in a narrow channel. They found that the flame spread rate increased with channel height
when the channel height was sufficiently small, and then the flame spread rate started to
decrease as the channel height further increased. Zhou [11] conducted an experimental
study on average fire propagation speed (FPS) of the external wall using the expanded
polystyrene thermal insulation system, finding that the relationship between the average
FPS and the vertical distance is positively linear. Tao [12] studied the ignition behavior of
different shapes of PMMA exposed to external heat radiation and found that cylindrical
samples are easier to ignite than flat samples. The ignition time dropped with the decrease
of the sample radius. Peng et al. [13] found the flame spread rate of PMMA presented
a “U” variation with the increasing of ceiling inclination. They proposed a correlation
among pyrolysis length, sample width and ceiling inclination. Gao et al. [14] found the
flame spread rate of PMMA is proportional to flame width under the influence of curtain
wall channel. The flame height increased linearly with time. Cai et al. [9] studied the
downward flame spread over thermal insulation materials in an enclosed vertical channel,
and found that the total heat flow received by the preheating zone is mainly controlled
by flame convection. Chu et al. [15] studied the upward flame spread of cotton fabrics
with different moisture regain, and observed that the flame height and flame spread rate
kept stable first and then decreased with an increase in the moisture. Liang et al. [16]
revealed the sidewall constraint effects of a channel on combustion characteristics of the
fire source and the temperature distribution. Zeinali et al. experimentally studied the
fire characteristics and flame spread behaviors in a corner of building walls [17,18]. Jiang
et al. [19] studied the fire safety of thermal insulation materials over a wide range of widths
and established the heat transfer model for flame spread over thermal insulation materials.
Ma et al. [20] studied the influence of facade structures on parallel, symmetric and adjacent
buildings on downward flame spread characteristics of polyurethane (PUR)and found that
the flame spread rate and flame height increased first and then decreased as the angle of
the adjacent facade increased and reached their maximum when the critical angle was 90◦;
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Tao et al. [21] revealed the influence mechanism of the spacing between two side walls of
concave channel on buoyant jet flames, built the prediction model of virtual ignition source,
and found that the flame height increases as the spacing between side walls decreases. Gao
et al. [22] conducted a set of burning experiments to investigate the restriction influence
of sidewalls and established empirical equation to predict the maximum gas temperature.
Tsai [23] studied the influence of sidewalls on the width effect of vertical flame spread
and found that the sidewalls increase the flame height and lower the heat feedback at
flame center. Yan et al. [7,24] conducted an experiment concerning upward and downward
flame spread behaviors at different altitudes and found that under higher pressure, the
upward flame spread rate over concave facade is higher, and both flame spread rate and
mass loss rate tend to rise as the structure factor increases, revealing the mechanism of how
the concave facade influences the vertical flame spread. On the basis of above works, An
et al. [25] further discussed the influence of concave facade on the upward flame spread
over thermal insulation materials, deduced the formula concerning between dimensionless
flame height and structure factor, and built the model to predict flame spread characteristics
under the influence of the concave facade.

Most previous works focused on combustion behaviors of continuous materials.
However, studies concerning the combustion of discrete combustibles were relatively less.
Park and Liao [26] studied the influence of air gap on the vertical flame spread of thermally
thin materials through numerical simulation and small-scale experiments, finding two
aspects of the influence: one is the jumping phenomenon at the flame bottom and flame
front, and the other is that the air gap makes upward flames closer to the fuel surface,
leading to stronger flame heat flow received by the fuel surface. Cui et al. [27] further
studied the influence of air gaps with different lengths on the vertical flame spread over
thin filter papers, and found that as the air gap gets larger, the flame spread rate and mass
loss rate increases first and then decreases. Miller et al. [6] studied the upward flame spread
characteristics of PMMA when noncombustible isolation strips are arranged at the same
spacing, and indicated that the flame spread rate increases first and then decreases as fuel
coverage (ƒ) decreases, and reaches its maximum when ƒ = 0.64. Wang et al. [28] indicated
that the average flame spread rate increases as fuel coverage rate rises. In addition, there is a
positive correlation between average flame height and fuel coverage. More scholars [29–32]
studied discrete flame spread over matchstick arrays. Jiang et al. [33] conducted a series
of combustion experiments of wood plug arrays with different spacings, found that the
vertical flame spread rate is significantly larger than the average flame spread rate, and
predicted the average flame spread rate and mass loss rate using radiation control model.

Beside the heat hazards, polymer fires also produce a variety of organic pollutants.
Altarawneh et al. [34] found that the pyrolysis products of permethrin include dibenzo-
p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF), which may cause pollu-
tion to the environment. In addition, they [35] investigated the interaction between a
2-chlorophenol molecule and Cu2O(110): CuO surface and they found the formation of a
2-chlorophenoxy moiety, which is one of the organic pollutants in combustion systems.

In conclusion, previous studies mainly focused on analyzing combustion charac-
teristics of continuous materials in different building structures, ignoring the discrete
distribution of materials, which is commonly observed in the real building fire scene. In
fact, due to the existence of windows, corridors, fire barrier zones and various gaps, most
combustible materials are distributed in a discrete form. At present, some scholars have
carried out researches on discrete flame spread, but most of them only conduct qualitative
analysis, without establishing relevant mathematical models or considering the influence
of architectural structure. This leads to a lack of a theoretical basis for fire risk assessment
and fire protection design of buildings with special external wall structures and discrete
combustible materials. In this paper, the small-scale experiment was carried out to study
the combustion characteristics of discrete PMMA plates in a concave building facade.
Through changing concave structure factors and spacings among discrete PMMA plates,
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their influence mechanism on flame spread is investigated and revealed based on analyzing
thermodynamics and kinetics characteristics during combustion of PMMA.

2. Experimental Device, Materials and Methods
2.1. Experimental Device

The experimental device used in this paper is shown in Figure 2. The concave facade
was made up of one back wall and two parallel sidewalls perpendicular to the back wall,
which were wrapped and fixed by a frame to ensure the sealing and stability. The frame
was concave, and there were four legs to support the entire concave structure. The frame
was made of stainless steel since the stainless-steel frame is widely used in actual buildings
to support the PMMA plates. Simultaneously, in order to effectively simulate the actual
wall, non-combustible ceramic fiber boards were used on the back and sidewalls. The
thermal conductivity of the ceramic fiber boards is close to the walls of real buildings. The
back wall was 60 cm high and 10 cm wide. The height of side walls was 60 cm, and the
width varied for different the test conditions. The ignition device is a linear pool fueled by
n-heptane to ensure that sample bottom can be ignited at the same time in the experiment.
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The measuring equipment used in this experiment consisted of a digital camera
and infrared camera, as shown in Figure 2. The Sony A6000 digital camera, with a data
acquisition of 25 frames per second, was installed in front of the concave facade, which
could record the flame shape of PMMA in real time during the whole combustion process.
Then the flame height could be obtained using a further image processing method. An
infrared camera (MAG30HT) with a data acquisition frequency of 25 frames per second
was also placed in front of the experimental setup at a distance of 2 m, which was used to
record the real-time temperature distribution of PMMA surface and its flame. The pyrolysis
front of PMMA surface could also be obtained by further processing of infrared video.

2.2. Experimental Materials

PMMA was selected as the experimental material, whose physical properties are
listed in Table 1. The thickness of the PMMA blocks was 1.5 cm, uniformly and vertically
arranged on the back wall to form a continuous or discrete fuel array. PMMA is a type of
thermoplastic material. Due to its stable combustion performance, PMMA is commonly
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used in the standard fire test. When its surface temperature reaches 160 ◦C, PMMA
changes from a solid to a molten state. When the temperature rises to 350 ◦C, this material
begins to pyrolysis. Multiple endothermic and exothermic processes occur during thermal
decomposition of PMMA. The rapid thermal decomposition stage occurs between 350 ◦C
and 420 ◦C and then it grows to be stable [5]. Its flame temperature is around 800 ◦C.

Table 1. Parameters of thermophysical properties of polymethyl methacrylate (PMMA) [36].

Material k/Wm−1K−1 ρ/Kg m−3 cp/J Kg−1K−1 Tp/K Tf/K σ/ W2m−4K4

PMMA 0.05 1190 1400 623 1073 5.67 × 10−8

2.3. Experimental Methods

The experimental conditions designed in this paper included PMMA fuel coverage (ƒ)
and structure factor (Π). The structure factor (Π) is defined as the ratio of side wall length to
the back wall width. The setting of the fuel coverage and structure factor refers to a standard
of China, i.e., “Code for fire protection design of buildings” (GB 50016-2014). For each test
condition, the total length of PMMA fuel blocks and air gaps was fixed at 50 cm. The test
conditions concerning PMMA structure factor are shown in Table 2. The distribution of
PMMA fuel blocks is shown in Figure 3. The test under each condition was repeated 2 to
3 times to ensure the repeatability of the experiment and reduce experimental errors. The
ambient temperature and pressure of the laboratory were 20 ◦C and 100.9 kPa, respectively.
Since these environmental conditions changed little during the entire experiment, their
effects on this study were not considered.

Table 2. Experimental conditions concerning concave structure factor.

Experimental Condition Number 1# 2# 3# 4#

Back wall width/cm 10 10 10 10

Side wall width/cm 5 8 12 16

Structure factor (Π) 0.5 0.8 1.2 1.6
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3. Results and Discussion
3.1. Flame Shape

The side view of the flame shape of both the continuous and discrete PMMA flame
spread without sidewalls is shown in Figure 4a,b. For the continuous PMMA flame spread,
a continuous flame is formed on the surface of PMMA blocks, and both the flame thickness
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and shape are relatively stable. When there is an air gap between adjacent PMMA plates,
the flame thickness becomes smaller, and flame “faults” are observed. The flame “faults”
mean that the flame is discrete rather than continuous. The reason for the phenomena is
that high-temperature pyrolysis gases flows into air gaps under the influence of front air
entrainment. The air gap prevents the induced air flow rising along the PMMA surface,
causing the discontinuous flame more unstable, which is similar to the phenomenon
observed by Tsai [37]. When the flame reaches the top of PMMA array, it is shown in a
wavy form under the influence of air gaps. The flame is thin at air gaps, while it is thick
on the surface of PMMA, which is similar to the experimental phenomena in the works of
Park [26] and Cui et al. [27]. The continuous flame is significantly brighter than the discrete
flame. The increase of fuel coverage strengthens the heat release rate, increasing the flame
brightness. Similar phenomenon was observed in Jiang et al.’s study [38].

Figure 4c,d shows the front view of the discrete PMMA flame shape. With sidewalls,
the width of the PMMA front flame keeps the same as the width of PMMA material due to
the restrictions of sidewalls. When there is no sidewall, high-temperature pyrolysis gas of
PMMA spreads upwards and to the left and right at the same time, without any restrictions.
In this case, the flame is obviously wider than the subject to side wall restrictions, and flame
pulsation is more obvious, which is basically consistent with the results of An et al. [39]
concerning continuous flame spread.
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3.2. Flame Height

Flame height is an important parameter for fire risk analysis, and is defined as the
vertical distance from the bottom of PMMA flame to flame top in this paper [40,41]. The
flame height values are obtained through processing flame videos [28]. The processing
method is explained as follows. Firstly, the videos are converted into color images, and
then the color images are converted into gray images. Further, the brightness value of each
pixel in the gray image is calculated. It is necessary to propose a threshold brightness value
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to distinguish the flame zone and non-flame zone. In this work, the threshold value was
set at 230. The zone with the brightness value higher than 230 is deemed as the flame zone,
and the length of the flame zone is the flame height. This image processing method and the
threshold value were also used in previous study [42]. In order to analyze the influences of
fuel coverage on PMMA flame height, the structure factor is fixed at 0.8, and the change
curve of flame height with time under different fuel coverages are shown in Figure 5a. The
changing trends of flame height versus time under different structure factors when the fuel
coverage is 1 are shown in Figure 5b.
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From Figure 5a, it can be found that the flame height variation under different condi-
tions can be divided into three stages: initial flame spread stage, flame spread development
stage and stable flame spread stage. Time periods corresponding to the three stages are
different under different conditions. During initial flame spread stage, the fluctuation of
flame height is observed, which could be attributed to the existence of non-combustible air
gap. The flame adherence occurs in the air gap, and thus the flame front cannot spread
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smoothly through the air gap, resulting in the flame height fluctuation. The changing
trends of flame height with different fuel coverages are basically the same, and flame height
tends to grow linearly along with time. In the flame spread development stage, flame
height growth changes significantly due to the impact of structure factor and fuel coverage
under different experimental conditions. During the stable flame spread stage, the PMMA
surface has burnt completely and the flame height grows at a reducing rate and tends to
be stable.

In order to further compare flame heights under different structure factor and fuel
coverage in flame spread development stage, this paper calculated the average flame height
within 200 s–400 s, and the results are shown in Figure 6. It can be found that in the flame
spread development stage, the average flame height first increases and then decreases as
fuel coverage increases when the structure factor is fixed. It reaches the maximum when
ƒ = 0.64–0.76, which is defined as the critical fuel coverage. Miller [6] tested different fuel
coverage for upward flame spread over discrete PMMA, compared the flame height in
the same time period, and also found that the flame height reached the maximum value
at ƒ = 0.76. Similar conclusion is also drawn by Meng et al. [43], who used XPS as the
experimental material and the structure factor was fixed at 0.2. They found that the average
flame height first increases and then decreases with the decrease of porosity, which is
negatively correlated with the fuel coverage. The reason for the above phenomena is
explained as follows. When ƒ is smaller than the critical value, with the increase of the
fuel coverage, more combustible pyrolysis gas is released and rises higher, leading to an
increase in flame height. When ƒ is larger than the critical value, with the increase of fuel
coverage, less air is entrained into the air gap, and thus inadequate combustion of PMMA
plates occurs and the flame height is reduced. When the fuel coverage is fixed, the average
flame height increases first and then decreases as the structure factor increases, and reaches
the maximum when Π = 1.2. As the structure factor increases, the chimney effect inside
the vertical channel is enhanced, heat loss decreases and updraft speeds up to promote
flame height to increase. In addition, as the structure factor increases, the front air supply is
restricted more significantly and combustion efficiency is reduced as the width of sidewalls
increases, inhibiting the increase in flame height. The competition of above two factors
leading to the above phenomenon.

Zhao [44] proposed a formula to predict the flame height:

H f = 1.576× 107

(
V2

f

p

)2/3

(1)

where Vf donates the flame spread rate, H f is the flame height and p is ambient pressure.
Since the ambient pressure remains constant in this experiment, Equation (1) can be
transformed to Equation (2).

H f ∝ V4/3
f (2)

Using Equation (2), it is predicted that the changing trend of the flame spread rate is
the same to that of the flame height, which is consistent with the experimental results.
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Figure 6. Average flame height under different experimental conditions (200 s–400 s).

3.3. Pyrolysis Front Propagation

In the experiment, the whole process of the upward flame spread over PMMA was
recorded using the infrared camera, and the emissivity of PMMA was set at 0.92 [45].
The infrared video of PMMA surface was processed with ThermoX software to obtain
data concerning the changes of PMMA pyrolysis front along with time. The pyrolysis
temperature of PMMA is about 350 ◦C, which is marked in green in the infrared video. The
IR pictures selected at different time under different fuel coverages for Π = 0.8 are shown in
Figure 7. The green part on the PMMA surface is the pyrolysis area, and the top of the green
part is the position of PMMA pyrolysis front. Although the linear ignitor is used to ignite
the bottom of PMMA, the pyrolysis front is not horizontal after the flame spreads over a
certain distance, which could be attributed to the charring of PMMA, air entrainment from
sample sides and the turbulent flame. This phenomenon is basically consistent with results
obtained by Gollner et al. [46]. The heat flux is the highest in the center line of the vertical
channel, which means the middle part of the PMMA sample receives more heat. Therefore,
the pyrolysis front presents an inverted “V” shape, corresponding to the result of Comas
et al. [47].

It is also found from Figure 7 that in the initial stage, the burn rate is relatively slow,
resulting in a small change in the pyrolysis front over time. As the flame spreads upward,
the increase in the height of the pyrolysis front presents an accelerated trend. The height of
the pyrolysis front increases first and then decreases with the increase of fuel coverage, and
reaches the maximum when the fuel coverage is 0.64. This is consistent with the results of
Meng et al. [43].

The pyrolysis front spreads in three different patterns. The first pattern is that after the
pyrolysis front on the surface of the first piece of PMMA reaches the top, it will jump over
the air gap and appear at the bottom of the second piece of PMMA. The second pattern is
that before the pyrolysis front on the surface of the first piece of PMMA spreads to the top,
the pyrolysis phenomenon has appeared at the bottom of the second piece of PMMA. The
third pattern is that after the surface of the first PMMA is pyrolyzed completely, pyrolysis
front appears at the upper middle part of the second piece of PMMA, and then spreads
up and down at the same time. In the concurrent flame spread over discrete thin papers,
Park [26] also found the phenomenon of flame jumping. When the fuel coverage is 0.88
and 0.76, the second pattern of PMMA flame spread is observed.

When the fuel coverage is 0.64, three different patterns of PMMA flame spread are
all observed. When the flame front spreads from the first to the second piece of PMMA
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plate, the third pattern of flame spread is observed, as there is a long air gap among PMMA
plates, the flame is in wave form and the middle and upper part of the second PMMA
board is closer to the flame. Therefore, more flame heat flux is received. When the pyrolysis
front spreads to the third piece of PMMA plate, the first pattern of flame spread is observed.
When it spreads to the fourth piece of PMMA plate, the second pattern of flame spread is
observed. The appearance of the different spread patterns is mainly caused by the unstable
flame form and heat flow distribution. When the fuel coverage is 0.52 and 0.40, the third
pattern of flame spread is observed.
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3.4. Theoretical Model of Flame Spread Rate

Flame spread rate is defined as the spread rate of the pyrolysis front [5,14,28,40,41].
The flame spread rate may be influenced with chemical structure of materials. Effects
of initial molecular weight and thermal stability of PMMA plate on horizontal flame
spreading behavior were studied by Kashiwagi et al. [48] The results indicated that the
flame spread rate of the higher molecular weight PMMA sample was about four times
larger than that of the low molecular weight sample. The sample with low initial molecular
weight formed molten polymer which significantly affected flame spreading behavior and
its rate. However, the effects of chemical structure of PMMA are not considered in this
work since the fuel coverage and structure factor mainly influence the flow field and heat
transfer rather than the chemical structure.

As shown in Figure 8, the physical model of flame spread over discrete PMMA was
established according to the flame spread phenomenon observed in the experiment and
the flame spread model established by previous researchers for continuous materials.
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Comparing to continuous flame spread, the air at the interval is heated and forms a
negative pressure, making the flame close to the back wall. Therefore, the flame is observed
in a wavy from. For this special flame shape, the heat flux received by each plate of PMMA
at different heights depends on the vertical distance from the PMMA surface to flame.
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For vertical continuous flame spread, the preheating zone length is the flame height
subtracting the length of pyrolysis-zone. However, for discrete flame spread, flame cov-
erage scope contains PMMA and an air gap. Therefore, this paper defines an effective
preheating zone length as the flame height subtracting pyrolysis-zone length (xp) and total
length of air gaps (xair). Its calculation formula is shown as Equation (3).

δ = x− xp − xair (3)

The effective preheating zone length (δ) is the sum of the preheated PMMA length (δ1,
δ2) between the flame front and pyrolysis front, as shown in Figure 8 and Equation (4).

δ = δ1 + δ2 (4)

The total length of air gaps (xair) is the sum of the air gaps length (xair1, xair2) between
the flame front and pyrolysis front, as shown in Figure 8 and Equation (5).

xair = xair1 + xair2 (5)

Based on the flame spread rate model of continuous solid proposed by Quintiere [49],
this paper establishes the prediction model of discrete flame spread rate, supposing that
the flame heat flux (

.
q′′f ) received by PMMA surface within the preheating zone and the

flame spread rate are constant.
Quintiere [49] proposed a formula concerning flame spread rate and the preheating

zone length, as shown in Equation (6). The flame spread rate (Vf ) is proportional to the
preheating zone length and inversely proportional to the ignition time (tig), since a shorter
ignition time corresponds to faster forward moving of flame front.

Vf =
dxp

dt
=

x− xp

tig
=

δl
tig

(6)
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Substituting the effective preheating length (δ) for δl in Equation (6), Equation (7)
could be obtained. Considering the effective preheating zone length and ignoring the
existence of air gaps, the fuel spread rate (Vp, f uel) of PMMA surface is also determined by
effective preheating zone length (δ) and ignition time (tig).

Vp, f uel =
d
(
xp − xair

)
dt

=
δ

tig
=

x− xp − xair

tig
(7)

Miller et al. [6] found that the discrete flame spread rate (Vp) is negatively related with
the fuel coverage (f ). Conducting a series of experiments using different fuel coverages,
they proposed an empirical formula concerning discrete flame spread rate, fuel spread rate
(i.e., advancement rate of fuel pyrolysis zone) and fuel coverage, as shown in Equation (8).

Vp =
dxp

dt
=

Vp, f uel

f
(8)

Substituting Equation (8) into Equation (7), Equation (9) could be obtained.

Vp =
δ

f tig
(9)

The ignition time (tig) under constant external heat flux is defined as the heating time
used for solid surface to be heated up to the ignition temperature, i.e., the time used for
flame front to get pyrolyzed. In this paper, five points are uniformly selected on the surface
of PMMA plate under different experimental conditions. The time used for each point to
get pyrolyzed is recorded, and its average value is calculated as the average ignition time.

In addition, the correlation between heat release rate and flame spread rate is also
investigated in this work. Jiang et al. [19] proposed a formular concerning the dimensionless
heat release rate (Q∗) and the dimensionless flame heigh for vertical PMMA fire:

H f

Lc
∝ Q∗0.58 (10)

where H f is the flame height and Lc is the characteristic length. In combination with
Equations (2) and (10), a formular concerning the dimensionless heat release rate and flame
spread rates is deduced:

Vf ∝ Q∗0.435 (11)

From Equation (11), it is deduced that the flame spread rate is positively correlated
with the dimensionless heat release rate.

3.5. Experimental Flame Spread Rate and Comparison With Prediction

The typical change curve of the pyrolysis front position versus time is shown in
Figure 9a. Linear fitting of Figure 9a is conducted, and the slope of the fitting line is the
experimental flame spread rate [5,14,28,40,41]. The experimental flame spread rates under
different structure factors and fuel coverages are shown in Figure 9b.

When the structure factor is fixed, flame spread rate first increases and then decreases
as fuel coverage increases, and reaches the maximum when ƒ = 0.64–0.76. Miller et al. [6]
investigated the upward fire spread characteristics of discrete PMMA separated with
non-combustible blocks and found that with the decrease of fuel coverage rate, the fire
spread rate first increased and then decreased, which is consistent with the conclusion of
this paper. For different fuel coverages, the flame spread rate is mainly affected by two
factors. On the one hand, the distance between flame and PMMA surface is reduced as fuel
coverage decreases. As a result, the flame gets closer to PMMA surface, which receives
more flame heat flux, promoting the flame spread. Moreover, An et al. [50] proposed the
following formulars for thermally thick thermoplastic materials.
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Vf ∝ q”
conv + q”

rw (12)

q”
conv ∝ L−1/4

c (13)

where q”
conv and q”

rw denote convective and radiative heat flux, respectively. Lc is charac-
teristic length of experimental sample. As the fuel coverage decreases, the characteristic
length of PMMA decreases, and thus the flame spread rate increases according to Equations
(12) and (13). On the other hand, less PMMA burns inside the concave channel as the fuel
coverage decreases. Therefore, heat release rate is reduced and longer time is used for
flame height to reach the upper PMMA plate due to larger spacing, reducing the flame
spread rate. The competition between the above two effects leads to the nonlinear variation
of the flame spread rate with the fuel coverage.
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When the fuel coverage remains unchanged, the flame spread rate increases first and
then decreases as the structure factor increases, and reaches the maximum when Π = 1.2.
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As the structure factor rises, flame spread rate is mainly affected by two aspects. On the
one hand, as the structure factor increases, the chimney effect enhances, heat loss decreases
and updraft speeds up. All these factors will promote the increase of flame spread rate.
On the other hand, air supply is restricted more significantly and combustion efficiency is
reduced as the width of side walls increases, inhibiting the increase of flame spread rate.
The coupling effects of the above two aspects causes the flame spread rate to increase first
and then decrease with the increase in the structure factor.

By substituting the average ignition time and average length of effective preheating
zones into Equations (7) and (9), the predicted fuel spread rate and predicted flame spread
rate are calculated. The values of the predicted fuel spread rate, predicted flame spread
rate and experimental flame spread rate are shown in Figure 10.
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It can be found that the predicted flame spread rate obtained through Equation (9) is
basically the same as the experimental flame spread rate, both of which tend to change in
the same way along with fuel coverage. Vf , f uel of PMMA increases as fuel coverage rises,
which is basically consistent with the changing trend obtained by Miller [6].

4. Conclusions

In this paper, a series of experiments were carried out to study thermodynamics
and kinetics characteristics of combustion of discrete polymethyl methacrylate plate with
different spacings in concave structure. The conclusions were deduced from small-scale
experiments, which will be validated in a future study using large-scale experiments. The
conclusions are presented as follows.

(1) The flame shapes and flame height are significantly different under different concave
structure factor and fuel coverage. The flame height could be divided into three stages:
initial flame spread stage, flame spread development stage, stable flame spread stage.
In the flame spread development stage, when the structure factor is fixed, the average
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flame height increases first and then decreases with the increase of fuel coverage, and
reaches the maximum value when the fuel coverage is between 0.64 and 0.76.

(2) Three different patterns of pyrolysis front propagation are observed for different fuel
coverages due to the existence of air gaps. When the structure factor is fixed, the flame
spread rate first increases and then decreases with an increase in fuel coverage, and
reaches the maximum value when the fuel coverage is between 0.64 and 0.76. When
the fuel coverage is fixed, the flame spread rate first increases and then decreases with
increasing structure factor, and reaches the maximum value when the structure factor
is 1.2.

(3) A model for predicting the flame spread rate of discrete polymethyl methacrylate
plates is established based on the model suitable for continuous flame spread. The
predicted flame spread rate is consistent with the experimental results. It is found
that the fuel spread rate of discrete polymethyl methacrylate plates rises with the
increase of fuel coverage.

This study contributes basic data and theory for fire safety science of polymethyl
methacrylate. Moreover, models established and results obtained in this work are beneficial
to thermal hazard evaluation and fire safety design of buildings employing polymethyl
methacrylate.
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Nomenclature
Vf flame spread rate [cm/s]
xp vertical length of pyrolysis zone [cm]
Π structure factor (the ratio of the side wall width to back wall width)
x flame height (cm)

δ
effective preheating zone length (preheating zone length subtracting vertical length of
air gaps) (cm)

Vp flame spread rate (advancement rate of total pyrolysis zone) (cm/s)
Vp, f uel fuel spread rate (advancement rate of fuel pyrolysis zone) (cm/s)
xair total length of air gaps in preheating zone (cm)
ƒ fuel coverage
δl preheating zone length (cm)
tig ignition time (s)
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k thermal conductivity (Wm−1K−1)
ρ density (kg m−3)
cp specific heat (J Kg−1K−1)
Tp pyrolysis temperature (K)
σ Stefan-Boltzmann constant (W2m−4K4)
Tf flame temperature (K)
Q∗ dimensionless heat release rate
Lc characteristic length (cm)
q”

conv convective heat flux (W m−2)
q”

rw radiative heat flux (W m−2)
Abbreviations
PMMA polymethyl methacrylate

References
1. Ueda, K.; Tanaka, K.; Chujo, Y. Fluoroalkyl POSS with dual functional groups as a molecular filler for lowering refractive indices

and improving thermomechanical properties of PMMA. Polymers 2018, 10, 1332. [CrossRef] [PubMed]
2. Wang, C.; Dai, Y.; Kou, B.; Huang, W. Influence of long-term storage on shape memory performance and mechanical behavior of

pre-stretched commercial poly(methyl methacrylate) (PMMA). Polymers 2019, 11, 1978. [CrossRef] [PubMed]
3. Gutierrez, M.P.; Zohdi, T.I. Effective reflectivity and heat generation in sucrose and PMMA mixtures. Energy Build. 2014, 71,

95–103. [CrossRef]
4. Zhu, H.; Zhu, G.; Gao, Y.; Zhao, G. Experimental studies on the effects of spacing on upward flame spread over thin PMMA. Fire

Technol. 2017, 53, 673–693. [CrossRef]
5. Zhu, H.; Gao, Y.; Pan, R.; Zhong, B. Spacing effects on downward flame spread over thin PMMA slabs. Case Stud. Therm. Eng.

2019, 13, 100370. [CrossRef]
6. Miller, C.H.; Gollner, M.J. Upward flame spread over discrete fuels. Fire Saf. J. 2015, 77, 36–45. [CrossRef]
7. Yan, W.; Shen, Y.; Jiang, L.; An, W.; Zhou, Y.; Li, Z.; Sun, J. Experimental study of sidewall and pressure effect on vertical

downward flame spread over insulation material. Fire Sci. Technol. 2015, 823–830. [CrossRef]
8. Fire Discussion: Kaifeng, Henan 314 Fire, from the 3rd Floor to the 17th Floor in Two Minutes! Available online: https:

//www.sohu.com/a/302558104_120034565 (accessed on 20 March 2019). (In Chinese)
9. Cai, M.; Chen, S.; Tang, Y.; Li, Q.; An, W. Study on the influence of enclosed vertical channels on downward flame spread over

XPS thermal insulation materials. Case Stud. Therm. Eng. 2019, 14, 100486. [CrossRef]
10. Matsuoka, T.; Nakashima, K.; Yamazaki, T.; Nakamura, Y. Geometrical effects of a narrow channel on flame spread in an opposed

flow. Combust. Sci. Technol. 2017, 190, 409–424. [CrossRef]
11. Tao, S.; Fang, J.; Meng, Y.; Shah, H.R.; Yang, L. Ignition risk analysis of common building material cylindrical PMMA exposed to

an external irradiation with in-depth absorption. Constr. Build. Mater. 2020, 251, 118955. [CrossRef]
12. Zhou, B.; Yoshioka, H.; Noguchi, T.; Wang, K. Experimental study of time-averaged upward fire propagation speed of expanded

polystyrene external thermal insulation composite systems masonery façade. Fire Mater. 2020. online version. [CrossRef]
13. Peng, F.; Lai, D.; Zheng, Y.; Yang, L. Effects of ceiling inclination on lateral flame spread over vertical Poly(methyl meth-acrylate)

surface. Case Stud. Therm. Eng. 2019, 15, 100519. [CrossRef]
14. Gao, S.; Zhu, G.; Gao, Y.; Zhou, J. Experimental study on width effects on downward flame spread over thin PMMA under

limited distance condition. Case Stud. Therm. Eng. 2019, 13, 100382. [CrossRef]
15. Chu, T.; Zhu, G.; Chai, G.; Gao, Y. Study on upward flame spread of cotton fabrics with different moisture regain. Case Stud.

Therm. Eng. 2020, 21, 100683. [CrossRef]
16. Liang, Z.-H.; Zhu, G.-Q.; Liu, H.-N.; Zhou, X. Flame characteristic and ceiling temperature distribution under the effect of curved

sidewall. Case Stud. Therm. Eng. 2019, 14, 100453. [CrossRef]
17. Zeinali, D.; Verstockt, S.; Beji, T.; Maragkos, G.; DeGroote, J.; Merci, B. Experimental study of corner fires—Part I: Inert panel tests.

Combust. Flame 2018, 189, 472–490. [CrossRef]
18. Zeinali, D.; Verstockt, S.; Beji, T.; Maragkos, G.; DeGroote, J.; Merci, B. Experimental study of corner fires—Part II: Flame spread

over MDF panels. Combust. Flame 2018, 189, 491–505. [CrossRef]
19. Jiang, L.; Xiao, H.-H.; An, W.; Zhou, Y.; Sun, J. Correlation study between flammability and the width of organic thermal insulation

materials for building exterior walls. Energy Build. 2014, 82, 243–249. [CrossRef]
20. Ma, X.; Tu, R.; Cheng, X.; Zhu, S.; Ma, J.; Fang, T. Experimental study of thermal behavior of insulation material rigid polyu-rethane

in parallel, symmetric, and adjacent building facade constructions. Polymers 2018, 10, 1104. [CrossRef]
21. Tao, C.; Shen, Y.; Zong, R. Experimental study on virtual origins of buoyancy-controlled jet flames with sidewalls. Appl. Therm.

Eng. 2016, 106, 1088–1093. [CrossRef]
22. Gao, Z.; Ji, J.; Fan, C.; Sun, J.; Zhu, J. Influence of sidewall restriction on the maximum ceiling gas temperature of buoyancy-driven

thermal flow. Energy Build. 2014, 84, 13–20. [CrossRef]
23. Tsai, K.-C. Influence of sidewalls on width effects of upward flame spread. Fire Saf. J. 2011, 46, 294–304. [CrossRef]

http://doi.org/10.3390/polym10121332
http://www.ncbi.nlm.nih.gov/pubmed/30961257
http://doi.org/10.3390/polym11121978
http://www.ncbi.nlm.nih.gov/pubmed/31805701
http://doi.org/10.1016/j.enbuild.2013.11.046
http://doi.org/10.1007/s10694-016-0590-6
http://doi.org/10.1016/j.csite.2018.100370
http://doi.org/10.1016/j.firesaf.2015.07.003
http://doi.org/10.1007/978-981-10-0376-9_84
https://www.sohu.com/a/302558104_120034565
https://www.sohu.com/a/302558104_120034565
http://doi.org/10.1016/j.csite.2019.100486
http://doi.org/10.1080/00102202.2017.1394848
http://doi.org/10.1016/j.conbuildmat.2020.118955
http://doi.org/10.1002/fam.2923
http://doi.org/10.1016/j.csite.2019.100519
http://doi.org/10.1016/j.csite.2018.100382
http://doi.org/10.1016/j.csite.2020.100683
http://doi.org/10.1016/j.csite.2019.100453
http://doi.org/10.1016/j.combustflame.2017.09.034
http://doi.org/10.1016/j.combustflame.2017.10.023
http://doi.org/10.1016/j.enbuild.2014.06.013
http://doi.org/10.3390/polym10101104
http://doi.org/10.1016/j.applthermaleng.2016.06.072
http://doi.org/10.1016/j.enbuild.2014.07.070
http://doi.org/10.1016/j.firesaf.2011.03.006


Polymers 2021, 13, 167 18 of 18

24. An, W.; Shen, Y.; Jiang, L.; Sun, J. Experimental study on fire risk of buildings’ U-shaped exterior wall on flame propagation of
insulation material on plain and plateau. J. Fire Sci. 2015, 33, 358–373. [CrossRef]

25. An, W.; Sun, J.; Liew, K.; Zhu, G. Effects of building concave structure on flame spread over extruded polystyrene thermal
insulation material. Appl. Therm. Eng. 2017, 121, 802–809. [CrossRef]

26. Park, J.; Brucker, J.; Seballos, R.; Kwon, B.; Liao, Y.-T.T. Concurrent flame spread over discrete thin fuels. Combust. Flame 2018, 191,
116–125. [CrossRef]

27. Cui, W.; Liao, Y.-T.T. Experimental study of upward flame spread over discrete thin fuels. Fire Saf. J. 2019, 110, 102907. [CrossRef]
28. Wang, Z.; Liang, W.; Cai, M.; Tang, Y.; Li, S.; An, W.; Zhu, G. Experimental study on flame spread over discrete extruded

polystyrene foam with different fuel coverage rates. Case Stud. Therm. Eng. 2020, 17, 100577. [CrossRef]
29. Hwang, C.C.; Xie, Y. Flame propagation along Matchstick Arrayson, inclined base boards. Combust. Sci. Technol. 1984, 42, 1–12.

[CrossRef]
30. Gollner, M.J.; Xie, Y.; Lee, M.; Nakamura, Y.; Rangwala, A.S. Burning behavior of vertical matchstick arrays. Combust. Sci. Technol.

2012, 184, 585–607. [CrossRef]
31. Xiong, X.; Gao, K.; Zhang, J.; Li, B.; Xie, L.; Zhang, D.; Mensah, R.A. Interaction between shock wave and solid particles:

Establishing a model for the change of cloud’s expansion rate. Powder Technol. 2020, in press. [CrossRef]
32. Vogel, M.; Williams, F.A. Flame propagation along matchstick arrays. Combust. Sci. Technol. 1970, 1, 429–436. [CrossRef]
33. Jiang, L.; Zhao, Z.; Tang, W.; Miller, C.; Sun, J.-H.; Gollner, M.J. Flame spread and burning rates through vertical arrays of wooden

dowels. Proc. Combust. Inst. 2019, 37, 3767–3774. [CrossRef]
34. Altarawneh, M.; Carrizo, D.; Ziolkowski, A.; Kennedy, E.M.; Dlugogorski, B.Z.; Mackie, J.C. Pyrolysis of permethrin and

formation of precursors of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) under non-oxidative conditions.
Chemosphere 2009, 74, 1435–1443. [CrossRef] [PubMed]

35. Altarawneh, M.; Radny, M.W.; Smith, P.V.; Mackie, J.C.; Kennedy, E.M.; Dlugogorski, B.Z.; Soon, A.; Stampfl, C. A first-principles
density functional study of chlorophenol adsorption on Cu2O (110): CuO. J. Chem. Phys. 2009, 130, 184505. [CrossRef]

36. Chen, X.; Liu, J.; Zhou, Z.; Li, P.; Zhou, T.; Zhou, D.; Wang, J. Experimental and theoretical analysis on lateral flame spread over
inclined PMMA surface. Int. J. Heat Mass Transf. 2015, 91, 68–76. [CrossRef]

37. Tsai, K.-C. Width effect on upward flame spread. Fire Saf. J. 2009, 44, 962–967. [CrossRef]
38. Jiang, L.; He, J.-J.; Sun, J. Sample width and thickness effects on upward flame spread over PMMA surface. J. Hazard. Mater. 2018,

342, 114–120. [CrossRef]
39. An, W.; Wang, Z.; Xiao, H.-H.; Sun, J.; Liew, K. Thermal and fire risk analysis of typical insulation material in a high elevation

area: Influence of sidewalls, dimension and pressure. Energy Convers. Manag. 2014, 88, 516–524. [CrossRef]
40. Shi, L.; Chew, M.Y.L.; Novozhilov, V.; Joseph, P. Modeling the pyrolysis and combustion behaviors of non-charring and intu-

mescent-protected polymers using “Fires Cone”. Polymers 2015, 7, 1979–1997. [CrossRef]
41. Qiao, Y.; Das, O.; Zhao, S.-N.; Sun, T.-S.; Xu, Q.; Jiang, L. Pyrolysis kinetic study and reaction mechanism of epoxy glass fiber

reinforced plastic by thermogravimetric analyzer (TG) and TG–FTIR (fourier-transform infrared) techniques. Polymers 2020, 12,
2739. [CrossRef]

42. Tang, F. Studies on Facade Flame Behavior Ejected from Opening of a Building Compartment under Different External Boundary
and Pressure Conditions. Ph.D. Thesis, University of Science and Technology of China, Hefei, China, 2013.

43. Meng, Q.X.; Zhu, G.Q.; Yu, M.M.; Liang, Z.H. Experimental study on upward flame spread characteristics of external thermal
insulation material under the influence of porosity. Case Stud. Therm. Eng. 2018, 12, 365–373. [CrossRef]

44. Zhao, K. Studies on Three-Dimensional Downward Flame Spread over Uninhibited PMMA Slabs. Ph.D. Thesis, University of
Science and Technology of China, Hefei, China, 2013.

45. Xiao, J.; Das, O.; Mensah, R.A.; Jiang, L.; Xu, Q.; Berto, F. Ablation behavior studies of charring materials with different thickness
and heat flux intensity. Case Stud. Therm. Eng. 2020, 100814. [CrossRef]

46. Gollner, M.J.; Williams, F.; Rangwala, A. Upward flame spread over corrugated cardboard. Combust. Flame 2011, 158, 1404–1412.
[CrossRef]

47. Comas, B.; Carmona, A.; Pujol, T. Experimental study of the channel effect on the flame spread over thin solid fuels. Fire Saf. J.
2015, 71, 162–173. [CrossRef]

48. Kashiwagi, T.; Omori, A.; Brown, J. Effects of material characteristics on flame spreading. Fire Saf. Sci. 1989, 2, 107–117. [CrossRef]
49. Quintiere, J.G. Fundamentals of Fire Phenomena; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006.
50. An, W.; Yin, X.; Cai, M.; Gao, Y.; Wang, H. Influence of vertical channel on downward flame spread over extruded polystyrene

foam. Int. J. Therm. Sci. 2019, 145, 105991. [CrossRef]

http://doi.org/10.1177/0734904115596181
http://doi.org/10.1016/j.applthermaleng.2017.04.141
http://doi.org/10.1016/j.combustflame.2018.01.008
http://doi.org/10.1016/j.firesaf.2019.102907
http://doi.org/10.1016/j.csite.2019.100577
http://doi.org/10.1080/00102208408960366
http://doi.org/10.1080/00102202.2011.652787
http://doi.org/10.1016/j.powtec.2020.12.033
http://doi.org/10.1080/00102206908952223
http://doi.org/10.1016/j.proci.2018.09.008
http://doi.org/10.1016/j.chemosphere.2008.12.033
http://www.ncbi.nlm.nih.gov/pubmed/19193390
http://doi.org/10.1063/1.3123534
http://doi.org/10.1016/j.ijheatmasstransfer.2015.07.072
http://doi.org/10.1016/j.firesaf.2009.06.003
http://doi.org/10.1016/j.jhazmat.2017.08.022
http://doi.org/10.1016/j.enconman.2014.08.026
http://doi.org/10.3390/polym7101495
http://doi.org/10.3390/polym12112739
http://doi.org/10.1016/j.csite.2018.05.008
http://doi.org/10.1016/j.csite.2020.100814
http://doi.org/10.1016/j.combustflame.2010.12.005
http://doi.org/10.1016/j.firesaf.2014.12.001
http://doi.org/10.3801/IAFSS.FSS.2-107
http://doi.org/10.1016/j.ijthermalsci.2019.105991

	Introduction 
	Experimental Device, Materials and Methods 
	Experimental Device 
	Experimental Materials 
	Experimental Methods 

	Results and Discussion 
	Flame Shape 
	Flame Height 
	Pyrolysis Front Propagation 
	Theoretical Model of Flame Spread Rate 
	Experimental Flame Spread Rate and Comparison With Prediction 

	Conclusions 
	References

