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Abstract: The effect of compositing multiwalled carbon nanotubes (MWCNTs) with polystyrene (PS)
to fabricate nanofibrous membrane by electrospinning technique and comparing the direct contact
membrane distillation (DCMD) performance of the blank and composite membranes is evaluated
numerically. Surface morphology of both the pristine and the composite membrane was studied
by SEM imaging while the average fiber diameter and average pore size were measured using
ImageJ software. Static water contact angle and porosities were also determined for both membranes.
Results showed significant enhancement in both the hydrophobicity and porosity of the composite
membrane by increasing the static water contact angle from 145.4◦ for the pristine PS membrane to
155◦ for the PS/MWCNTs composite membrane while the porosity was increased by 28%. Simulation
results showed that at any given feed inlet temperature, the PS/MWCNTs membrane have higher
permeate flux and better overall system performance.

Keywords: MD; membrane distillation; composite membrane; numerical investigation; CFD; DCMD

1. Introduction

Water shortage crisis is now becoming more alarming concern due to the rapid increase
in world population, industrialization, and limited freshwater resources [1–5]. United
Nations as well as world health organization reported that over 50% of the countries
worldwide will suffer from water shortage problems while millions of people already
suffered or are suffering from fatal health issues due to contaminated water [6]. Hence, the
need for alternative sources for fresh water rather than the conventional sources has pretty
much gained the attention of scientists in the recent decades. Membrane technologies have
proved their superiority over other conventional desalination techniques as they are more
energy efficient, provide high quality of produced water, have high productivity, have
effective separation performance, have low chemicals demand, and are cost effective [7–9].

Membrane distillation (MD), in particular, have some exclusive advantages over other
membrane purification technologies in that the removal of nonvolatile contaminants is
100%, lower operating pressure than other pressure-dependent membrane separation
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techniques, and lower operating temperature than other thermal desalination technologies.
MD is a thermally driven membrane separation technique in which only vapor molecules
transfer through a highly porous, thermally stable, hydrophobic membrane due to the
vapor pressure difference that is initiated originally from temperature difference on both
sides of the membrane [10–14].

There are four main categories in MD: (a) direct contact membrane distillation (DCMD)
where the hot feed stream and the cold permeate stream are in contact with the membrane
directly. Vapors transfers from the feed side and condenses directly in the permeate side.
(b) Air-Gap MD (AGMD) utilizes an air gap at the permeate side between the membrane
and a thermally conductive condensation surface on which vapors transmitted from the
feed side condenses [15]. (c) Sweeping gas MD (SGMD), where vapors transmitted from
the feed side is swept by an inert gas to a condenser outside the module to be collected.
(d) Vacuum membrane distillation (VMD), here, vacuum is initiated at the permeate side
to collect all the vapors and decrease the losses by means of a vacuum pump. The vapors
are collected in an external condenser outside the membrane module [15,16]. Among the
previous configurations of MD, DCMD is the most widely studied, due its simple operation
and equipment [17].

The main reason preventing the commercial spread of MD is the very specific MD
membrane characteristics and low productivity if compared to other membrane purification
techniques [10,18,19]. One of the key parameters governing the MD process is the intrinsic
characteristics of the MD membrane, which should be highly hydrophobic, highly porous,
and thermally stable [10,20]. Polystyrene (PS) is a hydrophobic, commercially available,
cheap polymer and proved its good spinnability giving highly porous, hydrophobic mats
with wide range of applications [21]. However, polymeric membranes, in general, have
low fouling and scaling resistance and are less chemically and mechanically stable [22].

Recent studies are focused on enhancing membranes characteristics by adding fillers
to the polymer matrix to produce membranes with predesigned properties. Utilization of
carbon nanotubes (CNTs) as membrane fillers have proved to enhance the performance of
membranes, by enhancing their mechanical properties, and decrease the fouling tendency
that is usually encountered in hydrophobic membranes due to the antimicrobial property
of CNTs [22,23]. There are three main methods to incorporate CNTs within polymer
matrices that is used in MD, namely, CNTs self-supporting bucky-paper, CNTs-immobilized
membrane, and CNTs blended membranes [24–26]. However the later method proved
to be most efficient to improve the membranes performance and mechanical intensity
compared to the other two techniques and the simplest among them too [27]. CNTs are
also expected to add some promising characteristics to MD membranes by enhancing
membrane hydrophobicity, pore size, and porosity due to their hollow and nanosized
structure, hydrophobic nature, and durability [28].

Another key factor controlling the properties of produced membranes is the membrane
fabrication technique itself. Electrospinning technique proved to produce nanofibrous
membranes from PS and other polymeric materials with controlled fiber diameters and
morphology, high porosity, and relatively high hydrophobicity making it a very good
candidate for MD application [21,29–31]. Electroblowing technique was also reported for
fabrication of hydrophobic nanofibrous mats from PS for DCMD [32–37]. Table 1 presents
PS membrane systems reported in literature for DCMD application for water desalination.

According to best of our knowledge, no previous studies investigated PS/MWCNTs
composite membrane for the application of direct contact membrane distillation (DCMD).
The present work aims to fabricate a novel membrane by adding multiwalled carbon nan-
otubes (MWCNTs) to PS membrane to enhance its properties and increase the productivity.
After characterization of the new fabricated membrane, its performance has been compared
numerically with the pristine PS membrane using a commercial software (Ansys 2019R3)
for the application on a DCMD system.
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Table 1. Different polystyrene (PS) membrane systems for water desalination via direct contact
membrane distillation (DCMD).

Parameter [19] [22] [31] [37]

Feed flowrate (L/min) 0.6 0.6 0.24–0.6 0.054
Permeate flowrate (L/min) 0.6 0.6 0.24–0.6 0.054

Difference in operating temperature
between the feed and the permeate (◦C) 50 63 25–60 40

Contact angle 150.2 ± 1.2◦ 114 ± 1◦ 154.52◦ 119.6◦

Membrane thickness (µm) 60 147 ± 4 65 –
Porosity (%) 69 84 74.65 –

Feed solution concentration (ppm) 35,000 35,000 35,000 7000

2. Materials and Methods

Polystyrene (PS, Mw = 260,000) in pellets form were purchased from ACROS organics,
Morris Plains, NJ, USA. N,N-dimethyl formamide (DMF) for analysis was purchased from
ACS, ISO was purchased from Merk KGaA, Darmstadt, Germany. Multi-walled Co., and
multiwalled carbon nanotubes (MWCNTs, D×L 110–170 nm × 5–9 µm, purity ≥90%
carbon basis) %) were purchased from Sigma AldrichChemie GmbH TAUFKIRCHEN,
Germany and used as it is.

2.1. Membrane Fabrication

The polymer solution was prepared by dissolving PS pellets in DMF and stirred for 6 h
at room temperature to obtain 18 wt% polymer solution. The electrospinning conditions
were as follows: solution delivery rate was fixed at 1 mL/h, tip to collector distance
was maintained at 15 cm, and the applied potential difference was 30 kV. The composite
membrane was prepared by adding 2 wt% of MWCNTs to the polymer solution after
complete dissolution and stirred for 1 h followed by sonication for 1 h. The electrospinning
setup used was NANON-01A (MECC CO., Ltd., Fukoka, Japan). Fabricated membranes
were then left in oven at 60 ◦C overnight to get rid of any residual solvents, and then, they
were cold-pressed to ensure membrane integrity at 2 MPa for 1 min.

2.2. Membrane Characterization
2.2.1. Scanning Electron Microscope (SEM)

Morphologies of CNTs and blank and composite membrane were investigated using
SEM (JCM-6000PLUS NeoScope Benchtop SEM, Tokyo, Japan). The samples were fixed on
a carbon tape and mounted on an aluminum stub. Bio-Rad SEM coating system was used,
and the samples were put under vacuum for 2 min at 20 mV accelerating voltage.

2.2.2. Single Drop Contact Angle

A drop size analyzer system (DSA100, KRÜSS, Hamburg, Germany–with image
analysis) was used to examine the water contact angle for the neat as well as the composite
membrane to determine their degree of hydrophobicity. Measurements were carried out at
10 different spots per membrane, and the average value was reported.

2.2.3. Thickness and Porosity

The thickness of the membranes was measured using a digital micrometer in 10
different spots, and the average was taken. Porosities of the membranes were estimated
using gravimetric method [29] using the following equation:

ε =
(Ww − Wd)/ρi

(Ww − Wd)/ρi + WPS/ρPS
(1)
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where Ww, Wd and WPS are the wet membrane weight, the dry membrane weight and the
PS weight, respectively; ρi and ρPS are the densities of the isopropyl alcohol and polystyrene
densities respectively. Membrane porosities were evaluated after cold-pressing.

2.2.4. Pore Sizes and Fiber Diameter

The average pore size and the fiber diameter of the blank and composite were esti-
mated using ImageJ software (LOCI, University of Wisconsin, Madison, WI, USA).

2.2.5. Fourier-Transform Infra-Red (FTIR)

Samples of MWCNTs, PS, and PS/MWCNTs neat and composite nanofibrous mem-
branes were blended in ratio of 1:100 w/w with KBr to form pellets. Then, the sample pel-
lets were studied using FTIR (Vertex 70, Bruker scientific instruments, Baden-Württemberg,
Germany) at ambient conditions with wave range of 4000–400 cm−1.

2.2.6. Numerical Analysis

A three-dimensional model was drawn and discretized to be solved using a com-
mercial software package (Ansys 2019 R3, Canonsburg, PA, USA). At first, the system
was tested for mesh dependence starting from coarse mesh to a fine one until the solu-
tion becomes mesh independent. Then, the suitable boundary conditions were set on
the system boundaries to be velocity inlet at both inlet ports and pressure outlets at feed
and permeate outlet sections. The software uses the finite volume method to solve the
governing equations, and the convergence criteria were set to be at least 1 × 10−9 for all
equations. The system is governed by the mass, momentum and energy equations in steady
three-dimension form. Moreover, the solution is subjected to the following assumptions:

• Steady and laminar flow and incompressible fluid.
• All properties (fluid and material) are constant within the operating range.
• No heat losses from the system to the surrounding.

Model Discerption

The analytical model was performed on a typical dimension as the experimental
model. The model consisted of three layers, i.e., the first layer was the feed channel in
which hot saltwater flowed, while the second layer was the hydrophobic porous membrane
which was followed by the permeate channel within which the pure cold-water flowed.
The three layers had identical surface area, which had an equal length and width of 50 mm.
The height of the feed and permeate channels were constant, 2 mm, while the height of the
membrane (thickness) was 500 ± 4 µm.

Governing Equations

The control volume is subjected to the following governing equations:
Continuity:

∂ρU
∂x

+
∂ρV
∂y

+
∂ρW

∂z
= M (2)

X–Momentum equation:

U
∂ρU
∂x

+ V
∂ρU
∂y

+ W
∂ρU
∂z

= −∂p
∂x

+ µ

(
∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2

)
(3)

y–Momentum equation:

U
∂ρV
∂x

+ V
∂ρV
∂y

+ W
∂ρV
∂z

= −∂p
∂y

+ µ

(
∂2V
∂x2 +

∂2V
∂y2 +

∂2V
∂z2

)
(4)
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z–Momentum equation:

U
∂ρW

∂x
+ V

∂ρW
∂y

+ W
∂ρW

∂z
= −∂p

∂z
+ µ

(
∂2W
∂x2 +

∂2W
∂y2 +

∂2W
∂z2

)
(5)

Energy equation:

U
∂ρCpT

∂x
+ V

∂ρCpT
∂y

+ W
∂ρCpT

∂z
= k

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
+ H (6)

where U, V and W are the velocity components in x, y and z directions, respectively; ρ,
µ, Cp, p, and T are the fluid density, viscosity, specific heat, pressure, and temperature,
respectively; while M and H are the mass source and heat source, respectively.

System Metrics

In this research, we mainly studied the effect of operating and design parameters on
the performance of PS/MWCNTs composite membrane and compared it with the blank
membrane. The studied metrics for evaluating the performance were the system permeate
flux (J), system thermal efficiency (η), and temperature polarization coefficient (TPC) φ.
These metrics could be expressed as the following equations:

J = Ψ
(
Pvf − Pvp

)
(7)

where Ψ is the mass transfer coefficient based on Knudsen molecular diffusion model,
while Pvf and Pvp are the vapor pressure difference on both sides of the membrane.

η =
Qv

Qv + Qcond
(8)

where Qv and Qcond are the amount of heat transferred with vapor (useful) and heat
conduction through the membrane (losses), respectively.

φ =
Tm f − Tmp

Tb f − Tbp
(9)

Tm f and Tmp are the membrane/feed and membrane/permeate interface temperatures,
respectively; while Tb f and Tbp are the bulk temperatures at the feed and permeate sides,
respectively.

3. Results

Figure 1 presents the SEM imaging of the electrospun pristine PS and PS/MWCNTs
composite membranes. The Bead-free, smooth, and uniform morphology of the PS mem-
brane observed in Figure 1a indicates that the electrospinning conditions was suitable
for the prepared polymer solution concentration yielding a continuous mat of fibers with
average fiber diameter of 1.783 µm and average pore size of 0.423 µm. This stratified
structure kind yielded a membrane surface with high roughness with contact angle of
145.4◦ as could be observed in Figure 2a.

PS/MWCNTs composite membrane SEM images are presented in Figure 1b showed
that the average fiber diameter decreased to 1.545 µm, while the average pore size was
found to decrease to 0.357. This may be attributed to the increased conductivity of the
solution due to the presence of MWCNTS. Presence of the MWCNTs in the composite
membrane also enhanced the contact angle by increasing it to 155◦ (Figure 2b) as a result of
the increased surface roughness [34]. Addition of MWCNTs was also found to increase the
porosity by approximately 28%; this increase in membrane porosity with incorporation of
MWCNTs in the polymer matrix is in agreement with others reported in literature due to the
nanos and hollow structure of the MWCNTS [4,35–37]. The porosity and hydrophobicity of
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the fabricated composite membrane PS/MWCNTs is higher than that reported by others for
PS membranes in DCMD [21,29,38]. Table 2 summarizes the main membrane characteristics
for the neat and the composite membrane.
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Figure 2. Contact angle of (a) PS and (b) PS/MWCNTs membranes.

Table 2. Characteristic properties of the pristine and composite membranes.

Membrane Porosity Contact Angle Avg Fiber Diameter Pore Size

PS 0.56 145.4◦ 1.783 µm 0.423 µm
PS/MWCNTs 0.72 155 1.545 µm 0.357 µm

The FTIR spectra of MWCNTs, PS, and PS/MWCNTs neat and composite nanofibrous
membranes are presented in Figure 3. MWCNTs show some weak peaks that corresponds
to OH groups due to the absorption of some water molecules and C=O that is due to
oxidation of carbon chains. These later peaks can be observed at 2355.16 and 2925.15 cm−1,
respectively [39]. However, the weak peak observed at 1640.51 cm−1 in the IR spectrum of
MWCNTs is related to the stretching of the MWCNTs backbone [40]. PS characteristic peaks
are reported at 3026.41, 2921.29, 2854.74, 1945.28, 1742.74, 1446.66, 1491.99, 1071.49, 1023.27,
756, 694.4, and 542.98 cm−1. The C–H symmetric and asymmetric vibrations are observed
at 3026.41, 2921.29, and 2854.74 cm−1. Further, 1945.28 and 1742.74 cm−1 are attributed
to the aromatic monosubstitution and weak aromatic overtone. The peaks at 1446.66 and
1491.99 cm−1 are assigned to the bending vibrations of CH2. The 1071.49 and 1023.27 cm−1

peaks are assigned to in plane flexion of C–H in the plane. The out-of-plane bending of the
phenyl ring is observed at 756 cm−1. The phenyl ring out-of-plane deformation peak is
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observed at 540 cm−1 [34,41,42]. Addition of MWCNTs strengthen the characteristic peaks
of PS as can be seen in the PS IR spectrum [43].
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branes.

Figure 4 shows the effect of the feed inlet temperature on the performance of the blank
and fabricated membranes at two different feed flow rates. As could be seen in Figure 4a
at any given feed inlet temperature, increasing the feed flow rate increases the membrane
flux (produced pure water) substantially. Moreover, the flux obtained from PS/MWCNTs
composite membrane is much higher than that of PS membrane at any given feed inlet
temperature which is attributed to the higher porosity of the composite membrane that
facilitates the passage of the vapor molecules through the membrane and at any given
temperature.

Although increasing the feed inlet temperature have a significant effect on increasing
the permeate flux obtained from MD [44], the feed inlet temperature in systems using PS
cannot exceed 75 ◦C as the glass transition temperature of PS is between 80 and 100 ◦C [19].
However, other studies reported that incorporation of MWCNTs can shift the glass tran-
sition temperature of PS to higher values in the range of 8–20 ◦C [45,46]. This increase
in the glass transition temperature of PS filled with MWCNTs may be attributed to the
reduction in the polymer chains mobility due to the high interaction between the CNTs
and PS [46]. This increase in the glass transition temperature of the composite membrane
PS/MWCNTs will enable the operation of the DCMD system at higher temperatures (the
feed inlet temperature) for the actual application of the DCMD setup. Hence, the obtained
permeate flux can be enhanced significantly.
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and composite membranes.

On the other hand, it can be observed from Figure 4b that the thermal efficiency
increases with increasing the feed inlet temperature. It also shows that the composite
membrane has higher efficiency than that of the blank membrane at any given feed inlet
temperature and that could be explained as a consequence of the increased membrane flux,
which increases the amount of useful heat Qv and hence increases the thermal efficiency
according to Equation (8). Figure 4c shows that the composite membrane has a slightly
lower TPC than that of the blank membrane at all operating conditions. This could
be explained as the increased flux for the composite membrane needs more heat for
vaporization, so it decreases the feed/membrane interface temperature and thus, deviated
from the feed bulk temperature.

In general, increasing the feed inlet temperature increases the resultant flux and
enhances the overall efficiency as a result of the increased vaporization of feed water at
higher temperatures [47]. Furthermore, the PS/MWCNTs has much higher improved
performance than that of the blank membrane.

The velocity and temperature contours of the PS/MWCNTs composite membrane are
presented in Figure 5. The velocity and temperature contours were evaluated midway in
the feed and permeate channels normal to the flow direction at 20 and 80 ◦C permeate and
feed temperatures, respectively, and flow rate of 500 mL/min.
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running at 20 and 80 ◦C inlet temperatures of permeate and feed channels, respectively, and porosity of 0.72.

4. Conclusions

In the present work, effect of addition of multiwalled carbon nanotubes (MWCNTs)
to polystyrene (PS) nanofibrous membrane is studied, and its performance was evaluated
numerically on DCMD cell. PS/MWCNTs composite membrane showed superior prop-
erties and performance if compared to the pristine PS membrane. Adding MWCNTs to
PS enhanced the hydrophobicity of the membrane by increasing the contact angle from
145.4◦ to 155◦ and increasing the porosity by 28%. Numerical investigation showed that at
any given inlet feed temperature, the composite PS/MWCNTs membrane showed supe-
rior performance and overall system efficiency if compared to the pristine PS membrane.
Further investigation of the fabricated membranes should be carried out experimentally
for validation of the simulation data.
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