
polymers

Article

Protein Unfolding and Aggregation near a Hydrophobic Interface

David March 1, Valentino Bianco 2,* and Giancarlo Franzese 1,*

����������
�������

Citation: March, D.; Bianco, V.;

Franzese, G. Protein Unfolding and

Aggregation near a Hydrophobic

Interface. Polymers 2021, 13, 156.

https://doi.org/10.3390/

polym13010156

Received: 11 December 2020

Accepted: 24 December 2020

Published: 3 January 2021

Corrected: 26 April 2023

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Secció de Física Estadística i Interdisciplinària—Departament de Física de la Matèria Condensada,
Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; dmarchp@gmail.com

2 Chemical Physics Department, Faculty of Chemistry, Universidad Complutense de Madrid,
Plaza de las Ciencias, Ciudad Universitaria, 28040 Madrid, Spain

* Correspondence: vabianco@ucm.edu (V.B.); gfranzese@ub.edu (G.F.)

Abstract: The behavior of proteins near interfaces is relevant for biological and medical purposes.
Previous results in bulk show that, when the protein concentration increases, the proteins unfold
and, at higher concentrations, aggregate. Here, we study how the presence of a hydrophobic surface
affects this course of events. To this goal, we use a coarse-grained model of proteins and study by
simulations their folding and aggregation near an ideal hydrophobic surface in an aqueous environ-
ment by changing parameters such as temperature and hydrophobic strength, related, e.g., to ions
concentration. We show that the hydrophobic surface, as well as the other parameters, affect both the
protein unfolding and aggregation. We discuss the interpretation of these results and define future
lines for further analysis, with their possible implications in neurodegenerative diseases.
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1. Introduction

Proteins cover a range of fundamental actions in a living organism, including enzy-
matic and hormone functions, transport of biomolecules within the cellular environment,
energy sourcing, tissues build and repair [1]. Typically a protein can perform these func-
tions only when it is in its native and folded conformation.

Protein folding is a self-organized process occurring spontaneously in the aqueous
solution, at least for small proteins, and it is dictated mostly by the protein sequence.
After the synthesis at the ribosome, the polypeptide chain finds itself in a highly crowded
cellular environment. Here, despite many non-specific interactions, the chain is capable of
selecting a subset of amino acid contacts that funnel the free energy landscape toward a
unique native/folded state.

However, the accumulation of partially folded conformations or the competition with
other unfolded proteins could hinder the folding process, resulting in the formation of
macromolecular aggregates [2]. Proteins can aggregate after they fold in the native state—
through chemical bonding or self-assembling—or via unfolded intermediate conformations.
In particular, non-native protein-aggregates are commonly formed through a multi-step
process and are made of native-like–partially-folded intermediate structures [3–6].

Proteins have a propensity to aggregate related to a series of factors, e.g., the flexi-
bility of the protein structure [7] or the sub-cellular volume where the protein resides [8].
They evolved toward a low aggregation-propensity, within a range of protein expression
required for their bioactivity. However, they have no margin to respond to external factors
that increase or decrease their expression or solubility [8–10]. As a consequence, inappropri-
ate protein aggregation represents a crucial issue in biology and medicine. It is associated
with a growing number of diseases, such as Alzheimer’s and Parkinson’s disease [11–14],
and with the degradation of the pharmaceutical product quality and performance [15].

Among different strategies to tackle the related diseases, many hopes have been placed
in using functionalized nanoparticles for inhibiting protein and peptide aggregation [16,17].
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However, once in the bloodstream, the nanoparticles form the protein corona [18,19].
This corona can alter the biological effect of the nanoparticle and can induce unexpected
reactions [20,21].

Many aspects of the nanoparticle interface, such as the shape, the size, or the surface
chemistry, can affect the aggregation of proteins [22–27]. Nonetheless, the capability of
proteins to keep their native conformation upon aggregation or adsorption onto inorganic
interfaces is still poorly understood.

Computational approaches are gaining ground as fundamental tools to investigate
these phenomena and the interplay between folding and aggregation in homogeneous
and heterogeneous solutions of proteins. In particular, coarse-grain models and multiscale
methods allow us to deal with such complex systems [28,29].

For example, a recent study showed that the concentration increase of individual
protein species can unfold their native state without inducing their aggregation [30].
Furthermore, each component in a protein mixture can keep its folded state at densities
that are larger than those at which they would precipitate if they were in a single-specie
solution [31]. These works study a lattice model of proteins embedded in an explicit
coarse-grain water-model. The models account for the protein features [32–37] and the
water thermodynamics [38–43], representing a promising approach to study the behavior
of protein solutions at an inorganic interface.

This approach has been exploited to better understand the mechanisms of cold
and pressure denaturation of proteins and the effect of water-mediated interactions.
Taking into account how water at the protein interface changes its hydrogen bond proper-
ties and its density fluctuations, the model can predict protein stability regions with elliptic
shapes in the temperature-pressure plane, consistent with other theories and experiments,
identifying the different mechanisms with which water participates to denaturation by
changing temperature or pressure [35].

Furthermore, this model can be used to design proteins at extreme conditions of
temperature and pressure. It has clarified that the limits of stability in temperature and
pressure, and the selection mechanisms at extreme conditions, relate to the temperature and
pressure dependence of the properties of the surrounding water [37]. As a consequence,
the hydropathy profile of the proteins results from a selection process influenced by water,
with superstable proteins at high temperatures characterized by nonextreme segregation
between the hydrophilic surface and the hydrophobic core, while less-stable proteins have
larger segregation or very low segregation [37].

Here, following the approach in Ref. [30,31], we present a computational study on the
protein folding/unfolding and aggregation near a hydrophobic interface, representative
of a portion of a nanomaterial. By performing Monte Carlo simulations, we describe
the formation of aggregates against folded conformations at different temperatures, both
in the bulk water and at the hydrophobic interface. We discuss the dependence of our
finding on the water–water interaction in the protein hydration shell, linking the observed
phenomena to the hydrophobic effect. Our results could shed light on the biological
mechanisms underlying the formation of protein aggregates at the nanoscale.

2. Model
2.1. Franzese–Stanley Water Model

We adopt a coarse-grain representation of the water molecules, partitioning a volume
V into a fixed number N of cells, each one with volume v ≡ V/N ≥ v0, with v0 being
the water excluded volume. For the sake of simplicity, we will consider here the case of
the projection into two dimensions (2D) of a water monolayer with height h ' 0.5 nm.
Although a confined monolayer of water can have properties quite different from bulk
water [44,45], here the dimensionality only affects the number of neighbors of each water
molecule but does not change its coordination number (the number of hydrogen bonds
formed by each water molecule). Indeed, regardless of whether the model is in 2D or 3D,
each water molecule can form up to four hydrogen bonds. Our preliminary data show that
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this is sufficient to find no qualitative differences near ambient conditions between our
water model in 2D and 3D [46].

We fix T and P of the system, leaving r ≡
√

v/h free to change, with r ≥ r0 the average
distance between first neighbor water molecules. The model is able to describe all the fluid
phases of water [42]. Here we focus only on its liquid phase. The Hamiltonian describing
the interaction of the bulk water is

H ≡∑
ij
U (rij)− JN(b)

HB − Jσ N(b)
coop. (1)

The first term, summed over all the molecules i and j at oxygen–oxygen distance rij,
accounts for the Van der Waals attraction and the repulsive forces due to Pauli’s exclusion
principle, and is expressed as a double-truncated Lennard–Jones potential,

U (r) ≡ 4ε

[( r0

r

)12
−
( r0

r

)6
]

, if r0 < r < 6r0,

U ≡ ∞ for r ≤ r0 and U ≡ 0 for r ≥ 6r0, where we use ε as our energy scale.
The second term of the Hamiltonian represents the directional (covalent) contribu-

tion to the formation of water–water hydrogen bonds (HBs) with characteristic energy J.
Assuming that each molecule i can form up to four HBs, the number of possible molecular
conformations is discretized by the introduction of four bonding variables σij = 1, . . . , q,
one for each neighbor molecule j. Following a standard definition [47], two conditions
must hold for the formation of a HB.

First, the molecules must be separated no further than rmax. In a monolayer the
condition r < rmax corresponds to v/v0 < 0.5 for v0 = r2

0h, with r0 ' 2.9 Å van der Waals
diameter of a water molecule, and rmax ' 4 Å. We associate to each water molecule i with
a proper volume v an index ni = 1 if v/v0 < 0.5, and ni = 0 otherwise. Hence, for the
neighbor molecules i and j, the first necessary condition to form a HB is that ninj = 1.

Second, the angle ÔOH between two neighbor molecules must be less than ±30º.
Therefore, only 1/6 of all the possible orientations [0º, 360º] are associated with a HB. Thus,
we fix q = 6, and the second condition to form a HB is that σij = σji, correctly accounting
for the entropy loss associated with a HB formation. Therefore, the total number of bulk
HBs is N(b)

HB ≡ ∑〈ij〉 ninjδσij ,σji , where δa,b = 1 if a = b, 0 otherwise, and the sum is over
nearest neighbor molecules.

The third term of Equation (1) corresponds to the cooperative interaction of the HBs,
emerging from quantum many-body interactions, which leads to an ordered, low-density
tetrahedral configuration in bulk. This phenomenon is modeled as an effective interaction
between each of the six different pairs of the four variables σij of a molecule i, coupled

by an energy Jσ. N(b)
coop ≡ ∑i ni ∑kl δσik ,σil is the sum over the pair of bonding indices that

cooperatively acquire the same value in each molecule i. By taking Jσ � J, we guarantee
that the term plays a role only when the HBs are formed.

Finally, the total volume, and hence the density field, depends on the HB formation,
as V(b) ≡ Nv + N(b)

HBv(b)HB, where v(b)HB is a fraction of v0. This relation accounts, on average,
for the local decrease of density due to the tetrahedral HB network. The values of the
model’s parameters are given at the end of the next section. Further details about the water
model can be found in Ref. [48].

2.2. Protein and Interface Model

Following the coarse-grain representation for the water molecules, we adopt a coarse-
grained lattice representation for the proteins, depicted as self-avoiding heteropolymers
composed of 36 amino acids. For simplicity, each residue can occupy only one of the cells
of the system.
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The amino acids interact through the nearest neighbor potential given by the Miyazawa–
Jerningan interaction matrix [49]. To account for the lower surface-volume ratio in 2D,
we scale the matrix by a factor of 2, increasing the effective amino acids interactions [30].

Depending if two water molecules, forming a HB, are near two hydrophobic (Φ) amino
acids, two hydrophilic (ζ) amino acids, or one of each kind (mixed, χ), the hydration-water
Hamiltonian is

H(h)
w,w ≡ −

[
JΦNΦ

HB + Jζ Nζ
HB + JχNχ

HB

]
−
[

JΦ
σ NΦ

coop + Jζ
σ Nζ

coop + Jχ
σ Nχ

coop

]
, (2)

where NΦ
α , Nζ

α , Nχ
α (α = HB, coop) represent the number of directional and cooperative

bonds formed at a hydrophobic, hydrophilic or mixed interface, respectively.
Experiments and simulations show that the water–water HBs near a hydrophobic

interface are (i) stronger than bulk HBs, and (ii) increase the local water density upon
pressurization [50]. To account for these effects, the model assumes that JΦ > J, JΦ

σ > Jσ,
and that the volume associated with a HB at the Φ interface decreases upon a pressure P
increment, i.e.,

vΦ
HB/vΦ

HB,0 ≡ 1− k1P, (3)

where vΦ
HB,0 is the volume increase for P = 0, and k1 is a factor accounting for the com-

pressibility of the hydrophobic hydration shell. Thus, HBs in a hydrophobic hydration
shell generate an extra contribution VΦ ≡ NΦ

HBvΦ
HB to the total volume.

We adopt the simplified version of the model in which the HBs and the water density
near a hydrophilic interface are as in bulk. The parameters for the HBs in the mixed,
χ, case are an average between the Φ and the ζ case. Hence, the model sets Jζ = J,
Jζ
σ = Jσ, Jχ = (JΦ + Jζ)/2, Jχ

σ = (JΦ
σ + Jζ

σ)/2, and lastly vζ
HB = v(b)HB, where v(b)HB is the

bulk HB-volume parameter.
Finally, the model assumes that the protein–water isotropic interaction energy is dif-

ferent depending on the residue nature. In particular, it is −εΦ and −εζ in the hydrophobic
and the hydrophilic hydration shell, respectively.

2.3. The Hydrophobic Surface

We model the hydrophobic interface as a flat surface with excluded-volume interaction
with both water and proteins. We fix it in space, separating our systems into two parts.
Because we consider periodic boundary conditions (PBC), our system corresponds to an
infinite volume confined between two parallel hydrophobic surfaces at a distance equal to
the size L of the system. The water–water HBs near the hydrophobic interface are as in the
Φ case described above.

2.4. The Model’s Parameters

Following Ref. [30], we choose model’s parameters that balance the water–water,
water–residue, and residue–residue interactions, ensuring the protein stability in the liquid
phase, including ambient conditions. Furthermore, by enhancing the interfacial interactions,
they also account for the protein and interface surface loss by taking a 2D representation
instead of 3D. As described in the following, we use three different sets of parameters to
understand how our results depend on them. The three sets, here called Scale 0, 1, and 2,
are indicated in Table 1. For the sake of comparison, Scale 0 is the same set of parameters
adopted in Ref. [30].
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Table 1. The three sets of parameters—here called Scales—considered in this work for the coarse-
grained proteins, hydrated by the Franzese–Stanley water model. The three sets differ only for
the values of εΦ, JΦ, and JΦ

σ , associated with the water hydrating hydrophobic interfaces/residues.
Symbols are defined in the text.

Scale J/8ε Jσ /8ε v(b)
HB/v0 εΦ/8ε JΦ/8ε JΦ

σ /8ε vΦ
HB,0/v0 k1ε/v0 εζ /8ε

0 0.3 0.05 0.5 0 1.2 0.2 2 4 0.48

1 0.3 0.05 0.5 0 0.6 0.1 2 4 0.24

2 0.3 0.05 0.5 0 0.35 0.05 2 4 0.1

3. Method
3.1. The Protein

We study proteins with a snake-like native state (Figure 1, a inset). For comparison,
we choose the A0 protein introduced in Ref [30], which is in its native state at ambient
conditions. Each protein has 36 residues and a hydrated interface of 20 amino acids of
which 7 (35%) are hydrophobic and 13 (65%) hydrophilic. It has one side fully hydrophilic
and no side completely hydrophobic.

Figure 1. The snake-proteins free energy changes with concentration c and temperature T∗. The concentrations go from
c = 5% (violet) to 27% (black), as indicated in the legend. (a) Inset: Native structure of the snake protein; the dark/light
cells are hydrophobic/hydrophilic amino acids. Main panels: F∗(Nc) at warm temperature (T∗ = 0.4), and (b) at ambient
temperature (T∗ = 0.3), has a minimum that moves from Nc = 1 at low c to Nc < 1 at high c, with a change between
the folded and the unfolded state at 11% < c < 22%, corresponding to 5 ≤ Np ≤ 10 proteins in our system. The change
is greater at ambient conditions. (c) For warm temperature and the same concentrations, F∗(Ic) has a minimum always
at Ic = 0, showing that the proteins do not aggregate at this temperature, regardless if they are folded or unfolded.
(d) The result is different at ambient conditions. The free energy develops several minima at the larger concentration,
c = 27% (12 proteins), showing that the unfolded proteins aggregate at high concentration. In all the panels, the curves at
lower concentrations are noisier than those at higher c because the corresponding averages are over smaller numbers of
proteins. Hence, the fluctuations along the curves are an indication of the error bar on the estimates. In general, a detailed
study of the free-energy landscape to estimate the possible occurrence of free-energy barriers would imply much larger
statistics, which is out of the scope of the present work.
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3.2. The Monte Carlo Simulation

We perform Monte Carlo (MC) simulations of snake proteins embedded into a square
lattice, with size L = 40 and PBC. We consider protein concentrations in the range
c = [4.5%, 27%] in volume, from Np = 2 to 12 proteins. We simulate the system at ambient
conditions, as in Ref. [30], and at a warmer temperature. In internal units of the coarse-
grained water model, these thermodynamic conditions correspond qualitatively to set
kBT/ε = 0.3 for ambient conditions, and kBT/ε = 0.4 for warmer water, both at P = 0.

Following Ref. [30], each MC step is defined by the following sub-steps:

1. We choose randomly a global protein-move among shift, rotation, crankshaft, or pivot [51].
Then, we pick at random one of the proteins, and we attempt the selected global move.
We repeat the random selection for Np times, updating on average all the proteins.

2. We choose a random number m between 1 and 4L2. For m times, we select one of the
L2 cells. If it includes an amino acid, we attempt a corner flip, i.e., the local protein-
move [51]. If it includes a water molecule, we select one of its four σ-variables and
attempt to change its state, hence, breaking or forming a HB.

3. We attempt a global change of the system volume.

We accept or reject each step following the MC detailed-balance rules. This algorithm
guarantees that, for each possible global change in the protein configurations, there is a
random number of local moves for the proteins or the water. This choice allows the system
to re-equilibrate during the process.

3.3. The Observables

To study the proteins folding/unfolding and aggregation, at each MC step, we cal-
culate the number Nc of native contacts of each protein, i.e., contacts in common with the
native structure, normalized by its maximum value (25Np). Furthermore, we compute
the number Ic of inter-contacts between different proteins, or between proteins and the
interface, normalized by its maximum (36Np). Finally, we calculate the number Mc of
contacts of the proteins with the interface, normalized by (2L).

For each c and T, first, we equilibrate the system. We start from a high-T configuration
for water, where we distribute the proteins in a homogenous way in their extended configu-
ration. We consider that the system is equilibrated when all the observables Nc, Ic, and Mc
at each MC step fluctuate around an average value without displaying any drift at least
for 106 MC steps. We observe that, for Scale 0 parameters (Table 1), 1× 106 ÷ 10× 106 MC
steps provide enough time to reach equilibrium, depending on c and T. The equilibration
time is longer for larger c and smaller T. For Scale 1 and 2, which we studied only at
concentration 11%, the system slows down, requiring 12× 106 MC steps of equilibration.

Once at equilibrium, we calculate during 107 MC steps the probability of occurrence,
P(O), for each observable O. Finally, we compute the free-energy as function of each
observables, F(O) ≡ −kBT ln P(O). In the following, we use dimensionless temperature
T∗ ≡ kBT/ε and free-energy F∗ ≡ F/ε.

4. Results
4.1. Scale 0

We first simulate the system at different concentrations and warm temperature.
The free energy as a function of the normalized number of native contacts, F∗(Nc), shows a
minimum near Nc = 1 at low concentration, c ≤ 11% (Figure 1a). In this regime, all the
proteins fold in their native conformation.

At higher concentrations, c > 11%, the minimum moves toward Nc ' 0.94. Hence,
the proteins are on average in slightly-unfolded states, with ∼ 94% of their native contacts.

The unfolding at c > 11% is more evident at ambient temperature (Figure 1b). As the
concentration increases, the F∗ minimum moves toward lower values of Nc and becomes
broader. Both changes indicate a larger propensity of the proteins to unfold toward
configurations with less than 80% of their native contacts for increasing c.
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We calculate, under the same conditions, the tendency of the proteins to aggregate or
adsorb onto the hydrophobic surfaces. At the higher temperature, the proteins, on average,
do not aggregate or adsorb at the concentrations considered here. This result is clearly
shown by the free energy as a function of the normalized number of inter contacts, F∗(Ic),
with minima at I∗c = 0 at any c (Figure 1c).

However, the situation changes at ambient conditions (Figure 1d). By increasing the
concentration, for c > 25%, above the unfolding threshold c > 11%, they aggregate or
adsorb onto the hydrophobic walls, with a shallow minimum in F∗(Ic) around Ic ' 0.1 for
c = 27%. This minimum shows that, when the native contacts are less than 80%, more than
10% of the total volume of the proteins is aggregated or adsorbed at a high concentration.
Further calculations clarify that this minimum is only due to protein–protein aggregation,
with no contribution from surface-adsorbed proteins.

Indeed, our direct evaluation of the free energy as a function of the normalized
number of contacts of the proteins with the interface, F∗(Mc), shows only minima at
Mc = 0 (Figure 2). Hence, for the specific sequence, T, and c we consider here, the surface-
adsorption of the proteins would have a free energy cost that is too large for the system.
This observation does not exclude that different sequences, with larger numbers of hy-
drophobic residues exposed to water in their native state, would adsorb at appropriate
values of T and c.

Figure 2. Free energy profiles as a function of the normalized number, Mc, of contacts of the proteins with the hydrophobic
interfaces. Colors for the concentrations are as in Figure 1. The proteins are not adsorbed onto the interfaces when the
minimum is at Mc = 0.

Considering that Mc is not affecting the free energy for our system in a significant
way, we summarize our findings by the function F∗(Nc, Ic), showing how the free energy
depends on the two relevant parameters Nc and Ic (Figure 3). We find a clear correlation
between the two at ambient conditions and high concentration, with larger Ic for smaller
Nc. This result implies that at high concentration, c ≥ 25%, the more the proteins unfold,
the more they aggregate.

At lower c and higher T, this correlation is weak. In particular, F∗(Nc, Ic) at higher
T (Figure 3, bottom) emphasizes the propensity of the proteins to unfold only partially
at higher c, without aggregating. Interestingly, at the lower concentration in warm water,
there is a larger probability of aggregation.
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Figure 3. Color-coded free energy F as a function of the native contacts Nc (horizontal axis, expressed as a percentage) and
the average number of inter contacts 25Np × Ic (vertical axis), for different concentrations and temperatures. Darker colors
correspond to deeper minima in free energy. We mark the absolute free-energy minima in green ellipses as guides for the
eyes. We present data only for three concentrations. At ambient conditions (top panels) and c = 11%, the proteins are
mainly folded (FOL). At c = 25%, they are unfolded (UNF) on average. At c = 27%, they are unfolded and aggregated
(AGG) in their majority. At the warmer temperature (bottom panels), they tend to avoid aggregation, even if they unfold.
Statistically, where the volume concentration is low (11%), the proteins explore a larger number of configurations than at
higher density, given the high thermal energy and the larger available volume.

4.2. Scale 1 and Scale 2

Next, we explore how unfolding, aggregation, and surface-adsorption, depend on the
competition between amino-acid interactions plus hydrophobic collapse, on the one hand,
and entropy and energy-gain due to water–water HBs near hydrophobic interfaces, on the
other hand. To this goal, we reduce the latter, by changing the values of εΦ, JΦ, and JΦ

σ ,
as indicated in Table 1, with Scale 1 and Scale 2 sets of parameters compared to Scale 0.

We fix the concentration at c = 11% and simulate the system at both temperatures
considered for Scale 0, with the parameters corresponding to Scale 1. We observe that the
proteins with Scale 1 parameters (Figure 4, central panels) have a larger propensity to unfold
and aggregate with respect to the model with the Scale 0 parameters (Figure 4, left panels).
The effect is even more evident with Scale 2 parameters (Figure 4, right panels).

In particular, at warm temperature (Figure 4, bottom panels), the weakening of the HB
parameters in the Φ-hydration shell increases the proteins’ propensity to unfold (Scale 1)
and aggregate (Scale 2). At ambient temperature (Figure 4, top panels), both choices, Scale 1
and 2 lead to unfolded and aggregated proteins.

As a general trend, these calculations confirm that the aggregation propensity increases
for the decreasing number of native contacts. Although the heterogeneity of the plots
reveals the difficulty to explore the accessible configurations for Scale 1 and 2 and to locate
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the absolute free-energy minimum, especially at lower T, the overall trend of the results is
clear. A more thorough calculation of F∗(Nc, Ic) is beyond the scope of the present work.

Figure 4. Comparing the free energy F∗(Nc, Ic) for different choices of model parameters, Scale 0, 1, 2 as indicated in
Table 1, at fixed concentration c = 11%, and ambient temperature (top row) or warmer temperature (bottom row). Axes
and colors are as in Figure 3. Under these conditions, F∗(Nc, Ic) for Scale 0 (left) has a minimum corresponding to folded
proteins (FOL). For Scale 1 (center), at ambient temperature (top), the proteins are unfolded and aggregated (AGG), while at
the higher temperature (bottom), they unfold (UNF) but have a small tendency to aggregate. For Scale 2 (right), at both
temperatures, the proteins aggregate (AGG) and are more unfolded at the lower temperature.

5. Discussion
5.1. Effect of the Hydrophobic Walls

To elucidate the effect of the hydrophobic walls, we compare our results, at ambient
T, with those in bulk for the same protein [30]. We find that, at least for this specific
protein (A0 in Ref. [30]), the hydrophobic surfaces increase the concentration at which we
observe unfolding, from cFOL→UNF ' 5% to 11% < cS0

FOL→UNF < 22%, and the aggregation
threshold, from cUNF→AGG ' 20% to 25% < cS0

UNF→AGG < 27%, where quantities with the
superscript S0 refer to the case presented here with the confining hydrophobic surfaces
and Scale 0 parameters.

This result is apparently in contradiction with the findings in Ref. [31]. Bianco et al.
show that proteins tend to fold uninfluenced by the presence of other proteins provided
that their single concentration is below their specific cFOL→UNF [31]. This result could
suggest that even the presence of an additional interface, such as the hydrophobic surfaces
considered here, would not affect cFOL→UNF.

However, there are fundamental differences between the cases considered in Ref. [31]
and the present work. While in Bianco et al. [31], the additional interfaces (i) have a size
comparable to the protein A0, (ii) are heteropolymers made of different residues, and (iii)
are fluctuating in their positions and configurations, here they are (i) made of two infinite
walls, (ii) homogenous in their hydrophobicity, and (iii) fixed in space.
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Hence, the confining walls here exclude a priori a number of protein configurations.
On the other hand, the mixing with different proteins [31] alters the probability of some
configurations for the protein A0. However, it does not forbid any. Therefore, we suggest
that our confinement pushes the FOL→ UNF process toward protein concentrations that
are higher than in bulk as a consequence of the limited ergodicity of the system.

While our confining walls induce a 120% increase in the FOL→ UNF concentration
with respect to the bulk case [30], our UNF→ AGG concentration is only 25% larger than
the value in bulk [30]. This result is consistent with the fact that now the proteins unfold at a
higher concentration. Hence, the reduced free volume and the larger probability of protein–
protein interaction partially compensate for the stabilization effect of the limited ergodicity.

In all the cases we considered here, we find that the proteins make very few contacts
with the walls and do not adsorb onto them. We believe that this result is due mainly to
the restrictions imposed by the 2D system, in which the interface is reduced just to a line
of points.

Furthermore, the sequence we consider here is mostly (65%) hydrophilic. Hence,
the proteins minimize their free energy when they are hydrated away from the walls.

We expect that proteins with larger hydrophobic patches would give rise to a more
intense hydrophobic collapse, associated with the larger bulk-water entropy-gain and a
stronger surface-adsorption. This investigation is underway.

More generally, it would be interesting to study how these results depend on the
separation between the walls. For example, the system recovers the bulk case [31] at a
large distance between the walls while at an intermediate distance, as the one considered
here, both FOL→ UNF and UNF→ AGG move to higher protein concentrations, with no
surface-adsorption. The question is if these processes can still occur at smaller distances
and how they would change.

5.2. Effect of the Temperature

We observe that temperature affects both unfolding and aggregation. For the tem-
peratures studied here, the effect is small for the unfolding, without leading to a change
in the FOL→ UNF threshold concentration. However, the protein at low c explores less
unfolded states than at higher T, while they have a larger propensity to unfold at higher c
and lower T. In any case, at lower T, the system equilibrates more slowly and has a larger
statistical noise, especially at small c, because of the smaller number of proteins.

The effect is strong for the aggregation. While we find no aggregation at the warmer
T up to c = 27%, at ambient T it is 25% < cS0

UNF→AGG < 27%. We understand this result
as a consequence of the larger propensity to unfold at lower T and higher c, and the
thermal-energy decrease that favors the protein–protein interaction and aggregation.

Interestingly, at the higher T, the thermal energy hampers the aggregation of unfolded
proteins, at large c, more than that of folded proteins, at small c. We interpret this finding
as due to the larger steric hindrance of the loose ends of the unfolded proteins at high T.

5.3. Effect of the HB Strength near a Hydrophobic Interface

By going from Scale 0 to Scale 1 and 2, we reduce the HB strength near a hydrophobic
interface. This weakening would correspond in an experiment, e.g., to an increase of ions
concentrations in the protein solution and a decrease of the hydrophobic effect, which
contributes to the stability of the folded state against T raises. Hence, at fixed T and c,
the FOL state is less stable when we go from Scale 0 to Scale 1 and from Scale 1 to Scale
2. This observation implies that cS0

FOL→UNF ≥ cS1
FOL→UNF ≥ cS2

FOL→UNF, consistent with our
results about the propensity to unfold at fixed concentration.

When we decrease the hydrophobic effect, the relative importance of the protein–
protein interaction increases, favoring the AGG state. Hence, we expect cS0

UNF→AGG ≥
cS1

UNF→AGG ≥ cS2
UNF→AGG, consistent with our results.

As discussed for Scale 0, the aggregation is more prominent at lower T even for Scale
1 and 2. In particular, both Scale 1 and 2, at the chosen concentration c = 11%, lead directly
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to the AGG state. Hence, for the set of parameters analyzed here, the cS
UNF→AGG(T

∗ =

0.3) < cS
UNF→AGG(T

∗ = 0.4), where the superscript S refer to any of the scales for the
parameters. Further analysis will be necessary to verify all the above relations in detail for
different sets of parameters and temperatures, including both confined and bulk cases.

6. Conclusions

Following recent computational works, adopting the FS water model to study how
folding/unfolding (FOL/UNF) compete with aggregation (AGG) when the protein con-
centration increases [30,31], here we consider the effect of nearby hydrophobic walls at
different temperatures, concentrations, and hydrophobic strength.

In all these cases, we find that the aggregation is ruled by the unfolding. The more the
proteins unfold, the more they aggregate. Increasing their concentration, the proteins first
unfold, FOL→ UNF, and next aggregate, UNF→ AGG, with a range of concentrations
for which the proteins unfold without aggregating, cFOL→UNF < cUNF→AGG [30].

The presence of fixed hydrophobic walls increases both concentration thresholds at
which the processes FOL→ UNF and UNF→ AGG occurr, i.e., cFOL→UNF < cS

FOL→UNF,
and cUNF→AGG < cS

UNF→AGG, with a larger effect on FOL/UNF structural change.
We interpret these results as a consequence of the limitation of the accessible config-

urations that can be explored by the confined proteins (limited protein ergodicity). This
effect is qualitatively different from what Bianco et al. observed in simulations and experi-
ments for bi-component protein solutions [31], where protein–protein fluctuations alter the
protein configurations probabilities but do not limit their ergodicity.

For the aggregation, the decrease in free volume at large c partially compensates the
effect. For the chosen geometry and specific (snake) protein mainly hydrophilic, we do not
observe surface-adsorption in the range of explored T and c. Further analysis is underway
for more hydrophobic proteins.

Changes of T also affect the limiting concentrations of FOL, UNF, and AGG states.
We find that at lower T the snake proteins have a larger propensity to unfold and a much
stronger tendency to aggregate, as a consequence of the decreased thermal energy. In gen-
eral, we find that cS

UNF→AGG(Tlow) < cS
UNF→AGG(Thigh).

We find that changes in hydrophobic effect, as, e.g., due to an increase of ions in
solution, also have a strong consequence on unfolding and aggregation. In particular,
we consider three HB strengths near hydrophobic interfaces, high (S0), intermediate (S1),
and small (S2), and find results consistent with cS0

FOL→UNF ≥ cS1
FOL→UNF ≥ cS2

FOL→UNF, and
cS0

UNF→AGG ≥ cS1
UNF→AGG ≥ cS2

UNF→AGG. Hence, the decrease of the hydrophobic effect
destabilizes the proteins against unfolding and aggregation at high concentrations, with a
stronger repercussion at lower T.

Our results are potentially useful for the understanding of the mechanisms that control
protein aggregation, a process that is associated with a growing number of neurodegenera-
tive pathologies, including Alzheimer’s disease and Parkinson’s disease [52,53]. They rep-
resent the first step toward a multi-scale approach to study how to use nanostructured
interfaces to regulate and, eventually, hamper pathological protein aggregation [54].
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