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Abstract: It is important to emphasize that the adjustment of an organic–inorganic interfacial chemi-
cal environment plays an important role during the separation performance of composite materials.
In this paper, a series of hybrid membranes were prepared by blending polyvinyl alcohol (PVA)
solution and sulfonated nano-TiO2 (SNT) suspension. The effects of different interfacial chemical sur-
roundings on ions transfer were explored by regulating the dosage content of SNT. The as-prepared
membranes exhibited high thermal and mechanical stability, with initial decomposition tempera-
tures of 220–253 ◦C, tensile strengths of 31.5–53.4 MPa, and elongations at break of 74.5–146.0%.
The membranes possessed moderate water uptake (WR) values of 90.9–101.7% and acceptable alkali
resistances (swelling degrees were 187.2–206.5% and weight losses were 10.0–20.8%). The as-prepared
membranes were used for the alkali recovery of a NaOH/Na2WO4 system via the diffusion dialysis
process successfully. The results showed that the dialysis coefficients of OH− (UOH) were in a range
of 0.013–0.022 m/h, and separate factors (S) were in an acceptable range of 22–33. Sulfonic groups in
the interfacial regions and –OH in the PVA main chains were both deemed to play corporate roles
during the transport of Na+ and OH−.

Keywords: sulfonated; nano-TiO2; diffusion dialysis; alkali recovery; assisted transport

1. Introduction

Diffusion dialysis (DD), which is driven by concentration gradient [1], is considered to
be one of the most promising methods for alkaline waste water treatment as its spontaneous
nature. In comparison with conventional separation processes, such as solvent extraction,
precipitation, and distillation, the DD process exhibits significant superiority, including
higher efficiency, low energy consumption, low installation and operating cost, stability and
easiness for operation, and the environmentally friendly nature [2–4]. The core component
of the DD process is the membrane. Therefore, membranes with excellent ion permeability
and selectivity have been attracting increasing attention [5,6].

The alkaline DD process is not used as widely as it has been reported in acid recov-
ery [7,8], which is due to the lower ion coefficients and selectivity. Recently, different
efforts have been made to improve the separation performance of ion exchange mem-
branes. These attempts could be broadly classified into three categories: new membrane-
preparation methods from monomers that contain many ion exchange groups [5,9–11],
composite membranes, and organic–inorganic hybrid membranes [12–15]. Among the
rest, preparation of organic–inorganic hybrid membranes via blending or in situ methods
draws the greatest attention because of their multiple functions—unique chemical reac-
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tivity, tunability of the organic polymer matrix, as well as the excellent mechanical and
thermal stabilities of the inorganic backbone [3,16,17].

In recent years, organic–inorganic composites have been investigated for DD mem-
branes with high performance [13,18]. Various nano-sized inorganic fillers such as sil-
ica [19], titania [20], zeolites [17], and montmorillonite [15,21] have already been used for
the improvement of the performance of proton exchange membranes. The building of ion
transfer channels between inorganic fillers and polymer matrices is the key to improve
membrane separation performance [12]. However, it remains challenging to adjust the
chemical environment of an interface in a composite membrane that can regulate the trans-
portation efficiency of ions [13,14]. In our previous report [22–24], it was confirmed that
functional groups in organic–inorganic interfacial regions could promote transport of ions.
Therefore, sulfonated Nano-TiO2 (SNT) and polyvinyl alcohol (PVA) were chosen as an
inorganic filler and a polymer matrix to prepare hybrid membranes for alkaline DD in this
research. The effects of –SO3

− from SNT and –OH from PVA on the performance of hybrid
membranes were discussed preliminarily.

2. Materials and Methods
2.1. Materials

PVA was supplied by Sinopharm Chemical Regent Co., Ltd. (Shanghai, China).
The average degree of polymerization was 1750 ± 50. Pre-weighed PVA was immersed in
water and heated to around 100 ◦C and kept at 100 ◦C for 3 h. The homogeneous solution
(5.0 wt %) was cooled to 60 ◦C before use.

Nano-TiO2 powder was purchased from Nanosabz Co. Ltd. (Tehran, Iran), with av-
erage particle sizes of 30 nm, and was heated at 160 ◦C for 1 h before use. Sulfuric acid
(H2SO4), glutaraldehyde (GA), acetone, and pure analytical toluene were purchased from
Sinopharm Chemical Regent Co. Ltd. Pure analytical 1, 3-propanesultonewith was sup-
plied by Shanghai Kang Ta chemical Co. Ltd. (Fengxian, Shanghai). Deionized water was
used throughout.

2.2. Surface Modification of Nano-TiO2

Sulfonation of nano-TiO2 was illustrated in previous report [17,25,26]: 1 g of pre-
heated nano-TiO2 and 4.4 g 1, 3-propanesultone were added into 300 mL toluene under
ultrasonic dispersion, and then, the mixture was stirred vigorously at 120 ◦C for 48 h.
After that, the powders were soxhlet-extracted by acetone at 80 ◦C for 48 h. Finally,
the samples were dried at 55 ◦C in a vacuum drying oven for 12 h to obtain SNT powders.
The sulfonated process is presented in Scheme 1, and the sulfonation was confirmed by the
FT-IR spectra, which was obtained by a NEXUS-870 (Thermo Fisher Scientific, Waltham,
MA, USA) spectrometer.
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2.3. Preparation of the Hybrid Membranes

A preweighted GA aqueous solution (with a 0.5% mass ratio) was added to a 20 mL
PVA aqueous solution under stirring, and the pH value was controlled at 5. After reaction
for 35 min, SNT was added into a mixture of the prepared casting solutions and PVA with
different mass ratios (0%, 1%, 3%, and 5%) under high-speed shear. Then, the solutions
were casted onto clean glass plates and dried at room temperature for 48 h. The obtained
membranes were dried from 60 ◦C to 130 ◦C at a rate of 10 ◦C/h and then kept at 130 ◦C
for 5 h. The membranes were signed as 0%, 1%, 3%, and 5%, respectively, according to the
dosage of SNT.

2.4. Characterization and Separation Performance of the As-Prepared Membranes

The microscopic structures and basic properties of the as-prepared membranes, includ-
ing FT-IR (Thermo Scientific Nicolet iS10, Waltham, MA, USA), WR, swelling degree, mass
loss, mechanical and thermal properties (Instron 5967, Boston, MA, USA), and SEM and
TEM images were measured, and the details could be seen in our previous reports [23,24].
The ion exchange capacities (IECs) of the as-prepared membranes were determined by the
element analysis (Elementar Vario EL cube, Frankfurt, Germany) result of SNT. The DD
test of the as-prepared membranes was detailed in our previous report [8,22], in which the
effective area of membrane was 6 cm2 and the temperature was kept at 25 ◦C. The solutions
were stirred during the experiment, and the membrane samples were immersed into a feed
solution for 2 h before testing.

3. Results
3.1. FTIR Spectra of Original Nano-TiO2 and SNT and ATR-FTIR of the As-Prepared Membranes

The FTIR spectra of the original and sulfonated nano-TiO2 are shown in Figure 1,
in which the broad peak was observed in the region of 450–800 cm−1 corresponding to
the Ti-O stretching vibration. The spectrum of the original nano-TiO2 was characterized
by the broad –OH stretching vibration and the bending vibration located at 3450 cm−1

and 1663 cm−1, respectively. Compared with the original nano-TiO2, the presentation of
the S=O symmetric vibration peak at 1150–1210 cm−1 and the C–H adsorption peaks at
2920 cm−1 and 1380 cm−1 confirmed the achievement of SNT [27].
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Figure 1. (a) FTIR spectra of the original nano-TiO2 and the sulfonated nano-TiO2. (b) ATR-FTIR
spectra of the as-prepared membranes.

The ATR-FTIR spectra of the as-prepared membranes exhibited the similar trends,
except for the peak between 1000 cm−1 and 1100 cm−1, which could be assigned to C–O
stretching and O–H bending vibrations coming from the PVA main chains. The detailed
discussion is shown in Section 3.3.

3.2. IECs

The IECs of the as-prepared membranes were calculated from the results of a sulfur
elemental analyzer (1.06%) and are shown in Table 1. The IEC values were in a range of
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0–0.0157 mmol/g, which is much less than that of typical ion exchange membranes. This
was mainly due to the lower sulfonated degree of SNT (about 1%). However, the intro-
duction of sulfonic groups had much lower influence on the separation performance of
membranes though the IECs of the as-prepared membranes than in previous reports [28,29].

Table 1. Theoretical ion exchange capacities (IECs) and thicknesses of the as-prepared membranes.

Membranes 0% 1% 3% 5%

IEC (mmol/g) 0 0.0033 0.0096 0.0157
Thickness (µm) 68 73 76 69

3.3. Water Uptake (WR), Swelling Degree, and Mass Loss

The WR results are shown in Figure 2, while the swelling degrees and the mass losses
of as-prepared membranes are shown in Figure 3.
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The WR values of the membranes were in a range of 90.9–101.7%. The effect of the
loading of SNT on the WR values of membranes could be explained in two aspects: The
hydrophilicity of hybrid membranes increased slightly, when the dosage of SNT was 1%,
which was due to the incorporation of the hydrophilic –SO3H and the well dispersion of the
SNT particles; The values of WR decreased obviously, while the dosage of SNT increased
continuously. This could be attributed to the partial aggregation of the SNT, i.e., the SNT
particles aggregated via the hydrogen bonds and this declined the number of dissociative
–SO3H. Meanwhile, considering the lower sulfonated degree of SNT, the increased relative
mass ratio of SNT to PVA partially led to the decreasing WR, when the dosage of SNT was
more than 3%.
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The swelling degrees of membranes in 2M NaOH at 65 ◦C were in a range of
187.2–206.5%, which was attributed to the degradation of crosslinked PVA chains. Mem-
branes 1–5% exhibited slightly lower swelling degrees than that of membrane 0%, which
indicated that the addition of SNT could restrict the movement of PVA chains. It could
be observed obviously that the peak between 1000 cm−1 and 1100 cm−1 shifted to the
higher wavenumber with the increasing dosage of SNT, which corresponded to those in a
previous report [30]. The results indicated that incorporation of SNT was advantageous in
the improvement of the swelling resistance of the hybrid membranes.

The mass loss of the membranes was mainly due to the dissociative PVA chains and
resulted partly from the degradation of the crosslinking network under the attack of the
hot alkali aqueous solution. All the membranes maintained integrity and original color
after testing, while they turned brittle. This was due to the damage of the crosslinked
structure caused by OH−. The weight losses of the as-prepared membranes were in a
range of 10.0–20.8%, compared with the finding in our previous report [23], and increased
with the increasing dosage of SNT. This could be attributed to the introduction of sulfonic
groups to the membrane matrix, that is, free H+ from SNT facilitated the attack of OH− and
the enhanced interfacial defect aggravated the erosion of the membranes. Therefore, the
mass loss of the hybrid membranes increased with the increased SNT loading increment,
and thus, an appropriate dosage of SNT was necessary.

3.4. Mechanical Properties

The tensile strength (TS) and elongation at break (Eb) of the as-prepared membranes
are shown in Table 2. The TS values were in a range of 31.5–53.4 MPa, while the Eb values
were in a range of 74.5–146.0%. The hybrid membranes possessed comparable mechanical
strength and flexibility with those in our previous reports [22,23,31]. The strength and
flexibility of the membranes declined, as the dosage content of SNT was enhanced, which
indicated that the mechanical properties of the hybrid membranes were affected in an
unconventional manner. Generally speaking, involvement of inorganic nanoparticles
into a polymer matrix could improve mechanical properties of the composites due to
the reduction of the free volume [23]. The unusual phenomena in this research could be
explained as follows: –SO3H group in the surface of SNT was easy to interact with the
–OH in PVA main chains, which might lead to the rearrangement of the PVA molecular.
Meanwhile, it could improve the chance to form caves between PVA main chain and SNT
because of the similar hydrophility between –OH and –SO3H [23]. Therefore, membranes
1%, 3%, and 5% showed declined mechanical properties compared with membrane 0%.

Table 2. Tensile strength (TS) and elongation at break (Eb) of membranes 0–5%.

Membranes 0% 1% 3% 5%

TS (MPa) 53.38 38.41 31.46 33.1
Eb (%) 146 108.28 90.02 74.48

3.5. Thermal Stabilities

TGA testing of the as-prepared membranes is shown in Figure 4. Since the membranes
were heated at 130 ◦C, the weight loss before 130 ◦C could be neglected when determining
the initial decomposition temperature (IDT).
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Membrane 0% 1% 3% 5%

IDT1 (◦C) 220 247 253 250
IDT2 (◦C) 402 425 431 427

IDT1 was the initial decomposition temperature determined from thermograms. IDT2 was the second
decomposition temperature of the second platform.

3.6. Microscopic Morphologies

The cross-sectional SEM pictures of the as-prepared membranes are shown in Figure 5.
The hybrid membranes exhibited obvious phase interface, while the original one showed
a smooth broken surface. SNT dispersed uniformly in hybrid membranes, and there
were not obvious caves or structure defects in the low-magnification SEM images, even
when the loading content of SNT was 5%, which indicated well compatibility between
the two phases. The SNT showed some slight aggregation when the dosage content was
5%, which could be attributed to the formation of H-bonding by –SO3H in the surface of
SNT [23]. Nonetheless, there were obvious little cracks in the high-magnification images,
especially in images 3%-1 and 5%-1. This indicated that the incorporation of SNT affected
the arrangement of the PVA chains and the rearrangement of the PVA chains enhanced the
chance of formation of structural caves. The SEM images agreed with the analytical results
of the thermal and mechanical results as well.
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To further detect the dispersion of SNT in the PVA matrix, the TEM images of samples
3% and 5% were taken, and the results are shown in Figure 6, from which we observed
that SNT dispersed uniformly in membrane 3% while aggregated in membrane 5%. This
agreed with the observations in the SEM images.
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3.7. Separation Performance
3.7.1. Dialysis Coefficients (UOH)

The dialysis coefficients of OH− (UOH) are shown in Figure 7. The UOH values
were in a range of 0.013–0.022 m/h, which was comparable with previous reports [12,14].
As shown in Figure 7, UOH values increased significantly and then decreased slightly
with the increasing loading content of SNT. The results indicated that the incorporation of
sulfonic groups was beneficial to the transport of OH−. It is known that the IEC plays an
important role during ion transport because cationic ions could easily traverse through
the membrane via electrostatic attraction [1]. Nonetheless, compared with typical cationic
ion exchange membranes (CIEMs) [5,6], the hybrid membranes possessed two characters:
IECs were far lower than those of typical CIEMs and the functional groups were in the
organic–inorganic interfacial regions. Therefore, it was concluded that ion exchange groups
in the organic–inorganic interfacial regions could facilitate the transport of ions. This
could be explained in two aspects: On the one hand, the larger interfacial space was
easier for transport of Na+ via electrostatic attraction; On the other hand, hydroxyl in
the PVA main chains could promote transport of OH− through the hydrogen bond [22].
The two factors played synergistic roles on the ion transport during the DD process and
enhanced the UOH to 0.022 m/h, which was nearly twice as much as the UOH of a pure PVA
membrane. The transport schematic diagram is shown in Figure 8. However, aggregation
appeared, and membranes separation performance declined at the highest loading of 5%,
which was in step with the results of SEM and TEM results. The reasons for this were as
follows: –SO3H in the surface of SNT formed the transported channel for Na+ in the larger
interfacial space via electrostatic attraction and this decided the separation performance of
the hybrid membranes. The SNT itself aggregated via the H-bonding between –SO3H, and
this decreased the dissociative number of –SO3H. Thus, the transport of Na+ was delayed,
and the separation of membrane declined.
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3.7.2. Separation Factors (S)

The S values of the as-prepared membranes are shown in Figure 9, from which higher
S values of the hybrid membranes than that of the original one were observed. The results
indicated that the incorporation of SNT was beneficial to the selectivity of membranes. The
S values were in an acceptable range of 22–33, which was lower than that of SPPO-based
hybrid cation exchange membranes [6,9].
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The S values of the hybrid membranes increased as the loading content of SNT
increased and decreased slightly while the loading content of SNT reached 5%. This could
be explained as follows: All the membranes possessed high density after thermal treatment,
and this would make it difficult for the transport of WO4

2− because of its bigger volume
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and higher valence state. On the contrary, transport of OH− was less affected because of
its smaller volume and lower valence state than WO4

2−. More important, hydroxyl in the
PVA main chains provided the assisted transport of OH− via hydrogen bonding (seen
in Figure 8). Meanwhile, WO4

2− suffered larger electrostatic repulsion while transport
through the membrane, which was due to its multivalent property and larger volume.

Therefore, the incorporation of SNT to PVA matrix could enhance UOH and S simulta-
neously, and this might be one of the candidates to break down the “tradeoff” effect be-
tween ion flux and selectivity. Compared with the findings in our previous report [8,22–24],
SNT exhibited higher stability in an alkaline system than in silica, and the hybrid mem-
branes showed excellent properties under lower dosage (less than 5%). Meanwhile, the
sulfonation of nano-TiO2 was easy to carry out, and the blending method was easy to com-
mercialize. However, aggregation appeared with excessive dosage of SNT, which declined
the performance of membranes as discussed in Section 3.7.1. Therefore, it was important
to enhance the dispersion abilities of SNT in the polymer matrix under some additional
technology (such as ultrasonic dispersion, high-speed shear and in situ preparation). Thus,
suitable loading content and multiple-function surface modification of SNT could help
obtain membranes with the best performance. In this system, the hybrid membranes
exhibited optimal performance, when the loading content of SNT was 3%, with UOH and S
were 0.022 m/h and 33, respectively.

4. Conclusions

PVA/nano-TiO2 hybrid membranes have been prepared by bending a precrosslinked
PVA solution and an SNT suspension. The SEM and TEM images confirmed the good
compatibility between these two phases. The as-prepared membranes were of good
hydrophilicity and moderate alkali resistance, with WR values of 90.9–101.7% and weight
losses of 10.0–20.8%. The results of TGA and mechanical tests indicated that the as-
prepared membranes were of thermal and mechanical stability with initial decomposition
temperatures of higher than 220 ◦C, tensile strengths (TS) of 31.5–53.4 MPa, and elongation
at break (Eb) of 74.5–146.0%. The as-prepared membranes were applied to recover alkali
from the NaOH/Na2WO4 system via the DD process successfully, and dialysis coefficients
of OH− (UOH) and separation factor (S) values were in a range of 0.013–0.022 m/h and
22–33, respectively. The sulfonic groups in the organic–inorganic interface of the hybrid
membranes and –OH from PVA main chains were deemed to play important roles during
the DD process: Na+ transported through the main channels made up of –SO3

−, while
OH− transported through the assisted channels made up of –OH from PVA. Thus, ion flux
and selectivity could enhance simultaneously by the incorporation of SNT. The membrane
exhibited an optimal performance when the loading content of SNT was 3%, with UOH of
0.022 m/h and S of 33.
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