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Abstract: Traditional plastics have undoubted utility and convenience for everyday life; but when
they are derived from petroleum and are non-biodegradable, they contribute to two major crises
today’s world is facing: fossil resources depletion and environmental degradation. Polyhydrox-
yalkanoates are a promising alternative to replace them, being biodegradable and suitable for a
wide variety of applications. This biopolymer accumulates as energy and carbon storage material in
various microorganisms, including microalgae. This study investigated the influence of glucose, N, P,
Fe, and salinity over the production of polyhydroxyalkanoate (PHA) by Scenedesmus sp., a freshwater
microalga strain not previously explored for this purpose. To assess the effect of the variables, a
fractional Taguchi experimental design involving 16 experimental runs was planned and executed.
Biopolymer was obtained in all the experiments in a wide range of concentrations (0.83–29.92%, w/w
DW), and identified as polyhydroxybutyrate (PHB) by FTIR analysis. The statistical analysis of the
response was carried out using Minitab 16, where phosphorus, glucose, and iron were identified as
significant factors, together with the P-Fe and glucose-N interactions. The presence of other relevant
macromolecules was also quantified. Doing this, this work contributes to the understanding of the
critical factors that control PHA production and present Scenedesmus sp. as a promising species to
produce bio-resources in commercial systems.

Keywords: polyhydroxyalkanoates; Scenedesmus sp.; microalgae; taguchi design; nutrients impact;
carbon source

1. Introduction

Plastics are essential materials in modern everyday life [1], but the unsustainable
nature of the petroleum from which plastics originate and the environmental damage
caused by their accumulation in marine and terrestrial deposits has triggered the search for
environmentally friendly substitutes [2], such as bioplastics [3]. One type of biopolymer
that has generated great interest in recent years is polyhydroxyalkanoates (PHAs) [4–6].
PHAs are natural carbon and energy storage compounds present in many photosynthetic
organisms, synthesized in response to nutrient deficiency conditions in the presence of
a carbon source [7]. They have great durability, biodegradability, biocompatibility, and
properties similar to conventional thermoplastics [8]. Being derived from renewable
biological materials, these biopolymers constitute a promising alternative to solve the
environmental problems caused by petrochemical plastics [9].

Thanks to their unique combination of properties, PHAs have the potential to be
used in a wide range of applications [10]. Their biodegradability and biocompatibility
allow their use in medical applications [11], where they can be used in the manufacture
of implants [12,13], wound dressings [13,14], or drug delivery carriers [13,15–17]. These
applications require a product with high purity, so the carbon source from which they are
originated must not be contaminated [5]. When waste streams are used as a substrate,
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the obtained PHA can be directed to other sectors. Their thermal processability makes
them ideal for the fabrication of environmentally friendly packaging [18–20]. Furthermore,
their blend-ability and mechanical properties make them very useful for the materials and
nanotechnology sectors [5,21], where they can be used in the fabrication of compostable
batteries [22], films [23], nanoparticles [24], and nanocomposites [25,26].

PHA accumulation occurs naturally in photosynthetic organisms, such as microal-
gae [27]. Microalgae are known for their great potential to produce metabolites like proteins,
lipids, carbohydrates, and pigments, which can be transformed into products for the food,
pharmaceutical, and medical industries [28], or for the generation of green energy [29].
Additionally, they play a fundamental role in wastewater remediation [30–33] and carbon
dioxide sequestration [34–37]. Microalgae can use waste streams to obtain the nitrogen (N)
and phosphorus (P) they need for growth [38,39], or they can use them as carbon sources
for the production of polyhydroxyalkanoates [40,41]. This characteristic, coupled with
their rapid growth, their low space and water requirements, and their use of sunlight as
an energy source, makes them an economically attractive alternative as PHA-producing
organisms [42].

The synthesis of PHA in photosynthetic microorganisms starts with the consump-
tion of acetyl-CoA (Figure 1). Two acetyl-CoA molecules are joined together to form
one acetoacetyl-CoA molecule in a β-ketothiolase (PhaA) catalyzed condensation reac-
tion. This molecule is then reduced to D-3-hydroxybutyryl-CoA by nicotinamide adenine
dinucleotide phosphate (NADPH)-dependent acetoacetyl-CoA reductase (PhaB). Finally,
PHB synthase (PhaC) catalyzes the binding of D-3-hydroxybutyryl to an existing polyhy-
droxybutyrate (PHB) molecule through an ester bond, releasing CoA [43]. The chemical
composition of the resulting PHA polymers can be manipulated by varying the substrates
fed to the producer organism [44]. Since the synthesis of PHA is regulated at the enzymatic
level [7], the intracellular concentration of acetyl-CoA and free CoA plays a central role
in the synthesis of the polymer. The enzymatic activity and the availability of the PHA
precursors are dependent on the presence of different compounds in the medium [45].

Various studies suggest that there are important interrelations between the PHA
biosynthetic pathway and those of the central carbon metabolism [46], especially the glyco-
gen pathway, one of the major cellular carbohydrate forms in cyanobacteria, which is
degraded to a simpler compound: glucose. Dutt and Srivastava [47] showed that in PHA
accumulating microalga photosynthetically grown under N-depletion, up to 87% of the
carbon in PHB is derived from intracellular carbon reserves rather than from the CO2 fixed
during the cultivation, but it was not clear which specific metabolic routes related with
carbon fixation provided precursors for PHA synthesis. The work done by Koch et al. [48]
revealed that products of glycogen degradation could be key precursors for PHA pro-
duction, which indicated that the biosynthetic pathways for PHA and carbohydrates
accumulation do not compete which each other, but are interconnected.

Although PHAs are naturally present in microalgae, their percentage content by
weight is usually relatively low (generally below ten percent of the cell biomass) compared
to that of other microorganisms such as bacteria [49,50]. A large screening study in which
137 different strains were analyzed for their PHA production reported that under normal
growth conditions natural concentration of the biopolymer was lower than 3.5% w/w DW
on 133 of the studied strains [51]. Some other studies have reported PHA concentrations
below nine percent of the dry weight for liter. However, under suitable culture conditions,
this concentration can be significantly increased [52]. Access to sufficient light and carbon,
favorable pH and salinity values, and an adequate concentration of nutrients in the grow-
ing medium are some of the factors that can potentially improve PHA production [53]. The
identity and values of these factors vary between different strains of microalgae. Nitrogen
and phosphorus deficiency is a commonly used strategy to increase PHA accumulation in
microalgae since these two nutrients are crucial for algae development [49,52,54]. However,
some other metals commonly added to microalgae cultures could play a role in biopoly-
mer production [55]. Among them, iron could be of interest since it is closely related
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to the growth, metabolism, and photosynthetic activity of microalgae [56,57]. Although
some works have explored the influence of this metal in the production of biomass [58],
lipids [59], carbohydrates, and proteins [60] by microalgae, its impact on PHA production
has remained largely unexplored. Ultimately, the physiology of each strain and the envi-
ronmental conditions to which it is adapted, confer them different sensitivity to nutrient
limitation [61] and resistance to environmental and nutritional stress, which determines its
PHA producing capacities as a response to said constraints [62].
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Figure 1. Polyhydroxybutyrate (PHB) synthesis pathway from acetyl-CoA and some of their re-
lated regulatory circuits. Under starvation conditions (nitrogen and phosphorus deficiency), over-
all reduction in the rate of protein synthesis is observed. The electron transfer activity is downreg-
ulated and ATP production decreases, resulting in an increased NADPH pool that favors the accu-
mulation of the storage compound PHB. However, the synthesis of certain proteins required for 
acclimation process is enhanced upon nutrient limitation. Iron presence is required for the upregu-
lation of at least one of these proteins (alkaline phosphatase enzyme). PHB precursors in bold in 
dark boxes. Related metabolic processes in bold in medium-color boxes. Critical enzymes in light-
color boxes. Red lines indicate negative regulatory effects. Abbreviations: Acetil-CoA Acetil 
coenzima A, TCA cycle Citric acid cycle, HSCoA Coenzyme A, NADPH+H+ Reduced nicotina-
mide adenine dinucleotide phosphate, NADP+ Nicotinamide adenine dinucleotide phosphate, 
ATP Adenosine triphosphate. 
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Figure 1. Polyhydroxybutyrate (PHB) synthesis pathway from acetyl-CoA and some of their related
regulatory circuits. Under starvation conditions (nitrogen and phosphorus deficiency), overall
reduction in the rate of protein synthesis is observed. The electron transfer activity is downregulated
and ATP production decreases, resulting in an increased NADPH pool that favors the accumulation
of the storage compound PHB. However, the synthesis of certain proteins required for acclimation
process is enhanced upon nutrient limitation. Iron presence is required for the upregulation of at least
one of these proteins (alkaline phosphatase enzyme). PHB precursors in bold in dark boxes. Related
metabolic processes in bold in medium-color boxes. Critical enzymes in light-color boxes. Red
lines indicate negative regulatory effects. Abbreviations: Acetil-CoA Acetil coenzima A, TCA cycle
Citric acid cycle, HSCoA Coenzyme A, NADPH+H+ Reduced nicotinamide adenine dinucleotide
phosphate, NADP+ Nicotinamide adenine dinucleotide phosphate, ATP Adenosine triphosphate.

The successful use of microalgae for the production of biopolymers requires identi-
fying the most promising species, considering the environmental and nutritional factors
that influence production metabolism. In the present work, the production of PHA by
Scenedesmus sp., a microalgae strain that had not been previously explored for this purpose,
was studied. This strain is commonly found in fresh and brackish waters [63] in many
regions around the world [64] like North America [65], China [66], Thailand [67], among
others. Factors that could potentially impact biopolymer accumulation were identified
and their influence was evaluated using a fractional factorial Taguchi experimental design
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(described in further in Section 2.2). The polymer obtained was extracted, quantified, and
characterized by FT-IR spectrometry. The presence of lipids and carbohydrates, two other
macromolecules considered of interest, was also quantified. It is expected that this work
will contribute to the integral utilization of microalgae for the production of bioplastic in
commercial systems.

2. Materials and Methods
2.1. Microalgae Strain and Culture Medium

All experiments were carried out with biomass from Scenedesmus sp. (UTEX 1589) ob-
tained from the UTEX culture collection center of the University of Texas. Initially, biomass
was cultured autotrophically in a 2-L Erlenmeyer flask using BG-11 medium and cold white
fluorescent lamps (100 µmol m−2 s−1) at 20 ◦C, in a greenhouse (to avoid contamination)
located in the laboratories of the Center for Studies for Sustainable Development of ITESM
(Monterrey, Mexico; 25◦39′13.6” N 100◦17′33.1” W).

Later, Scenedesmus sp. was grown in BG-11 medium. Sixteen different modified
culture media were prepared to have diverse nutrient conditions. For limited nitro-
gen conditions, the BG-11 medium without sodium nitrate (NaNO3) was prepared [68].
Additionally, the phosphorus content was limited by omitting dipotassium phosphate
(K2HPO) from the preparation and the iron content by omitting ferric ammonium citrate
((NH4)5[Fe(C6H4O7)2]) from the preparation [49]. Half of the cultures were supplemented
with 4 g L−1 of glucose as an additional carbon source and the rest with 1 g L−1. Finally,
the salt concentration was varied by adding 0.5 or 2 g L−1 of NaCl. The pH of the media
was adjusted to 8.2. All solutions were autoclaved.

2.2. Experimental Design

The first phase of the experiment was to identify the relevant factors that influence
the production of bioplastic by the microalgae, that is, those that critically affect PHA
production performance. Based on previous literature, five main factors were identified
as potentially influential: glucose, nitrogen, phosphorus, iron, and salinity concentration.
Next, an experimental Taguchi matrix was designed. The Taguchi method uses orthogonal
arrays, which stipulate the way of conducting the minimal number of experiments that
will give the information of all the factors that affect the performance parameter [69], in
this case PHA PRA production. and the data analysis procedure was identified using
MiniTab16. In total, sixteen experiments were performed with orthogonal arrangements in
random order. Using this design, five factors were tested with two different experimental
levels (low and high). Table 1 lists the low and high values assigned to each factor. These
values were selected from data available in the literature [49,53,68,70,71]. Light intensity,
working volume, CO2 concentration, and temperature were considered constant, the last
two factors corresponding to ambient values.

Table 1. Factor levels on Taguchi design.

Factors Levels

Variable Name Low
(1)

High
(2)

Glucose (g L−1) A 1 4
Nitrogen (mM) B 0 17.6

Phosphorus (mM) C 0 0.23
Iron (Mm) D 0 0.21

Salinity (g L−1) E 0.5 2

2.3. Culture Conditions

Cells kept in 2 L of protein medium were used as inoculum (20 mL) for liquid cultures
(131.25 mg L−1). The experiments were carried out for 14 days in 500-mL Erlenmeyer
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flasks containing 300 mL of BG-11 medium at 25 ◦C under continuous illumination with
cold white light fluorescent lamps (100 µmol m−2 s−1) and atmospheric CO2 (200 mL s−1).
Samples were taken for determination of chemical oxygen demand (COD), pH, volatile
fatty acid content, biomass, and salinity every three days and for lipids and carbohydrates
on days 0, 7, and 14. All experiments were performed in duplicate. At the end of the
cultivation, the bioplastic production was analyzed.

2.4. Analytic Methods

For each of the analysis, a volume of 10 mL of the algae culture was taken and
centrifuged (Thermo ScientificTM 50126393, 4000 rpm, 15 min). The centrifuged sample
was used as described.

2.4.1. Biomass

Cell concentration was monitored by measuring the dry weight of the biomass [72,73].
Biomass productivity PX was calculated as shown in Equation (1), where Xt is the

biomass concentration (g L−1) at time t (days), and X0 is the biomass concentration (g L−1)
at time t0.

PX = Xt − X0/t− t0 (1)

2.4.2. COD

For determination of the chemical oxygen demand, 2 mL of the supernatant were
placed in 10-mL COD vials (Hach® 2125815), these vials were kept in a COD digester
reactor for 2 h at 150 ◦C. After the completion of the reaction, the samples were cooled for
20 min inside the reactor and then stirred again to allow them to cool to room temperature
until reaching 20 ◦C. Their optical density was read on a Hach spectrophotometer that
directly gave the COD value of each sample.

2.4.3. VFAs

For the determination of volatile fatty acids (VFA), 0.4 mL of 10% sulfuric acid were
placed in Hach vials for VFA analysis (TNT 872, Hach®) with ethanediol, mixed by inver-
sion and 0.4 mL of the culture supernatant was added, mixing again. The vials were kept
in a digester reactor for 10 min at 100 ◦C, then allowed to cool to room temperature to
approximately 20 ◦C. Following this, 0.4 mL of hydroxylammonium chloride, 0.4 mL of
sodium hydroxide, and 2 mL of sulfuric acid was then added, mixing after the addition
of each reagent. The sample stood for 3 min and its optical density was read on a Hach
spectrophotometer that directly returned the VFA content.

2.4.4. Total Lipid Content

The total lipid content was quantified using a colorimetric method [74]. The super-
natant of the centrifuged sample was removed, and the pellet resuspended in 10 mL of
bidistilled water. Subsequently, 100 µL of the sample was placed in a glass tube and 2 mL
of concentrated sulfuric acid were added. Samples were incubated at 100 ◦C for 10 min and
then placed for five minutes in an ice bath. Finally, 5 mL of phosphovanillin were added
and incubated for 15 min at 37 ◦C. The absorbance was read at 530 nm using bidistilled
water as a blank and the readings were compared against a calibration curve performed
using commercial canola oil to obtain the total lipid content in mg mL−1.

2.4.5. Total Carbohydrate Content

The total carbohydrate content was quantified using a colorimetric method [75]. The
supernatant of the centrifuged sample was removed, and the pellet resuspended in 10 mL
of bidistilled water. Subsequently, 200 µL of the sample was placed in a 2-mL Eppendorf
tube and 200 µL of 5% phenol solution was added. After mixing for 5 s, immediately
1 mL of concentrated sulfuric acid was added, and the sample was stirred for 5 s again.
The samples were incubated for 30 min at room temperature and the optical density at
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488 nm was read using bidistilled water as a blank. The readings were compared against a
calibration curve made using glucose, and the total carbohydrate content in mg/mL was
obtained. All experiments were performed in duplicate. Average results are presented in
the results section.

2.5. PHA Extraction and Quantification

The extraction method was based on the widely accepted chloroform extraction
proposed by [76]. To extract the PHA from microalgae, 100 mL of the algae culture were
taken and centrifuged (4700 rpm, 7 min), the pellet was collected and dried overnight in
a drying oven at 45 ◦C, in Falcon tubes. The dry weight of the tubes was taken to obtain
the dry weight of the biomass. Subsequently, the algae cells were washed with 5 mL of
ethanol, then centrifuged (3000 g, 30 min, 10 ◦C) and the supernatant was discarded. The
cells were resuspended in 10 mL of 4% commercial sodium hypochlorite solution and
incubated for one hour at 37 ◦C. The solution was centrifuged (3000 g, 30 min, 10 ◦C), the
supernatant was discarded and two more washes were carried out, with 5 mL of bidistilled
water and 5 mL of ethanol, centrifuging after each one with the conditions previously used
and collecting the pellet. The pellet was then transferred to glass tubes previously brought
to constant weight and the polymers were dissolved in 10 mL of chloroform brought to
the boiling point. This chloroform solution was passed through fiberglass filters (pore size
0.45 µm) and the chloroform was evaporated on a rotary evaporator at 45 ◦C. Finally, the
dry weight of the polymers was taken and used to determine the total production of PHA.

Each biopolymer sample obtained after extraction was analyzed separately to deter-
mine the presence of polyhydroxyalkanoates. Analysis of the dry polymer was carried
out with a Spectrum One FTIR infrared spectrometry kit (PerkinElmer Inc., Waltham, MA,
USA), in the band of 400–4000 cm−1.

3. Results
3.1. Growth and Characterization of Biomass

The biomass growth during the cultivation of Scenedesmus sp. under mixotrophic
conditions is shown in Figure 2 separated in two sets. For the sixteen experiments, the
cultures did not present the lag phase of adaptation, instead of beginning in the exponential
phase. Cell growth of microalgae was similar for experiments 1, 3, 4, 8, 9, 12, 14, and 15,
which showed a maximum biomass concentration around day 13. For experiments 2, 5, 10,
11, and 16, this maximum measurement was obtained on day 10. Cultures 7 and 13 had
their biggest biomass count on days 7 and 10. After these periods, cell growth stopped
or entered the decay phase for all the experiments, except for number 6, which had not
reached the stationary growth phase on day 14.

Experiment 13 was the fastest-growing culture, reaching their maximum biomass pro-
ductivity of 0.167 g L−1d−1 on day 7. This was the highest value obtained for Scenedesmus
across all the experiments. Experiment 14 presented the highest average biomass produc-
tivity, with 0.1194 g L−1d−1. This was the culture with heterotrophic growth, phosphate
deficiency, and high salinity. There was a 55% drop from this value to the lowest average
productivity obtained, which was 0.0534 g L−1d−1 for experiment 6. This was the culture
with low glucose, phosphorus, and iron in combination with low salinity.

Three different behaviors were observed on the pH profile of the experiments, all of
which started at a value of 8.2. Experiments 9, 11, and 12 presented a suit decrement to
4 on pH value at day 4 and remained around that value through all the cultivation time.
Cultures 5, 10, and 13 showed a gradual reduction in pH that went from 8.2 to around 5
on day 14. The rest of the cultures went through an initial pH reduction but gradually
recovered to reach a value near to 8 on day 13. After day 13, pH started decaying again on
these cultures.
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Figure 2. Biomass growth (dry weight) of Scenedesmus sp. on the 14 days-long experiment (a)
under autotrophic growth (b) under heterotrophic growth. In each case, 20 mL of Scenedesmus cells
(131.25 mg L−1) were inoculated in 300 mL and cultured for 14 days on modified BG-11 at 25 ◦C
under continuous illumination (100 µmol m−2 s−1) and atmospheric CO2 pumping (200 mL s−1)
without mechanical agitation. In (a), culture media was supplemented with 1 g L−1 of glucose. In
(b), culture media was supplemented with 4 g L−1 of glucose.

3.2. Analysis of Bioplastic Production

PHA presence was detected on the sixteen experiments performed. Experiment 6
presented the highest concentration of this storage compound with 29.92% w/w DW. The
lowest concentration was detected on experiment 13, with a value of 0.83% w/w DW.
Experiment 2 resulted in the highest PHA yield with a value of 0.171 g/L.

During the characterization of isolated PHA, the FT-IR spectrum showed prominent
peaks at 1746 and 1160 cm−1 (Figure 3). These peaks denote a carbonyl group and stretching
vibration of asymmetric C–O–C, respectively, both characteristic for the ester bond found
in PHA molecules. Other absorption bands obtained at 1374, 1460, and 2952 cm−1 denote
groups –CH3, –CH2, and –CH, respectively. The absorption bands at 1023–1094 cm−1

were attributed to stretching vibrations of C–O, which can be due to amorph PHB. Almost
identical peaks denoting various PHA functional groups were observed on samples for the
rest of the experiments (See Appendix A).
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3.3. Experiment Design and Evaluation of the Relevant Factors

The number of variables that could potentially affect PHB production was relatively
high. Five factors, including glucose, nitrogen, phosphorus, iron, and salinity levels, were
considered, in principle, influential. A full two-level factorial design (25) would involve
a total of 32 experiments, plus the replicates necessary for the evaluation of the degree
of coincidence between the results. Therefore, a two-level Taguchi design involving 16
random runs was selected. Table 2 shows the design matrix for the experiment and the
total production yield of PHB.

Table 2. Design matrix response values for Taguchi design.

Run Glucose
(g L−1)

Nitrogen
(mM)

Phosphorus
(mM)

Iron
(mM)

Salinity
(g L−1)

Polyhydroxyalkanoate
(PHA)

(% w/w)

PHA
(g L−1)

1 1 0 0 0 0.5 9.793 0.064
2 1 0 0 0.021 2 26.25 0.171
3 1 0 0.23 0 0.5 11.68 0.082
4 1 0 0.23 0.021 2 9.075 0.073
5 1 17.6 0 0 2 13.80 0.104
6 1 17.6 0 0.021 0.5 29.92 0.239
7 1 17.6 0.23 0 2 12.20 0.085
8 1 17.6 0.23 0.021 0.5 8.612 0.060
9 4 0 0 0 2 13.08 0.052
10 4 0 0 0.021 0.5 17.14 0.120
11 4 0 0.23 0 2 11.60 0.087
12 4 0 0.23 0.021 0.5 8.135 0.049
13 4 17.6 0 0 0.5 0.831 0.007
14 4 17.6 0 0.021 2 10.75 0.134
15 4 17.6 0.23 0 0.5 2.267 0.014
16 4 17.6 0.23 0.021 2 2.959 0.030

Analysis of the results given in the last column of Table 2 using Minitab 16 allowed
discarding the less significant factors and interactions. For this experiment, factors with a
p-value < 0.05 were considered significant. The first analysis of the data allowed salinity to
be excluded as a relevant factor, and with this consideration, the relevant parameters were
identified. The remaining four factors and their interactions were then analyzed and after
iterative evaluations, we obtained the more restrictive model presented on the Pareto chart
of Figure 4. Based on their p-values, glucose, phosphorus, iron, and the glucose-nitrogen
and phosphorus-iron interactions were identified as relevant factors for PHA production
by Scenedesmus sp. The tests for normality, constant variance, and independence of the
residuals of the response observations yielded favorable results (See Appendix A).
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The ANOVA analysis allowed us to obtain the coefficients of each relevant factor with
which the equation that models the PHA production was constructed. Discarding the
insignificant factors, the model equation for PHA can be written as:

YPHA = 12.39 − 0.57A + 0.30B + 0.26C + 554.22D − 0.19AB − 2873.83CD

where A, B, C, and D, are glucose, nitrogen, phosphorus, and iron concentrations, respec-
tively. The quality of the model equation is expressed by the coefficient R2, which has a
value of 0.89, indicating a good quality fit.

Using Minitab’s response optimizer tool, we determined which are the levels of each
factor that favor bioplastic production and obtained a prediction of the maximum expected
production when those levels are used, which is 25.92% w/w DW.

3.4. Influence of Relevant Factors on the Bioproduction of PHA

In this study, the normal growth condition yielded a production of 8.61% (w/w DW) in
Scenedesmus. Adapting the cells to phosphate deficient media (with a low level of glucose)
increased the production level to 29.92%. Under heterotrophic growth (high glucose) and
normal nutrients concentration, accumulation of PHA was 2.96%. This time, P-depletion
resulted in a 3.6-fold increase on the production of biopolymer (10.75%). It was followed
by increase of PHA production as an effect of other parameters.

Scenedesmus sp. grown under iron limitation and low glucose accumulated 12.2% of
PHA. Under heterotrophic growth with Fe-depletion 2.27% of PHA was present, a slightly
smaller concentration of that obtained without iron restriction (2.96%).

With a low level of glucose, the iron-depleted growth condition together with nor-
mal phosphorus concentration yielded an accumulation of 12.2% (w/w DW) of PHA in
Scenedesmus sp. Adapting the cells to both iron and phosphorus-deficient media with the
same glucose level resulted in a similar production of 13.8% (w/w DW). However, when
Scenedesmus grew with normal iron concentration, PHA production increased from 8.61 to
29.92% w/w DW when phosphorus was absent from the media, the highest concentration
obtained on our experiments.

For Scenedesmus sp. under heterotrophic growth, the effect of the iron-phosphorus
interaction over PHA production was similar. When iron was absent from the medium,
the PHA production from Scenedesmus sp. remained at low levels for both high and low
phosphorus conditions (2.27 and 0.82% w/w DW of PHA, respectively). This last condition
(iron and phosphorus omission with glucose addition) yielded the lowest PHA production
obtained on these experiments (0.82% w/w DW). However, when iron was present in the
culture, phosphorus absence increased PHA production from 2.96 to 10.75% (w/w DW).
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As mentioned previously, under normal growth conditions with low addition of
glucose, Scenedesmus sp. reached a production of 8.61% (w/w DW) of PHA. When the
4 g L−1 of glucose was added to the medium without nutrient restriction, PHA production
decreased to 2.96% (w/w DW).

When the glucose addition was combined with nutrient limitation, we observed
overall decrements on PHA production. Glucose addition caused a small decrease (from
9.07 to 8.13% w/w DW) in the accumulation of PHA on experiments whose only restriction
was nitrogen deficiency. A bigger drop was observed when glucose was added to the
cultures that were only phosphate restricted. This time PHA production fell from 29.92%
to 10.75 w/w DW, almost a 3-fold lower production. Supplementing iron-deficient cultures
of Scenedesmus sp. with the external carbon source also decreased their accumulation of the
storage compound (from 12.2 to 10.75% w/w DW).

As stated previously, under nitrogen deprived conditions, PHA production variated
just slightly with both of the glucose levels considered (8.13 and 9.07% w/w DW for the
high and low levels, respectively). However, when BG-11 nitrogenated compounds were
present in the culture medium, glucose level notably influenced net PHA yield. PHA
production by Scenedesmus sp. cultured without nitrogen restriction was almost 3-fold
higher with low glucose than that with high glucose concentration (8.91 and 2.96% and
w/w DW).

3.5. Accumulation of Lipids and Carbohydrates

In addition to PHA’s accumulation, a wide variation on lipids and carbohydrates
contents measurements were found depending on the culture conditions and growth
stage of each experiment in considerable yield amounts. For both compounds, there was
increased accumulation towards day 14 of cultivation. Cultures 1 and 9 had the highest lipid
content at the end of the experiment with 15.4 and 15.46% of the dry weight, respectively.
Culture 6 presented the lowest lipid accumulation, with only 2.49%. Carbohydrates were
detected in concentrations as high as 24.59 and 28% in cultures 1 and 2, respectively. The
minimum was 3.42% for culture 16.

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation as well as the experimental
conclusions that can be drawn.

4. Discussion

Since the first finding of PHA accumulation in cyanobacteria, a number of studies
have reported its occurrence in various microalgae strains. However, to our better knowl-
edge, PHA production by Scenedesmus sp. had not been documented elsewhere, nor the
parameters that affect their accumulation were known. In this study, out of the 16 different
experiments performed with Scenedesmus sp., we detected PHA accumulation in all of
them, with concentrations ranging from 0.82 to 29.92% w/w CDW. Higher PHA (29.92%)
was detected in experiment 6 (P-deficiency, normal N and Fe, low glucose, low salinity).
Similar values were reported for Nostoc muscorum (31%) supplemented with acetate and
propionate [77] and Spirulina sp. (30.7%) under nitrogen deficiency [78]. It is notable that
this value was higher than those that have been obtained under optimized conditions for
Botryococcus braunii (16.4%) [79] and Synechocystis sp. (11%) [80]. Scenedesmus sp. cultivated
without nutrient deficiency on standard BG-11 medium accumulated 8.61% of PHA. Lower
productions of about five percent were reported for Synechocystis sp. [68] and Gloeocapsa
gelatinosa [53] growth in the same medium conditions.

Our study explored the effect of four stress conditions: N, P, and Fe limitation,
and NaCl addition; and of glucose supplementation, on the accumulation of PHA by
Scenedesmus sp. To analyze all these variables simultaneously, we carried out a fractional
Taguchi experimental design. This balanced design makes use of orthogonal arrangements
so that all the factor levels are weighted equally. Thus, we were able to evaluate each
factor independently of the rest by carrying out a reduced number of experiments. After
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performing the experiments and statistical analysis of the response, we determined that the
levels of phosphorus, glucose, and iron influenced the production of PHA by Scenedesmus
sp., and that the glucose-nitrogen and phosphorus-iron interactions were also significant.

Phosphorus deficiency enhanced PHA accumulation on the 14th day compared to cul-
tures where P was present in the medium (Figure 5c,d). This goes under the observations
made in other works where phosphate limitation has also induced increased bioplastic
accumulation [49,51,53,81–83]. It has been proposed that phosphorus restriction can raise
PHA levels by increasing the number of enzymes in the PHA synthetic pathway. Phospho-
rus deficiency decreases the size of the total ATP pool [84], but the reduction of NADP to
yield NADPH continues. This increases the intracellular concentration of NADPH and
stimulates PHA synthesis while inhibiting citrate synthase activity in the TCA cycle [85],
which further promotes PHA accumulation by ensuring the availability of acetyl-CoA
for β-ketothiolase.

Iron is an important biochemical component necessary for cell growth, chlorophyll
production, and nitrogen metabolism [56]. Previously, Rizwan et al. [86] found the pres-
ence of this element enhances the accumulation of energy storage compounds such as
carbohydrates and lipids in marine microalgae Dunaliella tertiolecta. However, little work
has been done investigating the role of this trace metal on the biosynthesis of PHA by
microalgae, although it is certainly involved in many of their metabolic pathways. Our
results indicate that iron presence is relevant for PHA production, and specifically, that Fe
depletion decreases bioplastic accumulation (Figure 5e,f). Previous studies [87] found that
iron-limited cultures of Scenedesmus Quadricauda direct twice as much of the total carbon
fixed into protein formation compared to non-Fe limited cultures. This could explain the
diminished PHA productivity of iron-limited cultures since the substrate carbon is proba-
bly directed towards protein fixation processes rather than being accumulated as reserve
carbon. Thus, iron presence is crucial to avoid the deviation of the metabolic activity of
Scenedesmus sp. away from PHA production.

We also found that although phosphorus limitation enhances PHA accumulation by
Scenedesmus sp., iron needs to be also present on the medium to achieve a higher concentra-
tion of the product (Figure 6e–h). This Fe-P interaction is statistically significant and could
be related to the Fe role in P acquisition under P-limited conditions. When microorganisms
grow in a P-limited medium, they can access part of the dissolved phosphorus via alkaline
phosphatase enzymes (APases). These enzymes are also involved in the utilization of
intracellular P reservoirs or of other P-containing intracellular compounds [88]. Recently,
Browning et al. [61] found that iron is an important cofactor on the upregulation of these
enzymes by marine microorganisms. They found that the presence of Fe on P-limited
cultures induces an increase in the activity of APases. This suggests that there is a biological
dependence of extracellular P acquisition and intracellular P utilization on Fe availability.
Iron could then be necessary for the microalgae to access sufficient P to follow the metabolic
route for PHA accumulation, since prolonged phosphate deficiency limits fundamental
physiological processes, which indirectly stops PHA synthesis [53].

It is known that nutritional mode can markedly influence biomass growth and pro-
ductivity of microalgae [89]. In this study, cells that were grown in medium with high
supplementation of glucose produced significantly less accumulation of PHA on day 14
(Figure 5a,b). Although it has been reported that addition of low concentrations of external
organic carbon enhances PHA production by cyanobacteria [52,53], in this case the excess
of organic carbon was not assimilated in the form of PHA, but probably contributed to
biomass accumulation. When analyzing biomass growth (Figure 2), it can be seen that for
the sixteen experiments, the cultures did not present the lag phase of adaptation, instead
beginning in the exponential phase. This was probably because inoculum was composed
of exponentially growing cells from preculture. The addition of a high amount of glucose
could have served to sustain this exponential growth instead of helping cultures to enter
the stationary phase. It has been reported that PHA starts to accumulate at the end of the
exponential growth [52,90], so prolonging this phase probably retarded the biosynthesis
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of PHA, reducing its overall productivity. Our findings on the effect of glucose addition
over the PHA production represent an advantage for the use of Scenedesmus as a producing
organism at industrial levels. Since there is no requirement for a large amount of exogenous
carbon supplementation, the fermentative production of PHA by this strain would be less
expensive than that by other bacteria and microalgae strains.
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Of the numerous studies searching to enhance PHA production by means of impos-
ing nutritional stress on microalgae, the vast majority reported that nitrogen deprivation
usually promotes higher bioplastic accumulation [49,52–54]. In this study, nitrogen lim-
itation alone did not significantly enhance PHA productivity for Scenedesmus sp. This
could indicate that N depletion does not alter the physiological balance of Scenedesmus
enough to trigger the bioproduction of PHA as a reservoir compound. In fact, it has been
demonstrated that Scenedesmus sp. can grow under different levels of N-limitation [91].

The interaction of glucose and N was found relevant for PHA accumulation, although
the individual impact of N concentration was not significant. Cells grown with simulta-
neous supplementation of N and a high level of glucose registered a drastic fall in PHA
accumulation (Figure 6a–d). This was probably because under this condition, biomass
growth was stimulated rather than synthesis of storage compounds, as it has been re-
ported for other microalgae strains [92]. The fact that, in our experiments, cultures under
this condition (13, 14, 15, 16) had some of the highest biomass productivities (0.1670 and
0.1469 g L−1d−1 on day 7 for experiments 13 and 14, and 0.1172 and 0.1047 g L−1d−1 on
day 4 for experiment 15 and 16), also support this statement. Devi et al. [89] also observed
this trend in their study with nine microalgae strains, where C (as organic carbon) and
N supplementation resulted in higher biomass and pigments production. If that was the
case, Scenedesmus sp. in the experiments 13, 14, 15, and 16 could have assimilated those
two nutrients in the form of biomass and proteins, leading to an adverse PHA production.
However, this condition could be useful if a two-stage cultivation approach is utilized, as it
can help to achieve high concentrations of biomass on a first growth phase, previous to a
starvation phase when PHA production would be stimulated by restricting Scenedesmus sp.
access to nutrients in a controlled fashion. Regarding the growth process, it is difficult to
speed up this parameter since growth time depends on the microalgae strain. However, as
it can be seen on Figure 2, under specific nutritional conditions, microalgal cells entered
the stationary phase faster (on days 7, 10, or 13). By that time, PHA already started to
accumulate (in the previous exponential phase) on those cultures. Given that Scenedesmus
can enter faster to the production of PHA, it can be designed as a process where time
optimization is used as fed-batch.

Any significant effect on PHA production was not observed when different concentra-
tions of NaCl were added to the medium. This result contrasts with the works of Ansari
and Fatma [53] with N. muscorum and Shrivastav et al. [93] with Spirulina subsalsa, both
freshwater strains that showed enhanced PHA accumulation under salinity stress. This
could be due to the fact that, although Scenedesmus sp. is also considered a freshwater
strain, it has shown great tolerance to salinity on the medium over a wide range of NaCl
concentrations [94].

The production of bioplastic from microalgae has still not been developed at com-
mercial scale since the overall economical balance is still higher than that of traditional
plastics and other polymeric materials. The cost associated with the extraction and pu-
rification of the biopolymer must be considered, as it can represent up to 50% of the total
process cost [95]. The environmental impact of the reagents used is also of importance.
The extraction of PHA usually involves the use of solvents such as chloroform, which
although being the one that results in better PHA recuperation rates yields and can be
recovered and potentially recirculated to be reused in subsequent extractions, it is also
toxic and represents environmental hazards. A number of authors have explored the use
of non-halogenated organic solvents such as ethylene carbonate [96] and some called poor-
solvents (acetone and ethanol) [97] at high temperatures (above 100 and 150 ◦C) for PHA
extraction achieving yields comparable to that obtained using chloroform. This solvents
could be more cost-efficient, while being also recyclable and environmental friendly.

Since microalgae produces many components with considerable market value, it has
been proposed that the industrial production of PHA may be feasible when it is synthetized
along with other high value compounds [98,99]. Microalgae strains have been usually
studied for the obtention of individual bioproducts, but a biorefinery for the production of



Polymers 2021, 13, 131 15 of 23

multiple substrates for different industries such as bioenergy and biomaterials (bioplas-
tics) could result in being more cost effective. In this study, Scenedesmus was capable of
accumulating PHA along with lipids and carbohydrates, which can serve for biodiesel
and bioethanol production. Previous studies have explored the use of Scenedesmus for
biorefinery development and have found that when performed in an optimal sequence,
extraction of multiple metabolites could provide net value gains of around 66% over the
potential cost of microalgae cultivation [100]. Thus, an adequate consideration of each
one of the processing stages, their yields and the market value of the obtained products is
necessary for the process to be economically viable.

5. Conclusions

Scenedesmus sp. is a freshwater microalgae strain that has been previously studied
for biogas fixation, removal of nutrients from waste streams, production of lipids and
carbohydrates. This work reported for the first time the production of PHA by Scenedesmus
sp. and identified the nutritional factors that influence its accumulation as a crucial
step for the exploitation of this strain as a biopolymer producer organism. Phosphorus,
glucose, and iron together with the glucose-nitrogen and phosphorus-iron interactions were
statistically significant for induction of PHA accumulation. The wide variation obtained
among the produced bioplastic (0.83–29.92%, w/w DW) reflects the importance of the
medium conditions during cultivation to achieve a high accumulation of the biopolymer.
In addition to a base accumulation of 8.61% of PHA under normal growth conditions
(higher than that of previously studied microalgae strains), there was about a 3.4-fold rise
in PHA accumulation in Scenedesmus sp. only by manipulating the levels of basic nutrients
in the culture. Scenedesmus sp. do not require supplementation with large amounts of
exogenous carbon to produce PHA, an economical advantage over the use of higher
accumulating bacteria. Also, its tolerance to salinity stress could make its cultivation
possible using water with a certain concentration of NaCl, instead of drinking water,
which is a non-renewable resource. Finally, we detected co-accumulation of lipids and
carbohydrates, macromolecules of interest for the production of biofuels and bioethanol, on
all the experiments. For these reasons, Scenedesmus sp. stands out as a potential candidate to
produce polyhydroxyalkanoates (a promising biodegradable and biocompatible bioplastic)
and other useful macromolecules. Further studies to optimize the co-accumulation of
these three major compounds would create a means for maximal utilization of Scenedesmus
sp. bioresources.
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