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Abstract: In this work, we present the structural analysis of 3D/4D printable N,N-dimethylacrylamide
(DMAAm)-co-stearyl acrylate (SA) and/or lauryl acrylate (LA)-based shape memory gels (SMGs).
We characterized these gels by scanning microscopic light scattering technique (SMILS) where a
time- and space-averaged correlation function is obtained to overcome the inhomogeneous media.
Thus, the characteristic size of the gel internal network (mesh size, ξ) and crosslinking densities are
estimated from the Einstein–Stokes formula. The rheological study of the SMGs revealed information
about their mechanical strength and transition temperature. From the experimental storage modulus
measured by rheological study, crosslinking density and mesh size of the network were also calcu-
lated. Both the techniques suggest that SMG with high crystalline content of SA monomer in the
gel network contain smaller mesh size (1.13 nm for SMILS and 9.5 nm for rheology study) and high
crosslinking density. The comparative study between the light scattering technique and rheological
analysis through the quantitative analysis of crosslinking densities will be important to understand
the structural properties of the SMGs.

Keywords: shape memory polymers; 3D/4D printing; light scattering; rheology

1. Introduction

Smart functional materials based on softness, flexibility, and wet nature are showing
numerous prospects in material science, engineering, and biomedical sectors [1–5]. Shape
memory gel (SMG) materials are one of the most promising materials that have the poten-
tial to realize the future demand as intelligent materials owing to their several distinctive
characteristics such as excellent shape fixity, outstanding shape recovery, tunable elasticity,
and swelling properties [6–8]. Freedom of designability with rapid prototyping capability
has gained significant importance among the engineers and materials scientists for the
utilization of such smart and functional materials in task-specific applications such as in the
development of soft actuators and sensors. Thus, 3D printing, or additive manufacturing,
is gaining significant attention and already pushing the boundaries towards the 3D fabri-
cation of soft polymeric materials in diverse areas including biomedical, energy, and soft
robotics [1–4,8]. Our research group has successfully developed various types of 3D print-
able functional gels and composite materials such as ionic liquid (IL)-based nanocomposites,
ionic gels, and shape memory gels (SMGs) [7–12]. Among them, 3D and 4D printable
SMGs prepared by copolymerization of hydrophilic monomer N,N-dimethylacrylamide
(DMAAm), and crystalline hydrophobic monomer stearyl acrylate (SA) and/or lauryl
acrylate (LA) offer fascinating features of shape memory effect that are highly desirable
properties for implementing them in applied sectors. 3D and 4D printability facilitated their
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applications in the soft robotics and actuator fields by overcoming the problems associated
with molding and shaping. As demonstrated in Figure 1a, the shape memory effect of
SMGs is governed by the melting and recrystallization of SA and LA monomers. Thus, the
shape of SMGs can be repeatedly exchanged between the original shape and a temporary
deformed state Figure 1b. A detailed study on the 3D and 4D printability of SMGs with soft
robotic functions has already been reported previously [7,8]. In this work, we present the
structural properties and rheological properties of DMAAM and SA/LA-based SMGs to
understand their internal network structure and viscoelastic properties, which we believe,
will be important to understand such materials more intensively and enable better tuning of
the physico-chemical properties. Theoretically, mesh size or in other words distance between
crosslinkers in gels is calculated by tree-like approximation and real space renormalized
effective medium approximation while experimentally, many different sizes and methods
have been proposed to estimate mesh sizes such as correlation blob by scattering experi-
ments [13,14], elastic blob by rheological measurements [13,15,16], and mesh-like structure
observed in scanning transmittance electron microscopes [17,18]. Dynamic light scatter-
ing (DLS) is one of the most popular methods to study the chemical gelation of different
polymer systems, e.g., poly(N-isopropylacrylamide) [8], poly(methyl methacrylate) [9–11],
poly(dimethylsiloxane) gels [12], and other randomly branched polymer systems [13] have
been previously studied [19–23]. The scanning microscopic light scattering (SMILS) method
has been established to be one of the very effective ways to nondestructively characterize the
internal structure of solid gels [24–27]. The SMILS is a typical dynamic light scattering (DLS)
system, which characterizes the internal structure of gels by observing the diffusion process.
In our previous studies, we studied internal structures of poly (N-N-dimethylacrylamide
(PDMAAm) gels and different types of inter-crosslinking network (ICN) gels, ionic gels,
and end-crosslinked gels via the technique of SMILS. The information about the mesh
size, crosslinking density, and diffusion behavior of the gels are advantageous for different
applications such as immobilization of dyes or enzymes or entrapping specific molecules in
a gel network. Using this method, we can also explain useful information on the properties
of the network structure in the gels, such as mesh-size, defects in network, concentration
fluctuation, i.e., inhomogeneities, and so on. On the other hand, rheological study can pro-
vide bulk mechanical properties along with crosslinking densities of polymer networks. In
this work, for the first time, we have utilized the SMILS technique and rheology to observe
the network structure of 3D printable and healable SMGs. Mesh chain densities or in other
words crosslinking densities of the gels have been estimated from the mesh size of internal
structure calculated by SMILS as well as from the experimental storage modulus from the
rheology study. Rheological properties also reveal the effect of crystalline monomer content
on the mechanical properties and transition temperatures. The comparative study on mesh
size and crosslinking densities obtained by each method will help better understand the
internal structure of these multifunctional gels.
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Figure 1. (a) Illustration on shape memory property of shape memory gel (SMG), (b) demonstration of shape memory
behavior of 3D printed SMGs.

2. Materials and Methods
2.1. Materials

Materials for SMG synthesis: Hydrophilic monomer DMAAm was purchased from
Tokyo Chemical Industry Co. Ltd., Tokyo, Japan. Crystalline hydrophobic monomer SA
and LA, crosslinker N-N’ methylenbisacrylamide (MBAA), and initiator α-keto glutaric
acid (α-keto) were purchased from Wako Pure Chemical Industries, Ltd., Osaka, Japan. Ini-
tiator Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) was purchased from Sigma
Aldrich, St. Louis, MO, USA. UV absorber 5-benzoyl-4-hydroxy-2-methoxybenzenesulfonic
acid (Kemisorp 11S) and Benzenesulfonic acid,2,2′-(1,2-ethenediyl) bis[5-[[4-methoxy-6-
(phenylamino)-1,3,5-triazin-2-yl] amino], sodium salt (1:2) (AS150) were purchased from
Sigma-Aldrich and Nippon Kagaku Co. Ltd., Tokyo, Japan.

2.2. Preparation of SMG Samples

SMG Synthesis process: 3D printing was done by a customized stereolithographic 3D
printer named Soft and Wet Industrial Materials-Easy Realizer (SWIM-ER) and a low-cost
commercial LCD 3D printer called Phrozen Shuffle. The detailed process of SMGs via 3D
printing is described in the previous studies [7,8]. Briefly, gel solutions for printing have
been prepared by mixing monomers, crosslinker, initiator, and UV absorber respectively to
a particular ratio. Three different compositions have been prepared varying DMAAm, SA,
and LA content. DMAAm compositions of the three gels are 0.75 M, 0.75 M, and 0.80 M
while SA contents are 0.20 M, 0.05 M, and 0.15 M, respectively. The remaining content is LA
i.e., 0.05 M, 0.20 M, and 0.05 M, respectively. Crosslinker and initiator (α-keto for SMILS
and TPO for Phrozen Shuffle) were added at a 0.05 mol% and 0.6 mol% and 0.56 mol%)
respectively. Finally, UV absorber (Kemisorp 11S for SMILS and AS150 for Phrozen Shuffle)
was added at a 0.05 wt%. The gels are termed as SMG75-SA20-LA5, SMG75-SA5-LA20,
SMG80-SA15-LA where the number followed by SMG, SA, and LA refer to the DMAAm,
SA, and LA content multiplied by 100, respectively. Prior to printing, the gel solutions
have been stirred for 15 min at 60 ◦C with a continuous supply of N2 gas to create an inert
environment. Then it was printed using SWIM-ER and/or Phrozen Shuffle.
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2.3. Method of Characterization

To understand the internal structure of the SMGs samples, light scattering experiments
were carried out by SMILS using the same method as mentioned elsewhere [23–25]. Briefly,
a laser source with a wavelength of 532 nm (manufactured by Laser Quantum Co. Ltd.,
Stockport, UK) was used as a light source for the scattering experiments. A rectangular-
shaped SMG specimen was cut from a 3D printed SMG sheet (printed by SWIM-ER)
followed by placing the sample test tube which was then set in the sample holder of SMILS.
The sample test tube was then filled with water and waited for at least 24 h to allow
swelling. Unless mentioned otherwise the measurement temperature was set at 30 ◦C. The
scattering angles were chosen in the range between 40–125◦. To calculate the ensemble
average, 31 different positions of gels have been scanned. Hence, we can obtain a time
and space-averaged correlation function, i.e., an ensemble-averaged correlation function
to overcome the non-ergodicity of inhomogeneous media. The rheological properties
of different hydrogels were investigated by Rotational Rheometer (MCR 302 Modular
compact Rheometer) (Anton Paar, Tokyo Japan) with a 25 mm parallel plate (PP25/P2).
Dynamic strain sweep was performed in the strain amplitude range of 0.0001–10% at a
fixed frequency of 0.63 rad/s. Dynamic temperature sweep was performed at the heating
ramp from 0 ◦C to 80 ◦C at a fixed strain of 1% and angular frequency of 5 rad/s.

3. Results and Discussion
3.1. 3D/4D Printability of SMGs

In the previous work, we reported the 3D and 4D printability of SMGs in detail
with prospective applications in soft robotics using a sophisticated customized stereolitho-
graphic 3D printer named SWIM-ER [7,8]. A video demonstration on the shape memory
property of a 3D printed Koji cube is added as Supplementary Information. To confirm the
universal usability of the SMGs, here we demonstrated the 3D printability of SMGs via a
low-cost commercial LCD 3D printer (Phrozen Shuffle printer). A variety of shapes and
structures were successfully printed with good printing resolutions. Figure 2 shows various
printed SMG structures using Phrozen Shuffle printer e.g., Koji cube, 5 mm calibration
cube step, spiral pillar, and buckyball. This demonstration shows the facile fabrication
process of these gels which, we believe, will facilitate better utilization of these materials in
near future.
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Figure 2. 3D printed SMG structures (a) Koji cube (20 mm3 outer dimensions with a 10 mm3 hollow
inside) (b) 5 mm calibration cube step (c) spiral pillar (34 mm height, bottom stage 30 mm2 and upper
stage 21 mm2) (d) Buckyball (outer diameter 34.5 mm); Material: SMG80SA15LA5.
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3.2. Demonstration of Shape Memory Assisted Healing Properties

Similar to the characteristics of shape memory polymers, the shape memory behavior
of SMG can be used to repair cracks, allowing the two polymer surfaces to diffuse and
heal intrinsically upon heating. Figure 3a shows the healing process of SMGs where a
cracked or cut surface is healed upon heating above the transition temperature of the
SMGs through melting and recrystallization of crystalline/semicrystalline SA/LA content.
Figure 3b exhibits the micrographs of the cracked and healed surface while a demonstration
of combined self-healing and shape memory characteristics of SMGs is presented in Figure
3c. In Figure 3b, left side of the figure shows a damaged surface of SMG where ~150 µm gap
was created due to scratching while the right side of the figure shows that the scratching
was minimized to a considerable extent just by heating the damaged sample at 60 ◦C for
5 min. No external pressure was added during this time. This type of physical healing was
possibly associated with the shape memory effect of the SMG network.
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Figure 3. (a) Illustration of the self-healing mechanism, (b) micrographs of scratched and healed surface, and (c) demonstra-
tion of self-healing and shape memory characteristics.

3.3. Mesh Size and Crosslinking Densities of SMGs Calculated by SMILS

Using the SMILS technique, it is possible to successively scan the samples at different
positions in a vertical direction in the micrometer scale. Thus, it is possible to overcome the
inhomogeneous media in gels by obtaining a time and space-averaged correlation function i.e.,
an ensemble-averaged correlation function. For each sample, the time-averaged homodyne
correlation functions were determined at several points, and then the ensemble-averaged
correlation function g(1)

en (q,τ) (where q is scattering vector and τ is correlation time) was
calculated. The detailed theory is described elsewhere [24–26]. Thus, the characteristic size of
diffusing objects (mesh size) ξ is estimated from the Einstein–Stokes formula as given below:

D = kBT/3πηξ (1)

where D is the diffusion coefficient, kB is the Boltzmann constant, T is the absolute temper-
ature and η is the viscosity of the solvent.

In the measurements of SMG samples, we selected the angle based on the results
obtained from the relaxation distribution function. Due to the structural inhomogeneity in
the gels, a suitable angle was experimentally determined.

Figure 4a,b represents information about scattering angle-dependence autocorrelation
function and scattering angle-dependence relaxation distribution function of SMG75SA20LA5
and SMG75SA5LA20. From these figures, it is clearly understood that the density probability
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Pen (τR) depends on the scattering angle. The small relaxation time indicates a smaller
mesh size. The fast mode of the relaxation time has been considered due to the mesh
motion and peak for distribution function has been found to be shifted to the right with
a change in scattering angle. The diffusion coefficient, D was calculated from the slope of
the straight line of the graph of the inverse of relaxation time of the Brownian motion, as
a function of the square scattering vector (Supplementary Figure S1). The mesh size was
calculated using Equation (1) and the crosslinking density has been calculated (νS) by the
following Equation (2).

νs = 1/ξs
3 (2)

where ξs denotes mesh size of the gel network. Results for SMG80-SA15-LA5 have
been shown in Supplementary Figure S2. Information of the network structure is shown
in Table 1.
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Figure 4. Dynamic Light Scattering analysis using SMILS of SMGs at 30 ◦C (a) Scattering angle-dependence autocorrelation
function and relaxation distribution function of SMG75-SA20-LA5 as a function of the relaxation time. (b) Scattering
angle-dependence autocorrelation function and relaxation distribution function of SMG75-SA5-LA20 as a function of the
relaxation time.

Table 1. Internal network information of the SMGs.

Gel Systems Diffusion Coefficient, D Mesh Size, ξs (nm) Crosslinking Density, νs (m−3)

SMG75-SA20-LA5 4.92 × 10−10 1.13 6.93 × 1026

SMG75-SA5-LA20 3.97 × 10−10 1.40 3.64 × 1026

SMG80-SA15-LA5 4.11 × 10−10 1.35 4.06 × 1026

It was observed that the mesh size of SMG is highest when crystalline SA content is
lowest in the gel system which might be related to the higher crystallinity of SA monomer.
As reported earlier, [25,26] pure PDMAAm gel has a mesh size of 8 nm that indicates that
the co-monomer SA and LA enhanced the crosslinking density within the gel network.
Therefore, it can be said that by changing the crystalline monomer content we can modulate
the mesh size of the polymer network. To verify this finding in the following section, we
estimated the crosslinking densities of the gels from the rheology study of the gels in the
following section.
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3.4. Rheology Study and Estimation of Crosslinking Density and Mesh Size of SMGs

Using SMG-based hydrogels as biomaterials, it is important to understand the struc-
tural parameters, e.g., stiffness, mesh size, crosslinking density of the polymer chain.
Rheology study is another powerful tool to understand these structural parameters of gel
material. Through the rheological study, we investigated the stiffness, transition tempera-
ture, and mesh size.

Oscillatory rheology measurements were performed with varying deformation am-
plitude at a fixed frequency (strain sweeps) to determine the linear viscoelastic region of
each sample. The results of amplitude sweeps are presented in Figure 5a which provided
the information on the effect of crystalline network SA and LA content on the mechanical
strength of SMGs. It is observed that for all the SMG samples, both the G′ and G′′ curve
exhibited nearly plateau points with different levels. For all the SMG samples, the elastic
modulus G′ is dominating the viscous modulus which confirmed the gel-like texture. The
mechanical strength of the SMG samples is evaluated by comparing the values of G′ in the
linear viscoelastic region. SMG75-SA5-LA20 exhibited the lowest G′ value while SMG75-
SA20-LA5 has the highest G′ value owing to the lowest and highest content of crystalline
SA content in the gel network respectively. By controlling the composition of hydrophobic
monomer LA and SA in the copolymer systems, SMGs with variable mechanical stiffness
can be synthesized. The crystalline SA tends to make the SMG more rigid while LA con-
tributes to the flexibility and make the SMG soft. This behavior well justified the results of
mechanical properties (tensile tests) reported previously [7].
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Figure 5. (a) The storage (G′) and loss (G”) modulus at 10 rad/s for SMG samples as a function of the applied strain
(b) Temperature-sweep analysis of the gel samples.

The influence of temperature on structural change and information about the tran-
sition temperature of the SMG samples were determined by temperature sweep in the
temperature range 0–80 ◦C. The G′, G′′, and loss factor (tanδ) of the SMG75-SA20-LA5
and SMG80-SA15-LA5 with different compositions against temperature are plotted in
Figure 5b. Distinguishable changes on the storage and loss modulus occurred over 20 ◦C
for all the samples while no overlapping between G′ and G′′ (tanδ < 1) ensured the dom-
inance of the elastic region over the whole temperature range. It can be noted here that
SMG75-SA20-LA5 exhibited sharp tand value while tanδ values of SMG75-SA20-L5 and
SMG80-SA15-LA5 are rather broad over a wide temperature range. This phenomenon can
be described by the presence of amorphous network DMAAm and less crystalline LA in
the SMG samples in higher content resulting in gel samples with an amorphous nature [7].
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The crosslinking densities of the SMGs have been calculated from the G′ values of rheology
experiments (strain sweep). The crosslinking density and average mesh size (ξ, nm), which
is defined as the distance between the crosslinking points, can be calculated based on the
rubber elastic theory from the following equations [28,29]

νR = (G′NA/RT) (3)

where G′ is the storage modulus, NA is the Avogadro constant (6.022 × 1023), R is the gas
constant (8.314 J/K mol) and T is the temperature (303 K).

νR = 1/ξR
3 (4)

where ξR is the mesh size.
Table 2 presents the quantitative values of experimental crosslinking density and

subsequent mesh size calculated from the storage modulus of rheology experiments. From
the E values, the increasing order is SMG75-SA20-LA5 > SMG80-SA15-LA5 > SMG75-
SA5-LA20 which can be well-coordinated with the presence of a higher content of highly
crystalline monomer SA in the polymeric network. The result well-justified the mechanical
results reported previously [7]. The calculated crosslinking densities and mesh size is listed
in Table 2.

Table 2. Mechanical properties and crosslinking densities of the SMGs.

Gel Systems Storage Modulus, G′ (Pa) Crosslinking Density, νR (m−3) Mesh Size ξR

SMG75-SA20-LA5 4922 1.17 × 1024 9.5
SMG75-SA5-LA20 926 2.21 × 1023 16.5
SMG80-SA15-LA5 3759 8.98 × 1023 10.3

Calculated crosslinking densities from rheology experiments show a similar sequence
to the values calculated by SMILS i.e., SMG75-SA20-LA5 (with highest SA content) exhib-
ited the highest crosslinking density and SMG75-SA5-LA20 showed the lowest crosslinking
densities. Although the magnitude of crosslinking densities estimated by the two meth-
ods are not exactly the same due to the difference in assumptions in the two methods.
Crosslinking densities (νs) using SMILS exhibited higher values for all the samples than
the crosslinking densities (νR) determined by rheology. νs exhibits sensitivity for minute
structure related to the Brownian motion in the gel network while νR is more inclined
to the macroscopic structure related to the modulus. Therefore, a lower value for νs is
understandable. However, it can be noted that both the method provided similar trends on
the mesh size of the SMGs. Therefore, it can be said that the internal structure of SMGs
calculated by the SMILS apparatus offered an analogous method to the structural infor-
mation estimated by the rheological characterization. However, it should be noted that
while SMILS offers a nondestructive way of analysis while the rheological study is more
suitable for turbid gel materials. Our future study will utilize the structural information
for the development of 3D gel scanners which will provide the structural and mechanical
information of printed gel models.

4. Conclusions

Infernal structural information of a series of 3D printable SMG materials has been in-
vestigated by light scattering method (using SMILS apparatus) and rheology study. Using
the SMILS technique, mesh sizes, ξ of the SMGs are estimated from the Einstein–Stokes
formula from which the crosslinking densities were calculated. The experimental storage
modulus of strain sweep was utilized in calculating the crosslinking density and mesh size
of the gel network following rubber elastic theory. Temperature sweep of rheology study
also provided information on the transition temperature. The comparative study between
the light scattering technique and rheological analysis through the quantitative analysis of
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crosslinking densities followed similar patterns which will be important to comprehend
the fundamental properties of the SMGs. This study will help to understand the internal
structures of these smart materials in a nondestructive way of light scattering and a com-
parative study between SMILS technique and rheology will suggest a better understanding
of the structural properties due to the change in crystalline contents in SMGs.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073
-4360/13/1/128/s1, Figure S1: Relaxation time as a function of square of scattering vector for
determination of diffusion coefficient(a) SMG75-SA20-LA5 (b) SMG75-SA5-LA20, Figure S2: Dynamic
Light Scattering analysis using SMILS of SMG80-SA15-LA5 at 30 ◦C (a) Scattering angle-dependence
autocorrelation function and relaxation distribution function as a function of the relaxation time.
(b) Scattering an-gle-dependence autocorrelation function and relaxation distribution function as a
function of the relaxation time (c) Relaxation time as a function of square of scattering vector, Video
S1: Demon-stration of shape memory behavior of 3D printed SMG.
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