Supporting Information

Highly Thermal Stable Phenolic Resin Based on Double-Decker-Shaped POSS Nanocomposites for Supercapacitors Wei-Cheng Chen¹, Yuan-Tzu Liu¹, and Shiao-Wei Kuo^{1,2*}

¹Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-

Sen University, Kaohsiung, 80424, Taiwan. chwei566@gmail.com (W.C.C.) and

m083100003@student.nsysu.edu.tw (Y.T.L.)

²Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan

Correspondence: kuosw@faculty.nsysu.edu.tw (S.-W.K.); Tel.: +886-7-525-4099 (S.-W.K.)

Characterization

FTIR spectroscopy was performed from 4000 to 400 cm⁻¹ using a Nicolet iS50 FTIR spectrophotometer and the typical KBr pellet method. ¹H, ¹³C and ²⁹Si NMR spectroscopy was performed using a Bruker 500 (500 MHz) spectrometer at 25 °C, with DMSO-*d*₆ and CDCl₃ as internal standards. The molecular weights of phenolic/DDSQ hybrids were evaluated from GPC (Waters 510 apparatus) where the molecular weight calibration was used by PS standard. TGA of the phenolic/DDSQ hybrid was performed using a TA Q-50 TGA analyzer; the sample was heated from 40 to 800 °C under a N₂ atmosphere at a heating rate of 20 °C min⁻¹. Raman spectra were recorded at room temperature using a Jobin-Yvon T6400 micro-Raman apparatus with a He–Cd laser as the excitation source (325 nm). WAXD data of all carbon/DDSQ samples were measured using the BL17A1 wiggler beamline of the National Synchrotron Radiation Research Center (NSRRC), Taiwan, with a wavelength (λ) of 1.33001 Å used from the monochromated beam based on a triangular bent Si (111) single crystal. TEM images of the carbon/DDSQ hybrids were recorded using a JEOL-JEM-2100 microscope operated at 200 kV.

Electrochemical Measurements

Working Electrode Cleaning: Prior to use, the glassy carbon electrode (GCE) was polished several times with 0.05-µm alumina powder, washed with EtOH after each polishing step, cleaned via sonication (5 min) in a water bath, washed with EtOH, and then dried in air.

Electrochemical Characterization: The electrochemical experiments were performed in a threeelectrode cell using an Autolab potentiostat (PGSTAT204) and 1 M KOH as the aqueous electrolyte. The GCE was used as the working electrode (diameter: 5.61 mm; 0.2475 cm²). A Pt wire was used as the counter electrode; Hg/HgO (RE-61AP, BAS) was used as the reference electrode. Slurries were prepared by dispersing the active material (45 wt. %), carbon black (45 wt. %), and Nafion (10 wt. %) in EtOH (2 mL) and then sonicating for 1 h. A portion of this slurry (10 μ L) was pipetted onto the tip of the electrode and dried in air for 30 min prior to use. The electrochemical performance was studied through CV at various sweep rates (from 5 to 200 mV s⁻¹) and through the GCD method in the potential range from 0.0 to -1.0 V (vs. Hg/HgO) at various current densities (from 2 to 20 A g⁻¹) in 1 M KOH as the aqueous electrolyte solution. The specific capacitances were calculated from the GCD data, using the following equation:

$$C_{\rm s} = (I\Delta t)/(m\Delta V) \tag{S1}$$

where C_s (F g⁻¹) is specific capacitance of the supercapacitor, I (A) is the discharge current, ΔV (V) is the potential window, Δt (s) is the discharge time, and m (g) is the mass of the carbon/DDSQ hybrids on the electrode. The energy density (*E*, Wh/kg), and the power density (*P*, W/kg) were calculated using the following equations:

$$E = 1000 * C(\Delta V)^{2} / (2*3600)$$
(S2)
$$P = E / (t/3600)$$
(S3)

Table S1. Comparison between the energy density and power density data /specific capacitance of phenolic/DDSQ hybrids with different materials for supercapacitor application.

Materials	Specific Capacitance	Energy Density	Power Density	Ref.
		Wh/kg	kW/kg	
PDDSQ	689.5 F g ⁻¹ at 0.5A g ⁻¹	121	0.68	This
		49.5	13.60	work
PDDSQ-50	258.9 F g ⁻¹ at 0.5A g ⁻¹	26	0.68	This
		10.5	13.60	work
MnO ₂	65 F g ⁻¹ at 0.25 A g ⁻¹	8	28.00	51
RuO ₂ /graphene	175 F g ⁻¹ at 0.5 A g ⁻¹	19.7	6.8	52
graphene				
MnO ₂ /CNTs CNTs	12.5 F g ⁻¹ at 0.14 A g ⁻¹	42.0	0.48	53
		28.0	19.3	
Porous carbon derived	270 F g ⁻¹ at 2.0 A g ⁻¹			54
from MOF				
Nitrogen-enriched	656 F g ⁻¹ at 1.0 A g ⁻¹	102	1.6	50
Nanoporous Polytriazine				
Benzimidazole grafted	410 F g ⁻¹ at 0.4 A g ⁻¹	-	-	55
graphene				
Nitrogen-doped graphitic	255 F g^{-1} at 2 A g^{-1}	-	-	56
carbon				
Pyrene-based covalent	500 F g ⁻¹ at t 0.5 A g ⁻¹	-	-	57
triazine frameworks				
TPT-DAHQ	256 F g ⁻¹ at 0.5 A g ⁻¹	43	1.36	58
TaPay-Py COF	209 F g ⁻¹ at 0.5 A g ⁻¹	11.2	50.1	59
TFP-TPA COF	291.1 F g^{-1} at 2 A g^{-1}	49.5	1.36	60
		28.4	13.6	
NMCSs	416 F g ⁻¹ at 0.2 A g ⁻¹	21.5	0.8	61
		13.3	16	

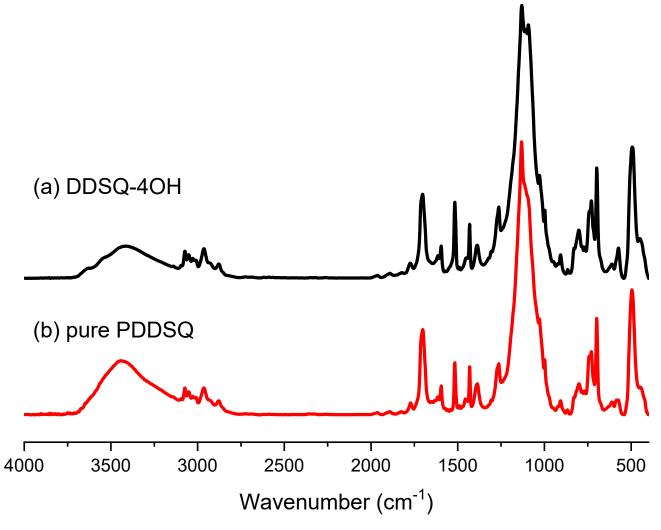


Figure S1. FTIR spectra of (a) DDSQ-4OH and (b) pure PDDSQ.

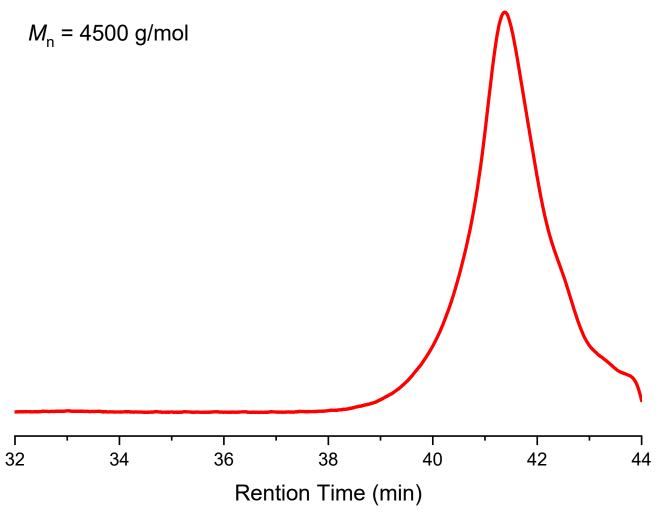


Figure S2: GPC analysis of pure PDDSQ

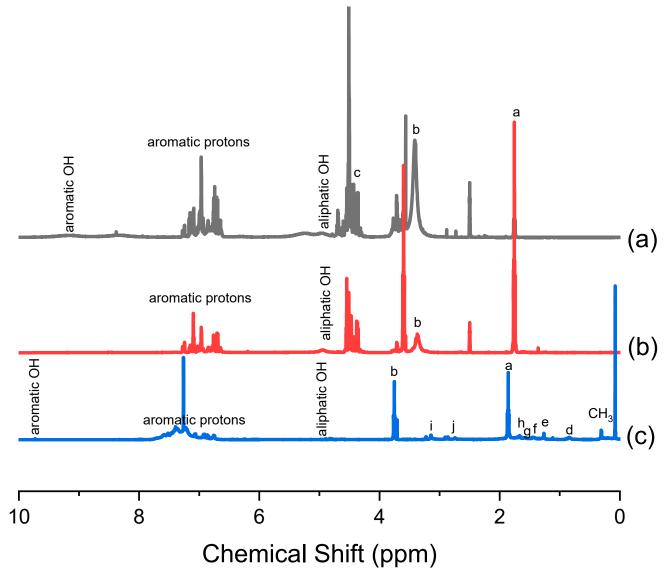


Figure S3: ¹H NMR spectra of (a) pure phenolic, (b) PDDSQ-50 and (c) pure PDDSQ.

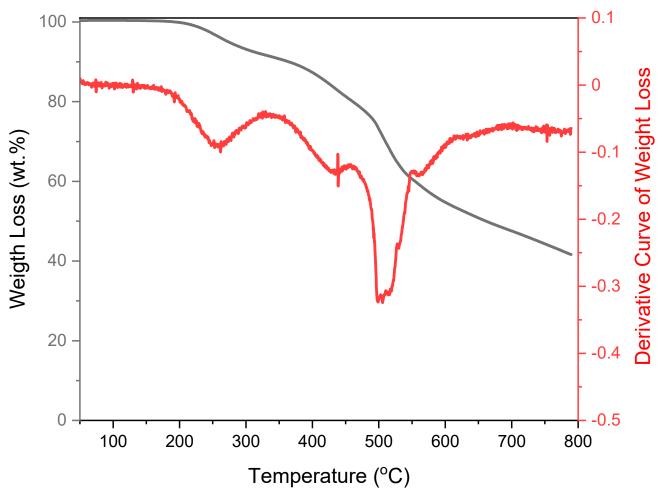


Figure S4: TGA analyses of pure phenolic resin and its corresponding derivative curve.