Supporting Information

3D Printed Silicone Meniscus Implants: Influence of the **3D** Printing Process on Properties of Silicone Implants

*Eric Luis*¹, *Houwen Matthew Pan*², *Anil Bastola*¹, *Ram Bajpai*³, *Swee Leong Sing*¹, *Juha Song*², and Wai Yee Yeong¹, *

¹Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 639798 Email: wyyeong@ntu.edu.sg

²School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 639798

³Center for Population Health Sciences, Lee Kong Chien School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232

Figure S1. Compression plates set-up used for static compression test.

a) Molded Silicone Implant

Figure S2. XPS spectra of (a) molded and (b) 3D printed silicone implant.

Figure S3. Combined (a) DSC, (b) TGA, and (c) DTG graphs of 3D Printed and Molded Eco30 and Eco50 samples.

Figure S4. Fluorescent and corresponding optical images of L929 cells attached and proliferating on surfaces of 24-well cell culture plates after 24, 72, and 120 h culture. Cells were stained with the Live/Dead® cell viability assay.