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Abstract: Fibers of poly(4-hydroxybutyrate) (P4HB) have been submitted to both hydrolytic and 

enzymatic degradation media in order to generate samples with different types and degrees of chain 

breakage. Random chain hydrolysis is clearly enhanced by varying temperatures from 37 to 55 °C 

and is slightly dependent on the pH of the medium. Enzymatic attack is a surface erosion process 

with significant solubilization as a consequence of a preferent stepwise degradation. Small angle X-

ray diffraction studies revealed a peculiar supramolecular structure with two different types of 

lamellar stacks. These were caused by the distinct shear stresses that the core and the shell of the 

fiber suffered during the severe annealing process. External lamellae were characterized by surfaces 

tilted 45° with respect to the stretching direction and a higher thickness, while the inner lamellae 

were more imperfect and had their surfaces perpendicularly oriented to the fiber axis. In all cases, 

WAXD data indicated that the chain molecular axis was aligned with the fiber axis and molecules 

were arranged according to a single orthorhombic structure. A gradual change of the microstructure 

was observed as a function of the progress of hydrolysis while changes were not evident under an 

enzymatic attack. Hydrolysis mainly affected the inner lamellar stacks as revealed by the direct 

SAXS patterns and the analysis of correlation functions. Both lamellar crystalline and amorphous 

thicknesses slightly increased as well as the electronic contrast between amorphous and crystalline 

regions. Thermal treatments of samples exposed to the hydrolytic media revealed microstructural 

changes caused by degradation, with the inner lamellae being those that melted faster. 

Keywords: poly(4-hydroxybutyrate); hydrolytic degradation; enzymatic degradation; sutures; 

films; microstructure; lamellar thickness; small angle X-ray scattering 

 

1. Introduction 

Synthetic bioabsorbable sutures have been commercialized since the early 1970s when braided 

polyglycolide sutures were developed [1]. Since then, different homopolymers and copolymers have 

been employed in order to provide a controlled degradation rate and a good fit with the required 

function as a temporary wound support. Although initial sutures were processed in a braided form 

to reduce stiffness and facilitate manipulation, the use of resorbable monofilament forms was since 
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the 1980s when polydioxanone sutures were developed [2]. Advantages of this form involve the 

reduction of problems associated to tissue drag and the decrease of infection risk derived from a 

capillary effect. In general, traditional monofilament sutures have a fast or medium degradation rate, 

with a long term decomposition profile having been developed more recently. Specifically, 

MonoMax® has been commercialized in 2009 for abdominal wall repair applications [3]. This suture 

is based on poly(4-hydroxybutyrate) (P4HB) and is currently probably the most pliable monofilament 

suture. Specific mechanical properties of P4HB are 50 MPa, 70 MPa, and 1000% for tensile strength, 

tensile modulus, and elongation at break [4]. The polymer is fully biocompatible since its degradation 

leads to 4-hydroxybutyrate, which is a molecule resulting from the metabolism of 4-aminobutyrate 

(GABA). The degradation process of the polymer P4HB in the human body is initiated by hydrolysis 

caused by the water diffused into the polymer bulk [5], but enzymes such as lipases are also able to 

promote a surface attack [5,6]. 

Poly(hydroxyalkanoate)s (PHA)s constitute a big family of polyesters that show common 

properties such as biocompatibility, biodegradability, and non-toxicity [7]. These properties together 

with a great elasticity justify the increasing use of P4HB in different biomedical applications [8]. In 

fact, P4HB is the only PHA that has been approved by the FDA (2007) for biomedical uses. In addition 

to MonoMax (i.e., a long term bioresorbable suture), TephaFLEX, BioFiber, Phasix, and GalaFLEX are 

other commercial P4HB based materials that are employed in medical devices such as abdominal 

wall closure materials, tendon repair scaffolds, hernia repair meshes, and reconstructive surgery 

materials [6,9–11]. 

P4HB sutures and implants in general have advantages derived from the gradual loss of 

mechanical properties and the gradual release of degradation products into the blood that is in 

contrast with the behavior of the firstly employed polyglycolide materials [12]. 

Commercial P4HB is obtained using fermentation processes. Chemical synthesis is disfavored 

because of the low molecular weight samples (i.e., around 5000 g/mol) that have been attained in 

most of the studied processes [13,14]. Formation of γ-butyrolactone rings is kinetically favored with 

respect to the polymer chain extension and consequently ring-opening polymerization is only feasible 

under highly expensive high-pressure processes, which lead to moderate molecular weight around 

50,000 g/mol [14]. The biosynthesis of P4HB is rather complex since typical bacteria (e.g., Ralstonia 

eutropha that was the first one employed) also incorporate 3-hydroxybutyrate units despite 

employing nutrient media based only in 4-hydroxybutyrate and γ-butyrolactone [15]. Currently, the 

P4HB homopolymer is mainly obtained from engineered E. coli K12 [16] since this transgenic 

microorganism can produce the P4HB homopolymer even from inexpensive carbon sources such as 

glucose or lactose. 

P4HB is a semicrystalline polymer able to crystallize as single lamellar crystals and defined by 

an orthorhombic structure (a = 0.775 nm, b = 0.477 nm, and c (fiber axis) = 1.199 nm) as deduced from 

electron and X-ray diffraction patterns [17–19]. This structure is defined by an antiparallel 

arrangement of molecular chains that adopt a slightly distorted all-trans conformation. 
Monofilament P4HB threads are submitted to extensive annealing processes under mechanical 

stress and temperature before commercialization. This treatment has repercussions on the melting 

behaviour due to the reorganization of constitutive crystals. Thus, the melting temperature becomes 

close to 72 °C after annealing, a value that contrasts with the temperature of 58 °C determined for 

melt crystallized samples [20,21]. Stretching of P4HB leads to a significant increase of its rigidity while 

flexibility is maintained. This is a distinctive feature with respect to those of other common 

biodegradable polyesters such as polyglycolide and polylactide [6], which become brittle under stress 

and consequently cannot be submitted to similar processes of alignment. Therefore, P4HB can display 

a particular microstructure that should be characterized by a high orientation of molecular chains 

along the stretching direction and a compact stacking of constitutive lamellae. 

Microstructure and crystalline morphology of materials are crucial factors that have an influence 

on their degradability. It is well known that degradation proceeds through the amorphous regions 

and consequently the specific arrangement of spherulites (melt crystallized samples) and lamellar 

stacks (oriented and annealed fibers) are meaningful. Degradation conditions (e.g., pH of hydrolytic 
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media or the presence of enzymes) affect the microstructure on the material and may lead to 

distinctive morphological features as consequence of preferential attack to the surface or the bulk, 

and in this case on interlamellar stacks or interfibrillar domains [22]. An assessment of the effect of 

degradation on the microstructure of stretched P4HB fibers was the main goal of the work reported 

here due to the peculiar and highly oriented molecular arrangement that can be attained with this 

high molecular weight and flexible polymer. Results should be interesting to progress on the 

comprehension of the relationships between crystalline morphology and degradability. 

2. Materials and Methods 

Commercially available sutures of P4HB (Monomax® USP 1) were kindly supplied by B. Braun 

Surgical S.A.U. Weight and number average molecular weights of Monomax® samples were 215,000 

and 68,000 g/mol, as determined by GPC. 

Pseudomona cepacia and Rhizopus oryzae enzymes with a specific activity of 40.0 and 55.7 U/mg 

solid, respectively, were obtained from Sigma-Aldrich (Madrid, Spain). All reagents, citric acid, 

phosphoric acid, chloride acid, boric acid, sodium hydroxide, sodium azide, and chloroform (CHCl3) 

were supplied by Fisher Chemical (Hampton, NH, USA). 

2.1. Hydrolytic and Enzymatic Degradation 

In vitro hydrolytic degradation studies were directly carried out with commercial sutures (USP 

1) with 1 cm long fragments. For the sake of completeness, melt pressed films (5 bars, 60 °C) with 

dimensions of 1 cm × 1 cm × 150 μm were also evaluated. Assays were carried out at 37 and 55 °C at 

different pH values of 3, 7, and 10 using the Universal buffer (citrate-phosphate-borate/HCl) solution 

[23]. This was prepared by mixing 20 mL of the stock solution with x mL of 0.1 M HCl and distilled 

water up to 100 mL. The stock solution (1 L) contained 100 mL of citric acid, 100 mL of phosphoric 

acid, 3.54 g of boric acid, and 343 mL of 1 M NaOH. Therefore, the buffers of pH 3, pH 7, and pH 10 

values were obtained by mixing 20 mL of the stock solution and 56.9, 32.9, and 18.1 mL of 0.1 M HCl, 

respectively. Samples were kept under orbital shaking in bottles filled with 50 mL of the degradation 

medium and sodium azide (0.03 wt%) to prevent microbial growth for selected exposure times. The 

samples were then thoroughly rinsed with distilled water, dried to constant weight at reduced 

pressure, and stored over P4O10 before analysis. Weight retention was evaluated during degradation 

as well as the changes on molecular weight. Degradation studies were performed in triplicate and 

the given data correspond to the average values. 

Enzymatic degradation studies were performed with both sutures and melt pressed films having 

the above indicated geometry. All samples were exposed to 1 mL of phosphate buffered saline (PBS) 

(pH 7.4) containing the determined enzyme alongside with sodium azide (0.03 % w/v). These 

solutions were renewed every 48 h to prevent enzymatic activity loss. Samples were kept at 37 °C in 

an orbital shaker at 80 rpm. Samples were taken from the media at determined times, washed three 

times with Milli-Q water, and dried in an oven at 37 °C for 24 h to determine the dry weight. All the 

experiments were conducted in triplicate. The degraded samples were carbon coated and observed 

in SEM with an accelerating voltage of 10 kV. 

2.2. Measurements 

The molecular weight was estimated by size exclusion chromatography (GPC) using a liquid 

chromatograph (Shimadzu, model LC-8A, Tokyo, Japan) equipped with an Empower computer 

program (Waters, Milford, MA, USA). A PL HFIP gel column (Polymer Lab) and a refractive index 

detector (Shimadzu RID-10A, Tokyo, Japan) were employed. The polymer was dissolved and eluted 

in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) containing CF3COONa (0.05 M) at a flow rate of 0.5 

mL/min (injected volume 100 μL, sample concentration 2.0 mg/mL). The number and weight average 

molecular weights were calculated using polymethyl methacrylate standards. 
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1H-NMR spectra were acquired with a Bruker NMR Ascend 400 spectrometer (Bilerica, MA, 

USA) operating at 400 MHz. Chemical shifts were calibrated using tetramethylsilane as an internal 

standard. Deuterated chloroform was used as a solvent. 

Calorimetric data were obtained by differential scanning calorimetry with a TA Instruments 

Q100 series (NewCasttle, DE, USA) equipped with a refrigerated cooling system (RCS) operating at 

temperatures from −50 to 150 °C. Calibration was performed with indium. Experiments based on 

heating runs at 10 °C/min were conducted under a flow of dry nitrogen with a sample weight of 

approximately 5 mg. 

WAXD and SAXS data were obtained at the NCD beamline (BL11) of the ALBA synchrotron 

facility (Cerdanyola del Vallès, Barcelona, Spain), by using a wavelength of 0.100 nm. A WAXD 

LX255-HS detector from Rayonix and an ImXPAD S1400 photon counting detector were employed. 

Polymer samples were confined between Kapton films. WAXD and SAXS diffraction patterns were 

calibrated with Cr2O3 and silver behenate (AgBh), respectively. The correlation function and the 

corresponding parameters were calculated with the CORFUNC software for Fibre Diffraction/Non-

Crystalline Diffraction provided by the Collaborative Computational Project 13. 

The calculations of the parameters such as L or the angle that forms the lamellae with the fibre 

axis in the SAXS patterns have been carried out by means of a Python based software developed by 

the authors. It calculates the distance from the direct beam position to the center of a 2D elliptical 

Gaussian function fitted in a user defined ROI. If the center of the Gaussian falls outside the ROI, 

then an azimuthal integrational [24] is done in the ROI to fit a 1D Gaussian. This distance in pixels is 

converted to q vector units by means of a calibration file that was generated from a well-known 

standard, (i.e., silver behenate (AgBh)). As the SAXS patterns have some symmetry, the calculation 

are replicated to its specular reflection on equatorial or meridional axes depending on the case. 

Finally, an average of the calculated values are shown as a result. Analogously, a calculation for the 

angles is done. 

Scanning electron micrographs were taken using a Phenom XL Desktop SEM equipment 

(Waltham, MA, USA). Degraded films were mounted on a double-sided adhesive carbon disc and 

were sputter-coated with a thin layer of carbon to prevent sample charging problems using a K950X 

Turbo Evaporator (West Sussex, UK). All samples were observed at an accelerating voltage of 10 kV. 

2.3. Statistical Analyses 

Values were averaged and graphically represented together with their respective standard 

deviations. Statistical analysis was performed by the one-way ANOVA test to compare the means of 

all groups, and then Tukey’s test was applied to determine a statistically significant difference 

between the two groups. The test confidence level was set at 95% (p  <  0.05). 

3. Results and Discussion 

3.1. Hydrolytic and Enzymatic Degradation of P4HB Sutures 

Hydrolytic degradation of commercial P4HB sutures was evaluated through weight loss and 

molecular weight measurements using media of three different pH values (i.e., acidic, neutral, and 

basic) and two temperatures (i.e., 37 and 55 °C that are associated to physiological conditions and the 

higher available temperature before starting fusion, respectively). 

Weight loss (Wl) of the specimens was determined through Equation 1 where Wd is the sample 

weight after degradation and W0 is the initial sample weight: 

Wl = 100 × (W0 − Wd)/Wo (1) 

Figure 1a clearly reveals that scarce soluble fragments were produced during degradation since 

a loss of only 2.1–1.8% was achieved after 27 days of exposure to the media at 55 °C. 
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Figure 1. (a) Weight loss versus exposure time for P4HB sutures exposed to hydrolytic media of pH 

values of 3, 7, and 10 at temperatures of 55 °C (solid lines) and 37 °C (dashed lines). (b) Mn (full bars) 

and Mw (weave bars) molecular weights of the initial suture and after exposure for 27 days to the 

indicated media. For the sake of completeness, the results obtained from a melt pressed film are also 

shown (blue bars). 

A slightly higher loss was detected for experiments performed at the pH 10 basic medium since 

fragments having the neutralized carboxylate terminal groups coming from P4HB degradation 

should have a higher water solubility than those ending with carboxylic acid groups. Exposure to the 

37 °C medium caused a minimum weight loss (0.6–0.4%), mainly associated to the first days and 

which probably corresponded to the solubilization of minor additives as typical colorant molecules. 

Therefore, evidences of degradation were only found through GPC measurements. Mn and Mw 

data after 27 days of exposure to the indicated media and temperature are depicted in Figure 1b for 

the studied sutures and a representative film was exposed to pH 3. Three points merit attention: (a) 

Degradation is highly significant at 55 °C, decreasing, for example, Mw from 235,000 g/mol to a 

minimum value of 83,000 g/mol. On the contrary, a scarce variation was found for samples degraded 

at 37 °C. (b) The pH of the medium has a moderate influence on degradability, which specifically 

becomes slightly enhanced in the acidic condition. This feature confirms the above indicated 

association between weight loss and solubility. Note that the reaction may also be base-catalyzed, 

although the given results pointed out to an apparent acid-catalysis. (c) Degradability is highly 

dependent on the crystallinity and morphology of exposed samples. Note the high variation between 

Mw values of annealed sutures and melt pressed films after exposure to pH 3 media at 55 °C (i.e., 

83,000 g/mol with respect to 25,000 g/mol). Even a remarkable difference is found at 37 °C (i.e., 200,000 

g/mol with respect to 180,000 g/mol). 

Degradation in the presence of two different lipases which are able to promote hydrolysis of the 

ester bonds of P4HB has been evaluated. Results are quite different from those attained with the 

hydrolytic degradation due to high efficacy of the enzymatic attack and also to its characteristic 

erosion mechanism that contrasts with the bulk process associated to the hydrolytic process. Figure 

2a, shows the evolution of weight loss during exposure to both enzymatic media and to an aqueous 

medium at 37 °C and pH 7 used as a control. Rhizopus oryzae seems more effective that Pseudomonas 

cepacia enzyme, but both lead to a significant weight loss (i.e., 9–10%) that is clearly higher than 

observed for the control. It is clear that the enzymatic attack should produce small fragments 

probably as a consequence of a stepwise chain scission from the terminal groups that contrasts with 

the random bond cleavage expected from the bulk degradation. 
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Figure 2. (a) Weight loss versus exposure time for P4HB sutures exposed to the indicated enzymatic 

media. Results are also plotted for the control and a melt pressed film (right vertical axis, dashed 

arrow) exposed to the Rhizopus oryzae medium for 21 days. (b) Mn (full bars) and Mw (weave bars) 

molecular weights of the initial suture, the control and sutures after exposure for 21 days to the 

indicated enzymatic media. For the sake of completeness, the results obtained from a melt pressed 

film are also depicted (blue bars). 

Figure 2a also displays the results attained for a melt pressed film, which reveals again the 

decisive influence of crystallinity and the annealed morphology on degradability. Figure 2b shows 

the impact of enzymatic degradation on the molecular weight, which is summarized as follows: (a) 

A progressive decrease of molecular weight with the exposure time is observed for both enzymatic 

media. (b) Hydrolytic degradation seems negligible under the low temperature conditions. (c) The 

enzymatic attack is more effective than hydrolysis at high temperature (e.g., Mn values of 64,000 and 

28,000 g/mol were determined after 21 days of exposure to the Rhizopus oryzae medium and to the 

aqueous pH 3 medium at 55 °C after 27 days, respectively). (d) Enzymatic attack is less effective on 

the annealed and highly crystalline sutures than on the melt pressed films, demonstrating again the 

difficulty of enzymes to erode the constitutive crystals and a limited activity towards amorphous 

regions, including folding lamellar surfaces. 

3.2. Influence of Degradation on Thermal Properties 

Sutures are submitted to a set of thermal and stretching treatment processes in order to improve 

their mechanical performance. This treatment has a significant influence on crystallinity but also on 

morphological features, such as the thickness of the constitutive lamellae. As described in the 

preceding section, crystallinity plays a determinant role on the degradability of samples, but it is also 

evident that thermal properties will be affected, as well as the variation of crystalline morphological 

parameters during degradation processes. 

Figure 3a shows the significant difference on the melting behavior between conventional melt 

pressed films and annealed sutures. Note that fusion is characterized by a predominant peak and a 

shoulder at a lower temperature (e.g., 49.7 and 58.2 °C for the film and 61.9 and 72.0 °C for the suture, 

heating rate of 10 °C/min), which reflects the existence of two populations of lamellar crystals with 

different thicknesses. The shoulder temperature strongly depends on crystallization and annealing 

processes since it is related to the less perfect formed crystals that are susceptible to reorganization 

processes. Therefore, molecular folds in these thinner lamellae underwent a slight reordering that led 

to an increase of the lamellar crystalline thickness. Basically, a simple melt crystallization leads to 

lamellae that are worse (i.e., lower thickness and more irregular folding surface) than those attained 

after annealing. Both shoulder and main melting peak logically appear at lower temperatures for the 

melt crystallized samples. It merits also attention the low value of the main melting peak, which 
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indicates a limited reordering process of folds that precludes to get the highly organized lamellae 

derived from annealing (i.e., 58.2 °C with respect to 72 °C). Note also that the expected maximum 

melting temperature is reported to be 79.9 °C [20] as estimated from the Hoffman-Weeks 

extrapolation [25] for an infinite dimension of P4HB crystals. 

 

Figure 3. (a) DSC heating scans (10 °C/min) corresponding to a melt pressed film (blue) and the 

commercial suture (red) before exposure (solid line) and after exposure (dashed line) for 27 days to a 

pH 10 hydrolytic medium at 55 °C. (b) DSC heating runs of commercial sutures exposed for the 

indicated days to a pH 10 medium at 55 °C. (c) DSC heating runs of commercial sutures exposed at a 

pH 10 medium for 27 days and temperatures of 37 and 55 °C. For the sake of completeness, the curve 

for the commercial suture is also drawn. (d) DSC heating runs of commercial sutures exposed at pH 

3, pH 7, and pH 10 media for 27 days and 55 °C. 

Figure 3a also depicts the melting behavior of samples exposed to aggressive hydrolytic 

conditions (i.e., pH 10, temperature of 55 °C, and 27 days of exposure). Both types of samples, film 

and suture, shows the disappearance of the shoulder and a clear increase of the melting peak 

temperature. Degradation affects the folding surface, facilitates the reordering process, and leads to 

improved lamellae with a higher melting point. Note the difference around 7 °C that indicates the 

greater facility of annealed samples to render practically perfect crystals and that in this case a 

maximum melting temperature (79.0 °C) close to the equilibrium temperature was attained. Note also 
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that molecular weight measurements showed only a moderate decrease during degradation, which 

means that thermal behavior is still associated to polymeric samples. Moreover, crystalline phases 

are those less susceptible to degradation and therefore should show lower changes on their associated 

properties (i.e., melting point). 

The influence of the degradation time on the melting point is displayed in Figure 3b for the high 

temperature and the less pH aggressive conditions. A progressive increase of the melting point with 

the exposure time is clearly detected (i.e., from 74.1 to 79.0 °C for three and 27 days, respectively), as 

well as an increase of the melting enthalpy (i.e., from 57.8 to 63.3 J/g). The observation demonstrates 

that the crystalline lamellar thickness increases during degradation probably because of some chain 

breakages in the amorphous lamellar folding surfaces. 

The increased chain mobility in the lamellar surface may favor the molecular reordering that 

leads to an increased crystalline lamellar thickness. In addition, an annealing effect caused, by the 

exposure to a degradation medium at 55 °C, may be discarded since the observed dependence with 

long exposure times is not well justified. A highlight also the fact that any stress that could favor 

annealing was not applied during degradation. Obviously, chain mobility is increased at 55 °C and 

the reordering process that took place after the chain breakage should be enhanced. In fact, 

degradation performed at 37 °C showed reasonably a less significant change. 

Figure 3c compares the DSC curves of sutures exposed at pH 10 for 27 days at 37 and 55 °C. The 

sample exposed to the low temperature showed minor changes with respect to the initial suture that 

mainly affected the low temperature shoulder related to crystals more susceptible to reorganization 

(i.e., the temperature increased from 61.9 to 63.7 °C). In this case, the molecular weight decrease was 

low and the observed impact on thermal properties was limited to the preliminary phase concerning 

the less perfect crystals. 

The impact of the pH of the medium on thermal properties was relatively scarce and the same 

kind of crystals seems to be attained at 55 °C after 27 days of exposure (Figure 3d). These correspond 

to the best reorganization that could be obtained from the initial commercial suture. Figure 3d 

confirms that temperature has a great influence on the degradation of the less perfect crystals since 

the peak shoulder completely disappeared. Table 1 summarizes the calorimetric data attained with 

representative samples. 

Table 1. Melting peak temperatures and enthalpies of P4HB sutures degraded at the indicated pH 

values, temperatures, and exposure times. 

Samples Tm (°C) ΔHm (J/g) 

pH10 27d 37 °C 63.7, 70.7 67.0 

pH3 27d 55 °C 79.0 63.3 

pH7 27d 55 °C 79.0 63.3 

pH10 3d 55 °C 74.1 57.8 

pH10 7d 55 °C 75.0 58.2 

pH10 14d 55 °C 76.8 60.9 

pH10 27d 55 °C 79.0 63.3 

Thermal properties were scarcely affected by the enzymatic degradation. Thus, DSC curves for 

the control (hydrolytic medium without enzyme) and the two selected enzymatic media were 

practically identical (Figure 4, Table 2). The result agrees with an enzymatic surface erosion of the 

suture with significant loss of material that contrasts with the indicated bulk hydrolytic degradation 

mechanism. 
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Figure 4. DSC heating scans (10 °C/min) corresponding to the initial suture (purple line), the suture 

exposed to a Rhizopus oryzae medium at 37 °C for the indicated days (black lines), the suture exposed 

to a Pseudomonas cepacia medium at 37 °C for 21 days (blue line), and the control (green line) (pH 7.4 

medium for 21 days and 37 °C). 

Table 2. Melting peak temperatures and enthalpies of P4HB sutures exposed at 37 °C to the indicated 

enzymatic degradation medium and exposure time. 

Enzymes Time (days) Tm (°C) ΔHm (J/g) 

Control 21 72.1 68.9 

P. cepacia 3 71.4 67.3 

P. cepacia 21 71.6 68.0 

R. oryzae 3 71.5 68.1 

R. oryzae 21 71.7 68.7 

Figure 5 shows SEM micrographs that revealed an enzymatic attack that only affected the 

monofilament surface in a time dependent manner. Therefore, the DSC traces only reflect the impact 

of the hydrolytic degradation that as discussed before, mainly concerns the peak shoulder that 

decreased on intensity and moved from 61.9 to 64.3 °C. 

 

 

 

 

 

Figure 5. SEM micrographs showing the progressive surface erosion of P4HB sutures exposed to the 

Rhizopus oryzae medium at 37 °C for 3, 7, 14, and 21 days.  
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3.3. Changes on Lamellar Microstructure during Degradation 

The degradation behavior of highly annealed sutures is significantly different than observed for 

melt pressed films as a consequence of the different internal morphology. Stacking of oriented 

microfibrils with a lamellar organization and disordered spherulitic growth up to collision, are the 

specific morphologic trends of sutures and films, respectively. The impact of such morphologies led 

to a lower degradability of annealed samples due to their higher crystallinity. Furthermore, during 

degradation both crystallinity and melting temperature increased, although the effect was less 

significant for the annealed sample due to its scarce marge of improvement. 

All studied P4HB samples displayed clear SAXS reflections that were analyzed to improve the 

comprehension of differences related to the supramolecular order since specific data concerning the 

geometrical parameters of constitutive lamellar structures could be easily derived. 

Specifically, the study was performed from an isotropic integration of the oriented suture 

patterns or analyzing directly the disordered rings of film samples. In both cases, the normalized one-

dimensional correlation function [26] was employed: 

γ (r) = 


0

2 dq)qrcos()q(Iq / 


0

2 dq)q(Iq  (2) 

where I (q) is the intensity of the SAXS peak at each value of the scattering vector (q = [4π sin θ/λ] = 

2π/d, with θ and d being the Bragg angle and the Bragg spacing, respectively). Basically, it is assumed 

that the lamellar stack is constituted by a high number of lamellae that had an infinite lateral size so 

the stack can be reduced to a one-dimensional two-phase structure that satisfies the Bragg condition. 

Limited experimental collection of SAXS data was solved by extrapolation for low and high q 

values through the Vonk model [27] and the Porod’s law, respectively. 

Analysis of the correlation function allows determining: (1) The long period, Lγ; (2) the 

crystallinity within the lamellar stacks, XcSAXS; (3) the crystalline lamellar thickness, lc, and the 

amorphous layer thickness, la. In this way, Lγ corresponds to the r value of the first maximum of the 

correlation function; la has been assigned to the r value for the intersection of the LRAT (linear 

regression in the autocorrelation triangle) with the ordinate equal to the first minimum of the 

correlation function; lc corresponds to Lγ, la; and XcSAXS is calculated as lc/Lγ. The lower thickness of the 

two-phase lamellar model has been assigned to the amorphous layer thickness although the 

correlation function cannot distinguish the thickness associated with each phase. 

Figure 6 illustrates representative correlation functions that allows comparing and inferring a 

distinct evolution of films and sutures during the hydrolytic degradation. Thus, the progression of 

film degradation led to a shift of the correlation function to higher distances and also to more 

pronounced peaks. Therefore, Lγ increased from 8.60 to 9.80 nm when the temperature of the 

hydrolytic medium increased from 37 to 55 °C, a change that was a consequence of the increase of 

the lamellar crystalline thickness (i.e., lc increased from 6.91 to 7.32 nm). Moreover, an increase was 

also observed for the amorphous layer thickness (i.e., from 1.69 to 2.48 nm) leading to a practically 

constant crystallinity of the lamellar stack (i.e., 80 ± 1%). The amorphous phase seems to be less dense 

due to the increasing thickness probably caused by the chain breakage. The increase on the electronic 

contrast between crystalline and amorphous phases is observed through the more pronounced 

profile of the correlation function. 
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Figure 6. (a) Correlation function of the SAXS peak determined for the P4HB film exposed to a pH 3 

medium at 37 and 55 °C for 27 days. (b) Correlation function of the SAXS peak determined for the 

P4HB suture exposed to a pH 3 medium at 37 and 55 °C for 27 days. 

Figure 6b displays by contrast that the correlation profile becomes smoother when degradation 

increases, a feature that cannot be well explained at this stage and a more accurate evaluation of the 

microstructure of the biphasic systems is required. Nevertheless, a slight shift of the correlation 

function to the increasing distances is clear. Specifically, Lγ and lc increased from 10.30 and 8.31 nm 

to 10.90 and 8.80 nm, respectively when the temperature of the degradation medium increased from 

37 to 55 °C. Underlined here that changes are moderate due to the high initial thickness of the 

annealed lamellae as previously deduced from the closeness between the experimental melting 

temperature and the theoretical value deduced from the equilibrium melting temperature. 

Furthermore, the crystallinity of the lamellar stack remained equal to 80.7%. 

In addition to the Lγ value, which is associated with the most probable distance between the 

centers of gravity of two adjacent crystals, a long period determined from twice the value of the first 

minimum of the correlation function, ��
� , is also useful. This is interpreted as the most probable 

distance between the centers of gravity of a crystal and its adjacent amorphous layer. A discrepancy 

between both values indicates a broad distribution of the layer widths of the major component [28], 

which in this case corresponds to the crystal phase. 

Table 3 summarizes the morphological parameters determined for representative degraded film 

and suture samples. The following trends can be indicated: (a) Discrepancy between Lγ and 2×Lγm is 

decreasing as the degradation process becomes more significant. This feature can be explained 

considering the lamellar reordering process that, for example, lead to a decrease of the population of 

thinner crystals in film samples, and consequently to a narrow distribution. Note, for example, that 

differences around ~1 and ~0.6 nm are determined for degradations performed at 37 and 55 °C. (b) 

Annealed samples showed a greater discrepancy than films (e.g.,  ~1 and ~2.1 nm for films and 

sutures, respectively). This feature seems strange since a narrow distribution is expected for the 

thicker annealed lamellae of sutures. 

Table 3. Morphological parameters of films and sutures exposed to degradation at the indicated 

media. 

Sample Lγ (nm) lc (nm) lα (nm) ��
� (nm) 

Film pH3 27d 37 °C 8.60 6.91 1.69 3.8 

Film pH10 27d 37 °C 8.50 6.88 1.62 3.2 

Film pH3 27d 55 °C 9.80 7.32 2.48 4.6 

Film pH10 27d 55 °C 9.6 7.62 1.98 4.1 
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Suture pH3 27d 37 °C 10.30 8.31 1.99 4.1 

Suture pH10 27d 37 °C 9.80 7.91 1.89 4.0 

Suture pH3 27d 55 °C 10.90 8.80 2.10 4.8 

Suture pH10 27d 55 °C 10.70 8.66 2.04 4.3 

Film R. Oryzae 14 days 37 °C 9.60 7.25 2.35 4.3 

Film P. Cepacia 14 days 37 °C 9.50 7.72 1.78 3.9 

Suture R. Oryzae 14 days 37 °C 10.50 8.56 1.94 4.1 

Suture P. Cepacia 14 days 37 °C 10.40 8.33 2.07 4.1 

The SAXS pattern displayed in Figure 7a for a sample exposed to a very little aggressive 

degradation condition (therefore similar to that observed with the initial suture) reveals that the 

thermal annealing process at which the commercial sutures were submitted lead to a peculiar 

morphology where two different types of lamellar stacks exists. These differences come up from the 

distinct lamellar organization in the skin and the core of sutures. Obviously, this phenomenon is of a 

different nature than that caused by a simple crystallization process, where usually populations of 

lamellae with different thicknesses and organizations of folding surfaces are derived. The 

observations justify the above indicated broad lamellar distribution found in sutures. 

 

Figure 7. The SAXS patterns of an annealed suture submitted to low (i.e., pH 10, 37 °C, 27 days) (a) 

and high (i.e., pH 3, 55 °C, 27 days) (b) degradation processes. Insets show low contrast exposures of 

the corresponding patterns. Meridional and off meridional reflections are indicated by the blue and 

yellow dashed circles, respectively. Solid and dashed white lines highlight the different positions of 

meridional reflections. 

The SAXS pattern is characterized by four off meridional spots and two meridional arches 

(Figure 7a). The first ones are indicative of the stacking of breadth lamellar crystals tilted with respect 

to the fiber direction and logically arranged with a cylindrical symmetry. The characteristic spacing 

of these stacks is 14.0 nm. The second ones have a higher spacing (i.e., 14.1 nm) and corresponds to 

lamellar crystals with lower lateral extension (longer and diffuse reflection) and perpendicularly 

oriented to the fiber axis. The nanostructure of the core material as compared to the shell material 

appears rougher and more imperfect. The external part of sutures is submitted to a higher 

temperature than the core and suffers a higher shear stress. In this way, a shift between molecular 

chains along the annealing direction of lamellae, as well as an increase of the lamellar thickness is 

produced. Therefore, tilted lamellar surfaces, which moreover appeared at an angle of 45° that 

correspond to the maximum shear, are generated. 

The microstructure of sutures changed during hydrolytic degradation as can be deduced from 

the SAXS pattern (Figure 7b) of the sample exposed to the more aggressive conditions (i.e., pH3, 55 

°C, and 27 days). Basically, differences concerning the meridional spots associated to the more 

imperfect crystals are placed in the core. Thus, the interlamellar spacing slightly increased (from 14.1 

to 14.8 nm) as the reflections slightly moved to the center of the pattern. Furthermore, the intensity 
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of these spots increased suggesting a higher electronic contrast between crystalline and amorphous 

layers. In this way, degradation mainly affected the more defective crystals, causing some molecular 

breakages on their folding surface. A slight reordering was produced leading to the observed increase 

of the crystalline lamellar thickness, while simultaneously the amorphous layer became less compact 

and more disordered. 

Molecular chains in the crystalline lamellae remained aligned with the longitudinal direction of 

sutures, even those crystals with tilted surfaces. All observed reflections in WAXD patterns (Figure 

8) were in agreement with the published orthorhombic unit cell of P4HB [16,17]. Specifically, (110) 

and (020) reflections at 0.388 and 0.406 nm appeared as very small arcs in the equator. 

 

Figure 8. WAXD patterns of an annealed suture submitted to low (i.e., pH 10, 37 °C, 27 days) (a,b) 

and high (i.e., pH 3, 55 °C, 27 days) (c) degradation processes. Only a region of the reciprocal space is 

registered due to the specific configuration of the beamline that allows recording simultaneously 

SAXS and WAXD patterns. (a,b) Patterns were obtained from different orientations of the suture in 

the holder in order to get information of both equatorial (a) and meridional (b) reflections. Common 

meridional and equatorial reflections are indicated by the dashed yellow and red circles. 

The scheme of Figure 9 illustrates the deduced microstructure of the annealed fiber and the 

consequences of the hydrolytic attack. The lamellar thickness remained unaltered for the more perfect 

tilted crystals and even a slight densification was detected for their stretched folds, since the intensity 

of the corresponding spots seemed to decrease. In fact, this deduction is in agreement with the 

previously indicated contradictory results determined from the analysis of the correlation function. 

The crystalline structure remained unchanged, as well as the degree of orientation of crystals since 

no change was detected in the WAXD patterns as displayed in Figure 8c. 

 

Figure 9. Scheme showing the structure of annealed fibers characterized by the presence of two types 

of lamellar crystals that are part of the shell and the core before and after being submitted to hydrolytic 

degradation. 
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Intensification of the meridional spot and its shift to the center of the pattern shows a correlation 

with the degradation degree, as can be inferred from the gradual evolution (see blue spot) presented 

in Figure 10 for representative conditions. 

 

Figure 10. SAXS patterns of the initial suture and those exposed to the indicated hydrolytic conditions. 

Despite the fact that enzymatic degradation was effective as deduced from a weight loss of 8–

9% after 21 days of exposure to both assayed media (Figure 2a), the impact on the microstructure of 

the remaining material should be minimum as reflected by the scarce change on the molecular weight 

(Figure 2b) and the melting point (Figure 4 and Table 2). This is corroborated through analysis of 

SAXS patterns (Figure 11), since no changes were detected between samples exposed to the less (i.e., 

Pseudomonas cepacia) and the more (i.e., Rhizopus oryzae) aggressive media for 14 days. Thus, Lγ, lc, la, 

and ��
� parameters remained practically constant and equal to 10.40–10.50, 8.33–8.56, 2.07–1.94, and 

4.1 nm (Table 3), respectively. Note again the high discrepancy between Lγ and 2×��
�  values as 

expected from the existence of two well differentiated types of lamellae. Figure 11 also shows the 

clearly different susceptibility to the enzymatic attack of P4HB films constituted by spherulitic 

morphologies. In this case, a clear increase of lamellar spacing was detected (Table 3), as well as on 

the electronic contrast. Logically, differences came from the different degradability of films and 

sutures, with the weight loss of the former being for example around (75–95%). 

 

Figure 11. Correlation function of the SAXS peak determined for P4HB films and sutures exposed to 

Pseudomonas cepacia and Rhizopus oryzae media at 37 °C for 14 days. 
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SAXS patterns of the less and more degraded sutures were again highly similar, considering 

both the position (angle and distance) of the observed spots and the relative intensity between 

meridional and off-meridional reflections (Figure 12). In conclusion, there are no evidences of the 

observed morphological change that occurs at an advanced stage of hydrolytic degradation. These 

results are fully consistent with an enzymatic surface attack that led to an erosion of the suture (see 

Figure 5) and did not change the internal microstructure of the remaining material. 

 

Figure 12. SAXS patterns of suture exposed to Pseudomonas cepacia (a) and Rhizopus oryzae (b) media 

at 37 °C for 14 days. 

3.4. Changes on Lamelar Microstructure of Degraded Samples during Heating 

The evolution of SAXS patterns during heating processes can give relevant information 

concerning the microstructure of sutures as detected, for example, with segmented glycolide based 

copolymers. These exhibited clearly differentiated behaviors depending on the degradation 

treatment [20]. Annealed P4HB sutures showed less changes during heating due to the high 

perfection of crystals, the more reduced presence of intralamellar amorphous regions and the lack of 

any evidence related to the presence of regularly distributed interfibrilar amorphous regions. These 

should be originated from disordered regions placed on lateral sides of lamellae arranged in a fibrillar 

way and should lead to patterns with equatorial reflections. 

Figure 13 compares the temperature evolution of patterns of representative samples 

hydrolytically degraded at 37 and 55 °C, with the previously indicated differences being highlighted. 

 

Figure 13. SAXS patterns of P4HB sutures exposed to hydrolytic media of pH 10, at 37 °C (top row) 

and pH 3, at 55 °C (bottom row) for 27 days. Patterns were recorded at the indicated temperatures 

during a heating run performed at 10 °C/min. Dashed lines are used as references for the position of 

the center of the pattern (white), off-meridional spots (red), and meridional spots (blue). 
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The following features can be indicated: (a) Lamellae that constitute the core of the suture are 

more imperfect and therefore initiates melting at lower temperatures than the tilted ones. A 

continuous decrease on their intensity is detected when temperature approaches the melting of the 

suture, while the intensity of tilted lamellae remained practically constant. It is interesting to point 

out that the suture degraded at 37 °C and heated to 55 °C still demonstrates weaker meridional spots, 

allowing to discard that a thermal annealing process could intensify the meridional spots in the case 

of degradation performed at 55 °C. (b) Meridional reflections can still be envisaged at temperatures 

very close to the fusion of the suture for the more degraded sample, while they practically 

disappeared for the samples exposed to the 37 °C medium. (c) Lamellar spacings increase with 

temperature for both tilted and non-tilted lamellae, although the effect is clearer for the last ones 

(Table 4). (d) Tilted surfaces have always the same orientation with respect to the meridian (i.e., ± 

45°). 

Table 4. Spacings of the reflections observed in SAXS patterns recorded at different temperatures 

during heating of hydrolytically degraded samples (pH 10, 27 days) at 37 °C and (pH 3, 27 days) 55 

°C. 

Degradation Temperature (°C) Temperature (°C) Lmeridional (a) (nm) 
Loff-meridional (a) 

(nm) 

37 25 14.1 14.0 

37 55 14.9 14.3 

37 60 15.9 14.9 

37 65 16.1 15.3 

55 25 14.8 14.6 

55 60 16.9 16.0 

55 70 18.5 16.4 

55 75 20.8 17.4 
(a) Spacings directly measured on the pattern are always slightly higher than Lγ values evaluated with 

the correlation function. 

4. Conclusions 

Stretched P4HB commercial sutures were characterized by two different types of lamellar stacks. 

These were originated by the different shear stress that experimented the shell and the core of the 

fibers during processing. Therefore, the stacks placed in the shell were constituted by the thicker 

lamellae having tilted surfaces as a consequence of the slippage of molecular chains. The inner stacks 

were constituted by more imperfect lamellae having surfaces perpendicularly oriented to the fiber 

axis. SAXS patterns revealed the interlamellar spacings but did not show any evidence concerning 

the possible existence of interfibrillar amorphous regions. 

Different degrees of degradation could be achieved by exposure to hydrolytic media by 

modifying pH, temperature, and time. Significant chain breakages were found from GPC 

measurements, but weight losses were practically depreciable even under the most aggressive 

conditions. Microstructural changes were found dependent on the progress of degradation and 

distinctly affected the lamellar stacks. More significant changes were observed for the inner lamellar 

that experimented a higher increase of both crystalline and amorphous lamellar thicknesses. Hence, 

the chain breakages occurred in the amorphous regions of a more disordered surface and allowed a 

certain reorganization of the chains which increased the crystalline region. On the contrary, 

enzymatic degradation only caused a surface erosion with loss of surface material and had a scarce 

influence on the microstructure. 

Both hydrolytic and enzymatic degradation were different for melt crystallized films. In this 

case, the microstructure was characterized by spherulites constituted by thinner lamellae with a 

relatively narrow distribution. The progress of degradation caused a significant thickening that 

affected the thermal properties. 
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Heating of stretched sutures revealed again differences according to the different degrees of 

degradation experimented by the distinct types of lamellar stacks. Thus, a slight thickening was 

detected for both types of lamellae as a consequence of the typical temperature reordering process, 

but with the melting of lamellae placed in the fiber core being clearly faster. 
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