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Abstract: Porous films have been prepared from degradable polymers—poly-3-hydroxybutyrate
(PHB), poly-ε-caprolactone (PCL) and a blend of these polymers (1:3)—by adding porogen (camphor)
to the polymer solution at 10%, 30% or 50% of the total mass of the polymer and porogen, and leaching
it out afterwards. After the rinse, camphor content in films decreased to about 0.025%. The structure,
physical/mechanical and biological properties of the films were investigated as dependent on their
composition and porosity, which varied depending on the amount of camphor added. The surface
of PHB films was porous, the PCL films were relatively smooth, and the PHB/PCL films had an
intermediate structure. The addition of camphor increased the thickness (from 35 to 45 µm, from 40 to
80 µm and from 20 to 65 µm for PHB, PCL and PHB/PCL, respectively) and porosity (from 4.2(±3.6)%
to 50.0(±12.8)%, from 6.4(±5.5)% to 54.5(±6.0)% and from 4.9(±4.8)% to 51.5(±5.8)%, respectively)
of the films. The introduction (and removal) of 10% camphor into the PHB and PHB/PCL films
led to an approximately twofold increase in the polar component of the free surface energy (from
5.4 ± 0.38 to 11.8 ± 1.33 and from 2.7 ± 0.13 to 5.2 ± 0.09 mN/m, respectively) but in other cases, on
the contrary, a decrease in this indicator was registered. The increase of camphor addition from 0% to
50% gradually impaired mechanical properties of the films: so, Young’s modulus decreased from 3.6
to 1.8 GPa, from 0.30 to 0.12 GPa and from 0.50 to 0.20 GPa for PHB, PCL and PHB/PCL, respectively.
At the same time, the water vapor transmission rate considerably increased from 197.37 ± 23.62 to
934.03 ± 114.34 g/m2/d for PHB films; from 1027.99 ± 154.10 to 7014.62 ± 280.81 g/m2/d for PCL films;
and from 715.47 ± 50.08 to 4239.09 ± 275.54 g/m2/d for PHB/PCL films. Results of biocompatibility
testing in the culture of NIH 3T3 mouse fibroblast cells showed that for the most of experimental
samples cell adhesion and proliferation were comparable or superior to the corresponding parameters
on the initial nonporous films. The best results were obtained for PHB films where at Day 3 of the
experiment the registered cell density for experimental samples arrived at 2.66(±0.26) × 105 cells/cm2

versus 1.29(±0.33) × 105 cells/cm2 in the control. So, the proposed method can be used to construct
highly porous cell scaffolds for cellular engineering.
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1. Introduction

Biodegradable polymers are materials used in biomedical applications [1], for the production
of degradable packaging [2], and in agriculture [3]. Polyhydroxyalkanoates (PHAs) hold a unique
position among degradable biomaterials. PHAs are microbial polymers of hydroxy-derived fatty
acids, which are thermoplastic, biocompatible and degradable in biological media [4]. Their properties
make them highly perspective for a wide spectrum of biomedical applications including cell scaffolds
for tissue engineering, implantable medical devices, patches for wound repair, systems for drug
release, etc. [5]. PHAs are represented by polymers consisting of various monomer units and having
diverse physicochemical properties: from highly crystalline thermoplastic materials to rubber-like
elastomers [6,7]. The homopolymer poly-3-hydroxybutyrate (PHB) is the most extensively studied
PHA. This thermoplastic polymer has high crystallinity (above 70%), and products fabricated from it
are brittle and prone to aging, which limits their processing and usage. PHA copolymers, which consist
of different monomer units, are more readily processable, but synthesis of these PHA types requires
rather complicated approaches including special fermentation conditions and complex nutrient media
or construction of genetically modified strains [8,9].

A promising approach to modifying and improving the properties of poly-3-hydroxybutyrate is
to prepare PHB blends with different materials. One of such materials is poly-ε-caprolactone (PCL),
a synthetic resorbable polymer, which is commonly used for prototyping [10] and is proposed as a
material for biomedicine—to fabricate implants [11], cell scaffolds [12], systems for delivering drugs
and bioactive substances [13], etc. The large size of PCL molecules and their linear chain structure
enable manufacture of strong and elastic filaments, fibers and films, which can be used to produce
pliable and mechanically strong constructs. PCL is also well known for its biocompatibility. However,
being very hydrophobic, PCL does not favor cell adhesion and proliferation on the surface of cell
scaffolds produced from PCL [14].

Cell scaffolds must have good adhesive properties and porous surface, which should favor cell
attachment and proliferation. Another necessary condition is that the material and its degradation
products must not cause adverse responses in cells [15]. The structure of the polymer construct is critical
for cell adhesion and proliferation. For instance, rough surfaces can enhance integration, proliferation
and differentiation of the cultured cells [16]. Interconnected porosity enables cell migration and
proliferation and vascularization of cell scaffolds in the bulk tissue [17] and improves implant-tissue
mechanical bonding [18].

Porous structures can be produced using various methods such as introducing of micronized
crystalline agents into polymer systems [19,20], lyophilization of frozen solutions [21] and thermally
induced phase separation [22]. However, no sufficiently strong porous structures with stable
physical/mechanical and structural properties have been produced so far.

One approach to fabricating entirely porous constructs is to add a porogen to the polymer solution
and then leach it out using a solvent that does not dissolve the polymer. The porogen must be nontoxic
and soluble in polar and nonpolar solvents and enable formation of homogenous structures from
the solutions. One of the substances meeting these requirements is camphor—a volatile crystalline
substance that is readily soluble in various organic solvents, both organohalogen ones (used to produce
polyester solutions) and alcohols (which do not dissolve polyesters and can, thus, be used to remove
camphor from the mixes). In moderate dosage, camphor is not toxic and can be used for medical
purposes [23].

The purpose of this study was to prepare porous constructs from degradable polymers using
camphor as a porogen, to study their properties, and to test them as potential cell scaffolds.
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2. Materials and Methods

2.1. Material

Poly-3-hydroxybutyrate (PHB; weight average molecular weight (Mw) 720 kDa, polydispersity (Ð)
3.60, density (d) 1.25 g/cm3) was produced in the Siberian Federal University by microbial biosynthesis
with the strain Cupriavidus eutrophus B-10646 using BioFlo 115 laboratory fermentor with a 14 L
fermentation vessel (New Brunswick Scientific, Edison, NJ, USA) [24]. Poly-ε-caprolactone (PCL;
Mw = 169 kDa, Ð = 1.86, d = 1.145 g/cm3) was manufactured by Sigma-Aldrich (Saint Louis, MO,
USA). DL-Camphor (98% pure) was supplied by Career Henan Chemical Co. Ltd. (Zhengzhou, China).
High-purity solvents chloroform and isopropyl alcohol were produced by EKOS-1 (Staraya Kupavna,
Moscow Oblast, Russia).

2.2. Preparation of Films

PHB and PCL were separately dissolved in chloroform to prepare 2% (w/v) solutions. To produce
the PHB:PCL 1:3 (w/w) blend the solutions were mixed in this ratio, and the mixture was kept for three
hours with periodic stirring. Camphor was added to the polymer solutions at 10%, 30% or 50% of the
total mass of the polymer and porogen contained in the solution. The mixtures were used to prepare
films by the solvent evaporation technique, with 20 mL of the solution preheated to 35 ◦C and placed
onto a degreased Petri dish. The films were dried at ambient temperature for 3 days in a laminar flow
cabinet. After the solvent was completely evaporated, the mass of the polymer (or polymer blend) in
each film was about 400 mg, with camphor content of 45 mg, 172 mg and 400 mg per film with initially
added 10%, 30% or 50% camphor, respectively.

Porogen (camphor) was removed by sequentially rinsing it four times in isopropyl alcohol, and the
mass loss was controlled. Residual camphor concentrations were measured by chromatography-mass
spectrometry of the leaching solution (Agilent 7890A/5975C Inert, Agilent Technologies, Santa Clara,
CA, USA), using reference camphor solutions to plot the calibration curve. Porous films with different
camphor contents—10 (C10), 30 (C30) and 50 (C50) were investigated; non-porous polymer films (C0)
were used as the reference films.

2.3. Methods of Investigating the Films

The surface microstructure of the films was studied with an S-5500 scanning electron microscope
(Hitachi, Tokyo, Japan) after preliminary sputtering platinum by an Emitech K575X sputter coater
(10 mA, 20 s—twice) (Quorum Technologies Ltd., Ashford, Kent, UK).

Surface properties of the films were tested with a DSA-25E drop shape analyzer (Krüss, Hamburg,
Germany) using software DSA-4 for Windows. Drops of water and diiodomethane, 1.5 µL each, were
alternately placed on the film surface, and contact angles (CA) of these liquids were measured in
a semiautomatic mode, by the built-in “circle” method. The results of measurements were used to
calculate surface free energy (SFE) and its dispersive (DSFE) and polar (PSFE) components by the
Owens, Wendt, Rabel and Kaelble method [25,26].

Porosity was determined using the method proposed by Kavya et al. [27] and modified to analyze
films. The dry films were weighed and immersed in ethanol for 5 min under vacuum. Then the films
were taken out, excess ethanol was removed with filter paper, and the films were weighed again.
Porosity (P) was determined using the following formulas:

P =
Vethanol

Vspecimen + Vethanol
;

Vethanol =
Ww −Wd

dethanol
;
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Vspecimen =
Wd

dpolymer
.

Here Wd and Ww are weights of the dry and moist samples, respectively, dethanol is ethanol
density—0.789 g/cm3, dpolymer is polymer density—1.25 g/cm3 for PHB and 1.145 g/cm3 for PCL.

Physical-mechanical properties of the films were analyzed using an electromechanical tensile
testing machine Instron 5565 (High Wycombe, UK). The thickness of films was measured prior to testing,
by an electronic digital micrometer LEGIONER EDM-25-0.001 (China). Samples were maintained
under normal conditions for at least two weeks to reach equilibrium crystallization. At least five
samples were tested for each type of films. Measurements were conducted at room temperature;
dumbbell-shaped samples 75 mm long and 13 mm wide were prepared, and the clamping length of the
samples was 40 mm. The speed of the crosshead was 3 mm/min at room temperature. Young’s modulus
(E, MPa), tensile strength (P, MPa) and elongation at break (ε, %) were automatically calculated by the
Instron software (Bluehill 2, Elancourt, France). To obtain Young’s modulus, the software calculated
the slope of each stress-strain curve in its elastic deformation region. Measurement error did not
exceed 10%.

Water vapor transmission rate of the films (WVTR, gm/m2/d) was measured using a Mocon
Permatran W system for measuring water vapor transmission rate (Minneapolis, MN, USA).
Measurements were performed at a temperature of 37.8 ◦C and humidity of 100%. The area of
each sample was 5 cm2. Each specimen was placed into a test cell, which was divided into two
chambers separated by sample material. The inner chamber was filled with nitrogen (carrier gas) and
the outer chamber with water vapor (test gas). Water molecules diffused through the sample material
into the inner chamber and were conveyed to the sensor by the carrier gas. The test was stopped when
water vapor concentration in the inner chamber was below the 3% deviation over a preset number
of measurements.

To evaluate adhesive properties of the surface of the films and reveal potential cytotoxicity, disks
of 15 mm diameter were cut out with a mold cutter and placed into 24-well plates (Techno Plastic
Products AG, Trasadingen, Switzerland). The samples were preliminarily sterilized with 70% ethanol
for 30 min and then washed once with incomplete Dulbecco’s Modified Eagle Medium (DMEM) (Gibco;
Thermo Fisher Scientific, Inc., Waltham, MA, USA). NIH 3T3 mouse fibroblast cells were seeded onto
the polymer disks (50,000 cells per well/mL). Cells were counted in the Goryaev chamber; a 0.4%
trypan blue solution was added to cell suspensions to reveal dead cells. Polystyrene of the culture
plate was used as the control.

Cells were cultivated in DMEM medium supplemented with 10% fetal bovine serum and a 1%
Antibiotic-Antimycotic solution (Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) in a 5%
CO2 atmosphere at a temperature of 37 ◦C for 7 days. The medium was replaced every three days.
Cell viability was assessed in an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT)
assay, which is based on the ability of dehydrogenases of live cells to reduce unstained forms of
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) (Sigma-Aldrich, Saint Louis,
MO, USA) to crystals of blue formazan soluble in dimethyl sulfoxide (DMSO) (MP Biomedicals, Irvine,
CA, USA). MTT assay was performed at Days 1, 3 and 7. In the plate with cells cultured on the films,
the nutrient medium was replaced by the fresh one (950 µL) and 50 µL of MTT was added to it; the
plate was incubated in a chamber thermostatically set to specific conditions at CO2 level maintained
at 5% and at a temperature of 37 ◦C for 4 h. After incubation, the medium and MTT were replaced
by DMSO (150 µL) to dissolve MTT-formazan crystals. Then the supernatant was transferred to the
96-well plate (TPP, Switzerland). Optical density was measured at a 490 nm wavelength with an iMark
microplate absorbance reader (BioRad LABORATORIES Inc., Hercules, CA, USA). The number of
viable, metabolically active cells was determined using the calibration curve.
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2.4. Statistical Analysis

All experiments were carried out in at least five replicates. Statistical analysis of surface properties
of the films was done by using built-in methods of DSA-4 software. Other data were handled
using Microsoft Excel 2003 and expressed in the form of arithmetic means ± confidence intervals.
Significant differences between mean values were studied using independent sample Student’s t test
for independent samples (significance level: p = 0.1).

3. Results

The films of PHB, PCL and the PHB/PCL blend prepared without addition of camphor showed
microscopic differences in their surface structure (Figure 1). The surface of PHB films was porous,
the PCL films were smooth and the PHB/PCL films had small asperities on the relatively smooth
surface. Preparation of porous films included addition of camphor to initial polymer solution and its
subsequent removal by rinsing the films in isopropyl alcohol. Each rinsing event decreased camphor
concentration in the films by approximately one order of magnitude (Figure 2). After the fourth rinse,
camphor content reliably decreased to 0.1 mg/film, or about 0.025% of the film weight. That was far
below camphor concentration toxic to humans (>20 mg/kg) [28].
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Figure 1. SEM images of the films (camphor contents before rinsing are given): (a1)—PHB (C0) (control);
(a2)—PHB, camphor 10% (C10); (a3)—PHB, camphor 30% (C30); (a4)—PHB, camphor 50% (C50);
(b1)—PCL, C0 (control); (b2)—PCL, C10; (b3)—PCL, C30; (b4)—PCL, C50; (c1)—PHB/PCL, C0 (control);
(c2)—PHB/PCL, C10; (c3)—PHB/PCL, C30; (c4)—PHB/PCL, C50. PHB—poly-3-hydroxybutyrate;
PCL—poly-ε-caprolactone.

As camphor concentration in the PHB films at the preparation stage was increased, considerably
more pores and microfractures were formed and they were larger than those observed on the initial
sample although the general surface topography remained the same (Figure 1, row 1). In the PCL
films, which were smooth at microscopic level in the control (without camphor), leaching of camphor
led to formation of a network of irregularly located pores (after adding 10–30% of the porogen the
surface near pores remained smooth), whose density and size were increased with increasing porogen
concentration (Figure 1, row 2). The similar pattern was observed for pores developed in the PHB/PCL
films but they were more rounded and uniformly distributed (Figure 1, row 3).
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Figure 2. Camphor concentration decrease in the films rinsed in isopropyl alcohol four times.

The C10 films of PHB and PHB/PCL exhibited values of water contact angle decreased by
10 degrees or more and an increase in the polar component of surface free energy by a factor of more
than two (Table 1), i.e., they had higher hydrophilicity. As camphor concentration was increased to
30%, the hydrophilicity of the films decreased to the initial level, and at 50%, it was significantly lower
than in the control films. PCL films showed a more considerable decrease in hydrophilicity, and this
was also determined by camphor concentration.

Table 1. Measurements of contact angles and surface energy parameters of polymer films prepared
with camphor added at different concentrations.

Polymer Sample CAW (◦) CADIM (◦) SFE (mN/m) PSFE
(mN/m)

DSFE
(mN/m)

PHB C0 78.5 ± 7.33 48.5 ± 1.86 40.5 ± 0.76 5.4 ± 0.38 35.1 ± 0.38

PHB C10 61.6 ± 17.32 38.3 ± 4.73 52.3 ± 2.38 11.8 ± 1.33 40.5 ± 1.05

PHB C30 74.6 ± 6.28 41.2 ± 1.4 45 ± 0.65 6 ± 0.34 39 ± 0.31

PHB C50 81.7 ± 5.31 43.2 ± 1.23 41.6 ± 0.49 3.6 ± 0.22 38 ± 0.26

PCL C0 54.7 ± 7.12 20.4 ± 3.42 60.7 ± 1.44 13 ± 0.61 47.7 ± 0.82

PCL C10 65.8 ± 5.56 23.6 ± 3.33 54.6 ± 1.19 7.9 ± 0.39 46.6 ± 0.79

PCL C30 95.3 ± 6.12 24.6 ± 5.79 46.4 ± 1.43 0.1 ± 0.06 46.3 ± 1.38

PCL C50 83.4 ± 2.62 26.5 ± 1.59 47.5 ± 0.47 1.9 ± 0.09 45.6 ± 0.37

PHB/PCL C0 85.4 ± 2.71 44.8 ± 2.37 39.8 ± 0.63 2.7 ± 0.13 37.1 ± 0.5

PHB/PCL C10 75.8 ± 1.56 38.1 ± 0.93 45.8 ± 0.3 5.2 ± 0.09 40.6 ± 0.21

PHB/PCL C30 83.4 ± 1.27 35.6 ± 0.94 44.2 ± 0.27 2.5 ± 0.05 41.7 ± 0.21

PHB/PCL C50 98.9 ± 4.2 35.1 ± 1.57 42 ± 0.38 0 ± 0.02 42 ± 0.36

CAW and CADIM—contact angles of water and diiodmethane, respectively; SFE—surface free energy; PSFE and
DSFE—polar and disperse parts of SFE, respectively.

Investigation of the physical/mechanical properties of the films showed an increase in their porosity,
which approximately corresponded to the percentage of the added camphor (Table 2). Statistically
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significant changes were registered for all C30 and C50 samples. The strength of the porous films was
moderately decreased. Under addition of 10% camphor, Young’s modulus (E) of the films did not
significantly change (for PHB and PHB/PCL films) or slightly decreased (by about 25% for PCL films).
Similar dynamics was observed for tensile strength (P). An increase in porogen concentration to 30%
and 50% of the total mass of the sample caused tensile strength to drop by a factor of 1.5—2.4 and
1.9—3 compared to the control, respectively. Variations in elongation at break (ε) were less consistent:
addition of 10% camphor was accompanied by moderate decrease of ε, whereas higher additions (e.g.,
PCL/C50 and PHB/PCL/C50) could have led to an increase in this parameter. Polymer composition
had a more marked effect on the strength of the films than their porosity.

Table 2. Physical/mechanical properties and water vapor transmission rate of polymer films.

Polymer Sample Thickness
(µm)

Porosity
(%) E (MPa) P (MPa) ε (%) WVTR (g/m2/d)

PHB C0 35 4.2 ± 3.6 3634.41 ± 284.20 40.11 ± 3.02 1.55 ± 0.09 197.37 ± 23.62

PHB C10 35 11.3 ± 3.1 3516.88 ± 217.34 32.79 ± 1.03 1.08 ± 0.05 226.62 ± 27.19

PHB C30 35 30.1 ± 10.3 2722.82 ± 88.23 24.18 ± 1.84 1.16 ± 0.30 232.00 ± 27.12

PHB C50 45 50.0 ± 12.8 1815.64 ± 17.84 13.54 ± 0.60 0.9 ± 0.03 934.03 ± 114.34

PCL C0 40 6.4 ± 5.5 302.15 ± 11.60 13.54 ± 0.42 55.37 ± 19.25 1027.99 ± 154.10

PCL C10 60 11.0 ± 3.4 219.20 ± 4.28 10.70 ± 0.02 20.14 ± 4.65 1410.94 ± 134.36

PCL C30 75 30.7 ± 6.4 114.24 ± 6.67 5.58 ± 0.15 26.93 ± 3.21 4674.51 ± 118.42

PCL C50 80 54.5 ± 6.0 121.99 ± 6.29 5.62 ± 0.20 68.4 ± 2.53 7014.62 ± 280.81

PHB/PCL C0 20 4.9 ± 4.8 502.07 ± 62.42 14.12 ± 1.55 45.69 ± 18.16 715.47 ± 50.08

PHB/PCL C10 40 14.3 ± 4.8 562.32 ± 46.23 13.81 ± 1.29 33.94 ± 12.35 712.92 ± 47.10

PHB/PCL C30 50 33.1 ± 4.4 359.57 ± 46.73 8.97 ± 1.36 48.00 ± 15.72 1608.00 ± 126.20

PHB/PCL C50 65 51.5 ± 5.8 199.38 ± 15.59 7.37 ± 0.35 103.80 ± 12.99 4239.09 ± 275.54

E—Young’s modulus; P—tensile strength; ε—elongation at break; WVTR—water vapor transmission rate.

The change in the bulk structure of PHB and PCL films caused by addition of camphor led
to changes in their water vapor transmission rate compared to the nonporous films (Table 2). The
WVTR values considerably increased from samples C0 to samples C50: from 197.37 ± 23.62 to
934.03 ± 114.34 g/m2/d for PHB films; from 1027.99 ± 154.10 to 7014.62 ± 280.81 g/m2/d for PCL films;
and from 715.47 ± 50.08 to 4239.09 ± 275.54 g/m2/d for PHB/PCL films.

MTT assay showed higher fibroblast proliferation on porous PHB films than on control
ones. At Day 3 of the experiment (Figure 3a), the best effect was registered for samples C50
(2.66(±0.26) × 105 cells/cm2 versus 1.29(±0.33) × 105 cells/cm2 in the control), but at Day 7
(Figure 3b), it was statistically significant for samples C10 only (1.17(±0.17) × 106 cells/cm2 versus
0.79(±0.17) × 106 cells/cm2 in the control). For samples PCL/C10, the level of fibroblast adhesion
was comparable to the control level. For samples PCL/C30 cell adhesion was significantly decreased;
for PCL/C50 the registered decrease was statistically insignificant. For PHB/PCL films, at Day 3,
the highest cell proliferation rate was observed on samples C30 (2.00(±0.27) × 105 cells/cm2 vs.
0.92–1.03 × 105 cells/cm2 on the other samples). For samples C50, favorable effects was noted by Day 7
but they were not statistically significant.
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Figure 3. Results of MTT assay—the number of viable NIH 3T3 mouse fibroblast cells on polymer films
at Days 3 (a) and 7 (b) of cultivation.

4. Discussion

It is important for cell scaffolds and wound dressings to have interconnected porosity, which
enables vascularization, sufficient flows of nutrients, gas and water exchange and waste outflow. At
the same time, they should remain mechanically strong. A common method for preparing porous
carriers is to supplement the solution with the pore-forming particles (sodium chloride, sucrose, etc.)
that are insoluble in it and then leach them out. However, by using this method, it is difficult to prevent
pore-forming particles from agglomerating, enable their uniform distribution and control mechanical
properties of the product [19]. Another possible method is freeze-drying: freezing of the polymer
solution followed by sublimation of the solvent from the frozen state by decreasing the pressure [21].
High porosity constructs can be produced by freezing polymer solution at temperatures between
−20 and −196 ◦C followed by leaching the solvent out [29]. The low temperatures and the drying
conditions needed to produce porous constructs using this method make it very power-consuming,
which is a serious limitation to its use. This method directly depends on the testing and selection of
several experimental parameters such as solution concentration, solvent type, freezing temperature,
freezing rate and partial pressure [30]. A widely used technique now is thermally induced phase
separation: rapid changes of the temperature of the polymer solution to a certain critical value, which
results in spontaneous separation of the solution into phases and formation of pores in the bulk of
the construct after solvent evaporation. By varying polymer concentrations and temperature, one
can control micro- and macrostructure of the construct [22] and produce highly porous polymer
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membranes [31]. Limitations of this method are control issues and unstable pore sizes and porosity
structure [32].

Polymers based on PHAs and PCL, which are highly biocompatible and slowly degraded,
are promising materials for reconstructive bioengineering, construction of bio-artificial organs,
and tissue and cellular engineering. An additional way to improve mechanical properties and
overcome the drawbacks of pure polymers, to enhance their elasticity and mechanical strength is to
prepare polymer-based blends [33,34]. As shown in a previous work [35], PCL with added 25% of
poly-3-hydroxybutyrate-co-(7.5 mol. %)-3-hydroxyvalerate copolymer demonstrated better mechanical
properties (e.g., elongation at break) than even pure PCL.

The porogen used in this study was a nontoxic, co-soluble camphor added to the polymer solution
and then leached out from the polymer-porogen system.

We prepared different biopolymer films based on biodegradable polyesters (PHB and PCL),
whose structures and water vapor transmission rates were changed by introducing porosity. Electron
microscopy showed the greatest effects for PCL and PHB/PCL films although for PCL the morphology
was insufficiently uniform.

The porosity values generally correlated with the amounts of the camphor initially added to
the solution for preparing films. The polymer composition of the films had a weaker effect on their
porosity, which varied from the values close to zero in the control samples to about 50% in the samples
prepared with 50% porogen added to the polymer solution (Table 2). The structure of the films and
their WVTR were determined by both polymer composition and porogen concentration. The WVTR
increase correlated with microscopy data: for PHB films WVTR increased by a factor of 4.7, for PCL
films by a factor of 6.8 and for PHB/PCL films by a factor of 5.9.

PHB and PHB/PCL porous biopolymer films did not produce any cytotoxic effects on the cultured
fibroblast cells and favored cell proliferation. Among the PHB films, at Day 3, the most pronounced
beneficial effect was observed on samples C50, which could be attributed to their high WVTR. This
advantage, however, became less significant at Day 7, when samples C10 and, to a lesser extent,
C30 showed better results. These delayed effects could be primarily associated with the surface
hydrophilicity, which was highest for C10 (based on PSFE values, Table 1) and correlated well with
results of the MTT assay.

For the PHB/PCL films, the more rapid growth of cells on C30 and, to a lesser extent, C50 films,
could not be attributed to hydrophilic properties of the films. SEM images (Figure 1), however, show
an obvious change in the topography of these films compared to the control and C10. In addition to
hydrophilicity and pore structure, pore size is an important factor [36] for many cell effects. Formation
of 1.5–4 µm uniformly distributed pores was only observed on the PHB/PCL/C30 and PHB/PCL/C50
films, which could be a factor stimulating cell growth. The porosity achieved in this study was much
lower than in the studies that employed other methods of the treatment of polyesters. In a study
by Conde et al. [37], NaCl crystals were added to the solution of poly-l-lactic acid (PLLA) causing
formation of the structures with pores larger than 150 µm. The addition of gelatin particles to the PLLA
solution in 1,4-dioxane enabled formation of 280–450 µm pores [38]. The use of the technique of phase
separation in the PLA solution in ethanol/dichloromethane based on the preferential evaporation of
the lower-boiling dichloromethane enabled production of polymer structures with pores larger than
100 µm. Matrices with smaller, 30–90 µm, pores were prepared by CO2 blowing followed by ultrasonic
treatment [39]. Comparable results (30–100 µm) were obtained by using a similar technique (with no
ultrasonic treatment) on poly(dl-lactide-co-glycolide) 85/15 [40]. Finally, a combination of solid state
extrusion and porogen (NaCl) leaching method produced pores of diameter of about 9 µm, resulting
from destruction of larger NaCl particles during the processing [41]. In general, the method used
allows for a smaller pore size than after using insoluble porogens. However, the observed correlation
between threshold content and pore size is complex and highly dependent on the composition of the
polymer matrix (Figure 1). Thus, in the case of PHB matrices, the inclusion and subsequent leaching of
camphor did not affect the pore size, although it significantly increased the total porosity and moisture
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absorption. In the case of PCL, an increase in camphor inclusions significantly increased the pore size.
Mixed samples showed intermediate values.

In the case of PCL films, the C30 and C50 PCL samples showed the highest hydrophobicity (PSFE
0.1 and 1.9 mN/m), which was consistent with its lowest values in the MTT assay (Figure 3); the
tendency observed at Day 3 had been exhibited until the end of the experiment. The other reason
of such MTT results can be in nonuniform pore arrangement of the PCL porous films (especially for
PCL/C30; Figure 1, row 2) which is normally a disadvantage for tissue healing in vivo as cells are
more prone to colonize oriented structures due to the superior homogeneity in nutrients as oxygen
distribution [42]. This problem can be possibly overridden to change or tune parameters of film
preparation including type of solvent, temperature which can also affect evaporation time and polymer
crystallization from the solution) and even porogen composition.

None of the experimental films except PCL/C30 and PCL/C50 had biological properties inferior to
those of the control films, as suggested by results of the MTT assay. The main aim of adding porogen is
to enhance air and water vapor permeability of films, which is an important factor in, e.g., constructing
wound-healing dressings. At the same time, the biocompatibility of the material must be preserved at a
level characteristic of the initial polymer; enhancing biocompatibility is a secondary, though desirable,
goal. This condition was fully achieved at least for the PHB and PHB/PCL matrices.

So, the proposed method can be used to construct highly porous cell scaffolds for cellular
engineering. In the future, this method can be employed to use co-soluble components (such as
camphor) to develop porosity in combination with insoluble substances (such as NaCl or sucrose)
to achieve macroporosity. Such two-level porosity could, on the one hand, facilitate more effective
diffusion of nutrients and gases in the matrix layer and, on the other, produce a necessary spatial
structure for cell growth in the bulk.
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