Supporting information

Enzymatic polycondensation of 1,6-hexanediol and diethyl adipate: A statistical approach predicting the key-parameters in solution and in bulk

Kifah Nasr^{1,2}, Julie Meimoun¹, Audrey Favrelle-Huret¹, Julien De Winter³, Jean-Marie Raquez^{2*}, Philippe Zinck^{1*}

Contents

¹ H NMR spectra:	2
Statistical information (in solution polymerization)	9
Statistical information (bulk polymerization)	11
MALDI-TOF MS tested samples	15

¹H NMR spectra:

Figure S1: 1,6-hexanediol (C₆H₁₄O₂) ¹H NMR spectrum (CDCl₃, 300 MHz): δ 1.39 (m, 4H), 1.58 (m, 4H), 3.64 (t, *J* = 6.5 Hz, 4H).

Figure S2: Diethyl adipate (C₁₀H₁₈O₄) ¹H NMR spectrum (CDCl₃, 300 MHz): δ 1.25 (t, *J* = 7.1 Hz, 6H), 1.66 (m, 4H), 2.31 (t, *J* = 7.2 Hz, 4H), 4.11-4.13 (q, *J* = 7.1 Hz, 4H).

Figure S3: Poly(hexylene adipate) $[-O(CH_2)_6O_2C(CH_2)_4CO_]n$ ¹H NMR spectrum (CDCl₃, 300 MHz): δ 1.37 (m, 4H), 1.66 (m, 8H), 2.32 (t, *J* = 7.1 Hz, 4H), 4.06 (t, *J* = 6.7 Hz, 4H).

Figure S4: ¹H NMR spectrum (CDCl₃, 300 MHz) of the crude reaction of 1,6-hexanediol and diethyl adipate in diphenyl ether (1 mL), and the yielded Poly(hexylene adipate) after 15 mins reaction at 80 °C and 1% w/w enzyme loading: δ 1.25 (t, 6H), 1.37 (m, 8H), 1.66 (m, 12H), 2.32 (t, 8H), 3.65 (t, 4H), 4.06 (t, 4H), 4.11-4.13 (q, 4H). *Note:* δ ~7-7.5 represent diphenyl ether.

Figure S5: Enlarged view of figure S4 (between 2.2 and 4.2 ppm).

The totality of the unreacted monomer in addition to the produced polymer was presented as an integral of 1 that can be calculated via two ways, either by considering the integral for Poly(hexylene adipate) and unreacted diethyl adipate (-OOC-<u>CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-COO-) represented at δ = 2.32 or by considering the combination of signals at δ = 4.11-4.14 of the methylene group (CH₃-<u>CH₂-O-) of the unreacted diethyl adipate in addition to the signals at δ = 4.06 of the methylene (-O-<u>CH₂-C4H₈-CH₂-O-) of the produced Poly(hexylene adipate). The conversion is considered as the ratio of the integral presenting the methylene (-O-<u>CH₂-C4H₈-CH₂-O-) of the produced Poly(hexylene adipate) to the total mentioned above given in Equation S1: *Conversion* = 100 × $\frac{I_b}{I_a+I_b}$, where I_b is the integral of methylene (-O-<u>CH₂-C4H₈-CH₂-O-) of the produced Poly(hexylene adipate), and I_a is the integral of the methylene group (CH₃-<u>CH₂-O-) of the unreacted diethyl adipate</u>. Due to partial peak overlapping between the triplets representing the methylene (-O-<u>CH₂-C4H₈-CH₂-O-) of Poly(hexylene adipate</u>) at δ = 4.06 and the right peak of the</u></u></u></u></u>

quartet representing the unreacted diethyl adipate (-OOC-<u>CH₂</u>-CH₂-CH₂-<u>CH₂</u>-COO-) at δ = 2.32, the conversion was calculated by including the mentioned peak as an integral of Poly(hexylene adipate) and subtracting its value represented by the left peak of the quartet (0.38-0.08= 0.3= 30% conversion).

Figure S6: ¹H NMR spectrum (CDCl₃, 300 MHz) of the crude reaction of 1,6-hexanediol and diethyl adipate in bulk, and the yielded Poly(hexylene adipate) after 24 h at 50 mbar vacuum application, at 90 °C and 5.5% w/w enzyme loading.

Figure S7: ¹H NMR spectrum (CDCl₃, 300 MHz) of the crude reaction of 1,6-hexanediol and diethyl adipate in 1 mL diphenyl ether, and the yielded Poly(hexylene adipate) after 24 h at 10 mbar vacuum application, at 100 °C and 1% w/w enzyme loading. *Note:* $\delta \sim$ 7-7.5 represent diphenyl ether.

Statistical information (in solution polymerization) Build Information

Table S1: Build information of the design model for in solution polymerization.

File Version	11.1.2.0			
Study Type	Response Surface		Subtype	Randomized
Design Type	I-optimal	Coordinate Exchange	Runs	18
Design Model	Quadratic		Blocks	No Blocks

Fit Statistics

Table S2: Fit statistics for in solution polymerization.

Std. Dev.	415.60	R ²	0.9851
Mean	7288.56	Adjusted R ²	0.9683
C.V. %	5.70	Predicted R ²	0.9231
		Adeq Precision	25.5240

The **Predicted R²** of 0.9231 is in reasonable agreement with the **Adjusted R²** of 0.9683; *i.e.* the difference is less than 0.2.

Adeq Precision measures the signal to noise ratio. A ratio greater than 4 is desirable. The ratio of 25.524 indicates an adequate signal. This model can be used to navigate the design space.

M_n	=
-57746.63612	
+102.81721	% w/w enzyme loading
+1409.90006	Temperature
-170.83302	Vacuum
-0.091667	% enzyme * Temperature
-2.09306	% w/w enzyme loading * Vacuum
-2.38562	Temperature * Vacuum
+3.05879	% w/w enzyme loading ²
-6.82060	Temperature ²
+4.48610	Vacuum ²

Table S3: Final equation in term of actual factors (in-solution polymerization).

Figure S8: Graph of the predicted vs. actual plots in solution polymerization.

Confirmation

Two-sided Confidence = 95%

Table S4: Additional tested point for model confirmation for in solution polymerization.

Temperature	% w/w	Vacuum	Response	Predicted	Predicted	Std Dev	n	SE Pred	95% PI low	Data	95% PI high
(°C)	enzyme	(mbar)		Mean	Median					Mean	
	loading										
90	10	50	Mn	6040.86	6040.86	415.602	1	544.717	4784.74	5955	7296.98
100	5.5	50	Mn	5814.91	5814.91	415.602	1	544.717	4558.79	6699	7071.03
90	10	10	Mn	11533	11533	415.602	1	544.717	10276.9	10340	12789.1
100	5.5	10	Mn	11884.6	11884.6	415.602	1	544.717	10628.4	11300	13140.7
100	1	10	Mn	11467.9	11467.9	415.602	2	472.773	10377.6	12250	12558.1

Statistical information (bulk polymerization) Build Information

Table S5: Build information of the design model for bulk polymerization.

File Version11.1.2.0

Study Type Response Surface Subtype Randomized

Design Type Central Composite **Runs** 18

Design Model Quadratic **Blocks** No Blocks

Fit Statistics

Table S6: Fit statistics for bulk polymerization.

Std. Dev.	292.34	R ²	0.9697
Mean	7290.78	Adjusted R ²	0.9355
C.V. %	4.01	Predicted R ²	0.9000
		Adeq Precision	18.9389

The Predicted R² of 0.9000 is in reasonable agreement with the Adjusted R² of 0.9355; *i.e.* the

difference is less than 0.2.

Adeq Precision measures the signal to noise ratio. A ratio greater than 4 is desirable. The ratio of

18.939 indicates an adequate signal. This model can be used to navigate the design space.

Table S7: Final equation in term of actual factors (bu	lk polymerization).
--	---------------------

M_n	=
-61780.81204	
+1489.13946	Temperature
-674.83906	% w/w enzyme loading
+43.99298	Vacuum
+3.38892	Temperature * % w/w enzyme loading
-0.090008	Temperature * Vacuum
-1.79724	% w/w enzyme loading * Vacuum
-7.95682	Temperature ²
+54.80580	% w/w enzyme loading ²
-0.874206	Vacuum ²

Figure S9: Graph of the predicted vs. actual plots in bulk polymerization.

Confirmation

Two-sided Confidence = 95%

Table S8: Additional tested point for model confirmation for in solution polymerization.

Temperature	% w/w	Vacuum	Response	Predicted	Predicted	Std Dev	n	SE Pred	95% PI low	Data	95% PI high
(°C)	enzyme	(mbar)		Mean	Median					Mean	
	loading										
100	1	10	Mn	7528.28	7528.28	292.343	1	390.969	6626.7	7039	8429.85
90	1	10	Mn	7729.96	7729.96	292.343	1	383.149	6846.42	7065	8613.5
90	5.5	10	Mn	7587.89	7587.89	292.343	1	359.478	6758.93	8221	8416.85
80	10	50	Mn	6625.48	6625.48	292.343	1	391.098	5723.6	5832	7527.35
90	5.5	50	Mn	6530.09	6530.09	292.343	2	293.411	5853.49	6105.5	7206.7
80	10	10	Mn	7970.78	7970.78	292.343	1	390.969	7069.2	7678	8872.35
100	10	10	Mn	9768.78	9768.78	292.343	1	389.332	8870.98	9525	10666.6

MALDI-TOF MS tested samples Table S9: Experiments analyzed via MALDI-TOF MS for end group determination.

			Bulk polycondensation				In-s	solution p	olyconder	isation	
Expe	erimental conditi	ons			Determine	d via SEC		Determine		d via SEC	
Enzyme	Temperature	Vacuum		Mn	Mw	dispersity		Mn	Mw	dispersity	
% w/w	°C	mbar	Experiment	g/mol	g/mol		Experiment	g/mol	g/mol		
1	80	50	1B	5500	6800	1.2	18	4500	5900	1.3	
10	80	50	2B	6600	8200	1.2	28	4600	6000	1.3	
1	100	50	3B	6900	9100	1.3	38	5900	7700	1.3	
10	100	50	4B	8400	10700	1.3	48	6000	8200	1.4	
1	80	10	5B	6300	8400	1.3	55	8200	11800	1.5	
10	80	10	6B	7900	11200	1.4	65	9000	13300	1.5	
1	100	10	78	7500	10100	13	78	11500	17800	16	
10	100	10	9D	0700	15700	1.5	00	12200	10400	1.0	
10	100	10	ðВ	9700	15700	1.0	85	12300	19400	1.0	