Supporting Information for the manuscript:

Effect of thermal annealing on conformation of MEH-PPV chains in polymer matrix: coexistence of H- and J- aggregates

S. Hu^a, Y. Liao^a, Y. Zhang^a, X.L. Yan^a, Z.L. Zhao^b, W.Q. Chen^b, X. Zhang^b,

H.X. Liu^b, H. Li^a, L. Li^a, M. Sun^{a,*}, C.X. Sheng^{a,*}

^a School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China ^bBeijing Spacecrafts, Beijing 100094, China

Corresponding Author

*E-mail: cxsheng@njust.edu.cn (C.X.S.); msun@njust.edu.cn

Fig. S1 Schematics of (**a**) oligomer in which the wave-function of excitons would be confined within few of repeat units. (**b**) J-aggregate within a single polymer chain. (**c**) Interchain H aggregates resulting from chain-chain interaction. Because the existence of intrachain interaction, the so-called HJ-aggregates is also possible. (**d**) H-aggregates formed within a single chain between tightly stacked segments of different chromophores.^[1]

Fig. S2 Photoluminescence spectra of MEH-PPV/PMMA blends films (casted from different solvent solution) with the weight ratio is 1/100 measured at (a) 300 K (b) 80 K.

Fig. S3 Temperature dependent photoluminescence spectra of MEH-PPV/PMMA blend film with weight ratio of 1/100, from a chlorobenzene solution 10 time diluted than which was used to cast Sample A.

Fig. S4 The relation between inverse square root of temperature and ratio of I_{0-0}/I_{0-1} . Insert is the ratio of I_{0-0}/I_{0-1} at different temperatures.

Fig. S5 Absorption spectra of (a) MEH-PPV film and MEH-PPV/PMMA (1/100) blend film as cast and annealed at 160 °C (b) MEH-PPV film as cast and annealed at \sim 150 °C.

Fig. S6 Temperature dependent photoluminescence spectra of RR-P3HT film. Insert is the zoom-in of spectra with the wavelength from 660 nm to 690 nm (0-0 transition).

Fig. S7 Zoom-in of the photoluminescence spectra of the MEH-PPV/PMMA (1/100) blend film annealed at 160 °C measured at various temperatures. J_{0-1} transition can be discerned in clarity.

Fig. S8 The normalized photoluminescence spectra of MEH-PPV/PMMA blends film annealed at 160 °C excited with different power measured at (a) 300 K and (b) 80 K. Photoluminescence intensity as a function of the excitation laser power measured at (a) 300 K and (d) 80 K.

Fig. S9 The temperature dependent photoluminescence spectra of MEH-PPV/PMMA blend film (**a**) annealed at 80 °C, (**b**) annealed at 120 °C.

Fig. S10 The temperature dependent photoluminescence spectra of MEH-PPV/PMMA blend films generating from THF dispersions.

Fig. S11 The temperature dependent photoluminescence spectra of MEH-PPV/PS blends film with the weight ratio of 1/1000 (a) as-cast, (b) annealed at 160 °C.

References

1. Ostroverkhova, O., Organic Optoelectronic Materials: Mechanisms and Applications. *Chem. Rev.* **2016**, 116, 13279-13412.