Article

Photoresponsive Photoacid-Macroion NanoAssemblies

Alexander Zika, Sarah Bernhardt and Franziska Gröhn*
Department of Chemistry and Pharmacy \& Interdisciplinary Center for Molecular Materials, FriedrichAlexander Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen. alexander.az.zika@fau.de (A.Z); sarah.bernhardt@fau.de (S.B)
* Correspondence: franziska.groehn@fau.de

Received: 21 June 2020; Accepted: 31 July 2020; Published: date

Supporting Information

Figure S1. Assembly formation and photoresponse of the dendrimer-1N36S system at $\mathrm{r}=4.0$. DLS; electric field autocorrelation function $\mathrm{g}^{1}(\tau)$ and distribution of relaxation times $\mathrm{A}(\tau)$ at a scattering angle of $\theta=90^{\circ}$.

Figure S2. Assembly formation and photoresponse of the dendrimer-1N36S system at higher concentration at $\mathrm{r}=0.5$. DLS; electric field autocorrelation function $\mathrm{g}^{1}(\tau)$ and distribution of relaxation times $A(\tau)$ at a scattering angle of $\Theta=90^{\circ}$.

Figure S3. Assembly formation and photoresponse of the dendrimer-1N36S system at higher concentration $\left(c(1 N 36 S)=9.33 \cdot 10^{-3} \mathrm{~mol} / \mathrm{L}\right)$. DLS; dependency of R_{H} on the charge ratio.

Figure S4. UV/Vis spectroscopy of the pH-dependency of 1N36S in solution.

Figure S5. Assembly formation and photoresponse of the dendrimer-2N36S system at $r=0.1$. DLS; electric field autocorrelation function $\mathrm{g}^{1}(\tau)$ and distribution of relaxation times $\mathrm{A}(\tau)$ at a scattering angle of $\theta=90^{\circ}$.

Figure S6. UV/Vis spectroscopy of the pH -dependency of 1 N 38 S in solution.

Figure S7. Assembly formation and photoresponse of the dendrimer-1N38S system at $r=0.1$. DLS; electric field autocorrelation function $\mathrm{g}^{1}(\tau)$ and distribution of relaxation times $\mathrm{A}(\tau)$ at a scattering angle of $\theta=90^{\circ}$.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

