Supplementary Materials: Heat-Stable Hazelnut Profilin: Molecular Dynamics Simulations and Immunoinformatics Analysis

Haruna L. Barazorda-Ccahuana ^{1,‡}*^(D), Vinicius Theiss-De-Rosso ^{2,‡}, Diego Ernesto Valencia ^{1,‡}^(D) and Badhin Gómez ^{1,(D)}

Start	End	Peptide	Number of residues	score
		t = 180 ns		
124	130	DYLIDQG	7	0.731
107	114	DEPMTPGQ	8	0.679
87	90	KGPG	4	0.638
76	81	QGEPGA	6	0.629
1	11	MSWQAYGDEHL	11	0.619
13	20	CEIEGNRL	8	0.602
51	73	MNDFNEPGSLAPTGLYLGGTKYM	23	0.599
27	33	GHDGSVW	7	0.552
		t = 185 ns		
124	130	DYLIDQG	7	0.763
107	114	DEPMTPGQ	8	0.651
1	11	MSWQAYGDEHL	11	0.643
55	73	NEPGSLAPTGLYLGGTKYM	19	0.639
76	81	QGEPGA	6	0.624
40	46	POLKPEE	7	0.62
87	90	~ KGPG	4	0.617
13	20	CEIEGNRL	8	0.606
		t = 190 ns		
123	130	GDYLIDOG	8	0.688
107	114	DEPMTPGO	8	0.665
1	10	MSWOAYGDEH	10	0.649
87	90	ĸGPG	4	0.633
52	73	NDFNEPGSLAPTGLYLGGTKYM	22	0.625
76	81	OGEPGA	6	0.596
13	20	CEIEGNRL	8	0.592
40	<u>-</u> ° 46	POLKPEE	7	0.591
27	34	GHDGSVWA	8	0.556
	01	t = 195 ns		
124	130	DYLIDOG	7	0.742
40	46	POLKPEE	7	0.678
87	90	KGPG	4	0.637
107	115	DEPMTPGOC	9	0.624
10,	11	MSWOAYGDFHL	11	0.61
13	20	CEIECNRI	8	0.01
51	20 73	MNDENEPCSI APTCI VI CCTKVM	23	0.598
76	81	OCEPCA	6	0.590
70	01	t = 200 ns	0	0.57
124	130	DYLIDOG	7	0.72
40	46	POLKPEE	, 7	0.676
1	10	MSWOAVCDFH	, 10	0.66
87	90	KCPC	10 Δ	0.00
107	115		т 0	0.000
51	£10 &1	MNIDENIEPCSI APTCI VI CCTKVMVIOCEDCA	21	0.020
12	20		0	0.0
13	20	CEIEGINIKL	0	0.905

Table S1. Epitopes prediction of the Cor a 2 at 300 K

CEIEGNRL

8

0.554

Start	End	Peptide	Number of residues	scor
		t = 180 ns		
68	81	GGTKYMVIQGEPGA	14	0.514
27	32	GHDGSV	6	0.55
13	19	CEIEGNR	7	0.579
87	90	KGPG	4	0.622
51	65	MNDFNEPGSLAPTGL	15	0.629
40	49	PQLKPEEITG	10	0.664
1	10	MSWQAYGDEH	10	0.66
107	117	DEPMTPGQCNM	11	0.70
125	130	YLIDQG	6	0.73
		t = 185 ns		
126	130	LIDQG	5	0.75
108	117	EPMTPGQCNM	10	0.72
75	81	IQGEPGA	7	0.69
1	10	MSWQAYGDEH	10	0.67
50	60	VMNDFNEPGSL	11	0.67
40	47	PQLKPEEI	8	0.64
13	18	CEIEGN	6	0.59
66	73	YLGGTKYM	8	0.54
27	31	GHDGS	5	0.52
		t = 190 ns		
126	130	LIDQG	5	0.78
108	117	EPMTPGQCNM	10	0.71
51	60	MNDFNEPGSL	10	0.67
40	47	PQLKPEEI	8	0.66
1	11	MSWQAYGDEHL	11	0.64
13	19	CEIEGNR	7	0.57
62	81	PTGLYLGGTKYMVIQGEPGA	20	0.54
		t = 195 ns		
54	59	FNEPGS	6	0.75
76	81	QGEPGA	6	0.73
108	117	EPMTPGQCNM	10	0.72
1	9	MSWQAYGDE	9	0.70
40	47	PQLKPEEI	8	0.68
123	130	GDYLIDQG	8	0.61
13	18	CEIEGN	6	0.59
27	31	GHDGS	5	0.53
62	73	PTGLYLGGTKYM	12	0.51
		t = 200 ns		
40	47	PQLKPEEI	8	0.73
52	64	NDFNEPGSLAPTG	13	0.66
1	10	MSWOAYGDEH	10	0.66
107	117	DEPMTPGOCNM	11	0.66
86	89	KKGP	4	0.64
123	130	GDYLIDOG	8	0.01
	100		0	0.0

Table S2. Epitopes prediction of the Cor a 2 at 350 K

27 31 GHDGS 5	0.534
---------------	-------

Start	End	Peptide	Number of residues	score
		t = 180 ns		
123	130	GDYLIDQG	8	0.785
1	11	MSWQAYGDEHL	11	0.685
36	52	SSTFPQLKPEEITGVMN	17	0.657
55	63	NEPGSLAPT	9	0.656
28	33	HDGSVW	6	0.608
108	115	EPMTPGQC	8	0.563
96	99	KTSQ	4	0.544
13	20	CEIEGNRL	8	0.523
		t = 185 ns		
40	52	PQLKPEEITGVMN	13	0.767
120	130	ERLGDYLIDQG	11	0.684
54	63	FNEPGSLAPT	10	0.67
1	10	MSWQAYGDEH	10	0.667
86	89	KKGP	4	0.623
108	114	EPMTPGQ	7	0.604
75	81	IQGEPGA	7	0.59
13	18	CEIEGN	6	0.587
		t = 190 ns		
123	130	GDYLIDQG	8	0.778
44	64	PEEITGVMNDFNEPGSLAPTG	21	0.722
1	11	MSWQAYGDEHL	11	0.647
107	114	DEPMTPGQ	8	0.626
76	81	QGEPGA	6	0.571
13	19	CEIEGNR	7	0.543
		t = 195 ns		
123	130	GDYLIDQG	8	0.805
1	10	MSWQAYGDEH	10	0.671
44	65	PEEITGVMNDFNEPGSLAPTGL	22	0.667
27	33	GHDGSVW	7	0.602
97	100	TSQA	4	0.594
108	115	EPMTPGQC	8	0.588
13	18	CEIEGN	6	0.577
		t = 200 ns		
123	130	GDYLIDQG	8	0.792
108	114	EPMTPGQ	7	0.662
44	64	PEEITGVMNDFNEPGSLAPTG	21	0.649
76	81	QGEPGA	6	0.64
1	19	MSWQAYGDEHLMCEIEGNR	19	0.613
28	33	HDGSVW	6	0.556
69	73	GTKYM	5	0.526

Table S3.	Epitopes	prediction	of the	Cor a 2	at 400 K
-----------	----------	------------	--------	---------	----------

Start	End	Peptide	Number of residues	score
		t = 180 ns		
65	72	LYLGGTKY	8	0.827
4	19	QAYGDEHLMCEIEGNR	16	0.682
119	130	VERLGDYLIDQG	12	0.672
96	100	KTSQA	5	0.671
27	33	GHDGSVW	7	0.611
52	59	NDFNEPGS	8	0.604
42	49	LKPEEITG	8	0.6
		t = 185 ns		
65	72	LYLGGTKY	8	0.755
27	30	GHDG	4	0.688
51	58	MNDFNEPG	8	0.675
1	19	MSWQAYGDEHLMCEIEGNR	19	0.655
107	115	DEPMTPGQC	9	0.62
44	49	PEEITG	6	0.613
117	127	MIVERLGDYLI	11	0.599
		t = 190 ns		
119	130	VERLGDYLIDQG	12	0.772
95	100	KKTSQA	6	0.74
27	30	GHDG	4	0.692
1	15	MSWQAYGDEHLMCEI	15	0.636
38	58	TFPQLKPEEITGVMNDFNEPG	21	0.616
107	115	DEPMTPGQC	9	0.596
		t = 195 ns		
125	130	YLIDQG	6	0.745
1	17	MSWQAYGDEHLMCEIEG	17	0.738
68	72	GGTKY	5	0.689
106	116	YDEPMTPGQCN	11	0.667
44	61	PEEITGVMNDFNEPGSLA	18	0.665
		t = 200 ns		
125	130	YLIDQG	6	0.837
68	72	GGTKY	5	0.717
1	17	MSWQAYGDEHLMCEIEG	17	0.7
41	60	QLKPEEITGVMNDFNEPGSL	20	0.657
107	117	DEPMTPGQCNM	11	0.612
27	30	GHDG	4	0.575
78	89	EPGAVIRGKKGP	12	0.524

Table S4. Epitopes prediction of the Cor a 2 at 450 K

Start	End	Peptide	Number of residues	score
		t = 180 ns		
110	128	MTPGQCNMIVERLGDYLID	19	0.745
1	10	MSWQAYGDEH	10	0.704
58	80	GSLAPTGLYLGGTKYMVIQGEPG	23	0.678
29	34	DGSVWA	6	0.591
42	55	LKPEEITGVMNDFN	14	0.591
87	90	KGPG	4	0.563
		t = 185 ns		
62	69	PTGLYLGG	8	0.729
41	58	QLKPEEITGVMNDFNEPG	18	0.691
1	21	MSWQAYGDEHLMCEIEGNRLA	21	0.667
85	92	GKKGPGGV	8	0.652
104	127	GIYDEPMTPGQCNMIVERLGDYLI	24	0.589
		t = 190 ns		
40	60	PQLKPEEITGVMNDFNEPGSL	21	0.701
1	21	MSWQAYGDEHLMCEIEGNRLA	21	0.691
84	92	RGKKGPGGV	9	0.597
65	72	LYLGGTKY	8	0.57
104	127	GIYDEPMTPGQCNMIVERLGDYLI	24 0.55	
		t = 195 ns		
11	20	LMCEIEGNRL	10	0.724
38	65	TFPQLKPEEITGVMNDFNEPGSLAPTGL	28	0.697
106	127	YDEPMTPGQCNMIVERLGDYLI	22	0.684
4	8	QAYGD	5	0.602
85	91	GKKGPGG	7	0.588
		t = 200 ns		
1	7	MSWQAYG	7	0.808
47	66	ITGVMNDFNEPGSLAPTGLY	20	0.754
107	126	DEPMTPGQCNMIVERLGDYL	20	0.728
29	40	DGSVWAQSSTFP	12	0.624
76	80	QGEPG	5	0.522

Table S5.	Epitopes	prediction	of the Co	or a 2 at 500	Κ

Temperature	% Strand	No. Beta sheet	No. Strands	Strand Conformation	No. Residues					
				Ala22-Ile26 Val32-Gln35 Leu65-Tyr66						
300K	26.2	1	7	Lvs71-Val74	34					
00010	_0	-		Val82-Lvs86	01					
				Gly91-Thr97						
				Ala100-Tyr106						
				Ala22-Ile26						
				Ala34-Gln35						
				Leu65-Tyr66						
350K	25.4	1	7	Lys71-Ile75	38					
				Val82-Lys86						
				Gly90-Lys96						
				Leu101-Asp107						
				Leu20-Gly27						
	26.2	26.2			Val32-Gln35					
400K			26.2	26.2	26.2	26.2	1	6	Met73-Ile75	34
1001						1	0	Ile83-Lys86	04	
				Gly90-Lys96						
				Ala100-Asp107						
				Ala23-Ile26						
			4	Ser31-Ala34	22					
450K	21.5	2	1	Gly91-Thr97						
				Ala100-Tyr106						
			2	Leu65-Leu67	6					
				Tyr72-Val74	-					
				Gly7-His10						
500K	15.4	1	4	Val82-Ile83	20					
		_		Val92-Thr97						
				Ala100-Asp107						

 Table S6. Conformational features of beta strands composition of Cor a 2 at different temperatures.

Figure S1. Cross-reactivity of profilin at 300K with allergens, the label E1 to E7 correspond for an epitope.

350 K

Figure S2. Cross-reactivity of profilin at 350K with allergens, the label E1 to E9 correspond for an epitope.

400 K

Figure S3. Cross-reactivity of profilin at 400K with allergens, the label E1 to E7 correspond for an epitope.

Figure S4. Cross-reactivity of profilin at 450K with allergens, the label E1 to E7 correspond for an epitope.

Figure S5. Cross-reactivity of profilin at 500K with allergens, the label E1 to E5 correspond for an epitope.