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Abstract: Material Extrusion-Based Additive Manufacturing Process (ME-AMP) via Fused Filament
Fabrication (FFF) offers a higher geometric flexibility than conventional technologies to fabricate
thermoplastic lightweight sandwich structures. This study used polylactic acid/polyhydroxyalkanoate
(PLA/PHA) biodegradable material and a 3D printer to manufacture lightweight sandwich structures
with honeycomb, diamond-celled and corrugated core shapes as a single part. In this paper,
compression, three-point bending and tensile tests were performed to evaluate the performance of
lightweight sandwich structures with different core topologies. In addition, the main failure modes
of the sandwich structures subjected to mechanical tests were evaluated. The main failure modes that
were observed from mechanical tests of the sandwich structure were the following: face yielding,
face wrinkling, core/skin debonding. Elasto-plastic finite element analysis allowed predicting the
global behavior of the structure and stressing distribution in the elements of lightweight sandwich
structures. The comparison between the results of bending experiments and finite element analyses
indicated acceptable similarity in terms of failure behavior and force reactions. Finally, the three
honeycomb, diamond-celled and corrugated core typologies were used in the leading edge of the
wing and were impact tested and the results created favorable premises for using such structures on
aircraft models and helicopter blade structures.

Keywords: fused filament fabrication; lightweight sandwich structures; mechanical testing; finite
element analysis; wing leading edge

1. Introduction

Lightweight sandwich structures are used in automotive, sustainable energy, aerospace, marine,
and building industries due to their high flexural stiffness-to-weight ratio, excellent thermal insulation
and high-energy absorption capacity [1]. The frequent use in engineering applications of lightweight
sandwich structures results in better acceleration and lower fuel consumption (for aircraft), but also
lower lifecycle costs because of lower operation costs for many applications [2]. The classic methods of
manufacturing and assembling of lightweight sandwich structures involve many stages that make
production expensive and require the purchase of complex and sometimes difficult to use devices [3].

A modern method of manufacturing lightweight sandwich structures, made from plastic,
composite and metallic materials, is represented by additive manufacturing technology. Additive
manufacturing technology comprises a wide range of technologies (Stereolithography, Inkjet printing,
Fused Filament Fabrication, Selective Laser Sintering, Selective Laser Melting) and consists of material
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deposition, layer by layer, having as a main purpose the transformation of digital models into physical
objects [4].

Fused Filament Fabrication (FFF) technology is the most widely used additive manufacturing
technology because it can use a wide range of materials, it is quiet and safe, it can produce usable
objects and components, the price of 3D printers is affordable and the technology is easy to use [5].
The complex geometries and structures which otherwise are difficult to achieve by using traditional
methods can be performed with the help of FFF technology. Additionally, using the FFF technology
product prototypes can be created, tested and quickly modified, if needed.

Research regarding the manufacture of lightweight sandwich structures using FFF technology
can be divided into several main directions: numerical testing and analysis of the core structures;
3D printing and analysis of gyroid cellular lattice structures; manufacture of sandwich structures
by bonding composite material sheets (Carbon Fiber Reinforced Polymers - CFRP) with the core
manufactured by additive technologies and 3D printing of sandwich structures for mechanical tests.
The honeycomb structures manufactured by additive technologies have been highly researched
regarding their compression strength [6], their energy absorption [7] and the shape recovery effect of a
3D-printed structure [8]. Recent studies have highlighted the diversity of the numerical analyses [9]
and the analysis of the failures, under compression tests [10] of the honeycomb structures manufactured
by FFF technology. In addition, FFF technology has been used to create different cellular topologies,
such as Gyroid and Schwarz P [11] or a 3D-printed hierarchical gyroid structure with embedded
TiO2 nanoparticles [12]. Because the printing of lightweight sandwich structures is difficult, the
manufacture of these structures consists of the core printed from different materials, such as polylactic
acid (PLA) [13,14], FLX 9795-DM [15], ABS (Acrylonitrile Butadiene Styrene) [14,16] and the skins
made from carbon fiber reinforced polymer and they are assembled using the vacuum bagging method.

These lightweight sandwich structures have been tested for mechanical performance (tensile,
three-point bending test and free vibration analysis) resulting in good behavior that facilitates their
use in various applications, such as aerospace, transport, civil or military. Different 3D-printed
polymeric meta-sandwich structures made of cubic, octet and isomax cellular cores have been used
for the development of architectural materials [1,17]. In these studies, the failure modes, mechanical
performances and energy absorption of 3D-printed lightweight sandwich panels with architected
cellular cores were evaluated. Further, researchers [18] have focused their studies on understanding
the influence of different sandwich structures (with three different core shapes, hexagon, triangle,
and square shapes) taking into account the following parameters: nature of core shape, number of
infill shapes, and orientation of cores and the way the dynamic behavior of sandwich structures is
influenced. Preliminary studies investigated the manufacture and testing of mechanical performance
(bending and tensile) of honeycomb core sandwich structures [19–21], printed with different materials
(PLA and ABS) and using different filling techniques. An initial investigation into the manufacture
of continuous carbon fiber sandwich structures without the addition of supports has been carried
out [22]. In this study, it was demonstrated that continuous carbon fiber 3D printers can be used to
flexibly design core shapes that satisfy the desired strength and stiffness. An innovative study was
developed by a group of researchers [23] who manufactured a honeycomb structure by FFF printing
using thermoplastic shape memory polymer.

However, following the study of the state of present knowledge it can be stated that there
are scientific challenges of an interdisciplinary nature that can be exploited, generating original
methodologies in the field of testing the mechanical performances of sandwich structures manufactured
by FFF technology. The main difficulty in 3D printing of honeycomb sandwich structures is that the
upper skin is manufactured above the core spaces; therefore, support structures are needed for good
quality 3D printing. When making sandwich structures, the honeycomb core becomes a closed space
and the supporting material cannot be removed later. Thus, it results in a sandwich structure with an
addition of material which causes a significant increase in its weight.
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In this paper, lightweight sandwich structures on the edge (in the XZ plane), without support,
were designed and manufactured by FFF technology with three configurations of core: honeycomb,
diamond-celled and corrugated. This study also evaluated the mechanical performance of lightweight
sandwich structures by conducting mechanical tests (compression, tensile, and three-point bending).
After determining the mechanical characteristics, these types of lightweight sandwich structures
were introduced in the leading-edge of an airplane wing, in order to determine their feasibility and
impact characteristics. In the end, a comparative study was performed between the values of the
reaction forces that appeared when breaking the specimens tested for three-point bending and the
values of the reaction forces that appeared in the structure of the supports of the FEA (Finite Element
Analysis) model.

2. Materials and Methods

2.1. Design of Sandwich Structures

Taking into account the current standards (MIL-STD-401B and ASTM C393) applied to lightweight
sandwich structures, the specimens (Table 1) specific to the compression, tensile and bending stresses
were designed using the SolidWorks 2016 software. The compression-tested specimens were designed
in accordance with current regulations and have the following characteristics: length 50 mm, width
50 cm, height 15 mm and a thickness of the skin of 0.75 mm. For tensile and three-point bending tests,
the specimens have the following dimensions: length 150 mm, width 20 cm, thickness specimen 15 mm
and thickness of the skin of 0.75 mm. The core typologies that were used in the tested specimens
showed the following dimensions: honeycomb core (Figure 1a), diamond-celled core (Figure 1b) and
corrugated core (Figure 1c). The specimens specific to the tensile tests have a classic configuration with
fillet radius and a solid area for good grip on the test machine (Figure 1d).
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Figure 1. Specimens characteristics (dimensions in mm): (a) honeycomb core; (b) diamond-celled core;
(c) corrugated core; (d) tensile specimens’ dimensions.

Table 1. The proposed lightweight sandwich specimens.

Compression Test
Specimens Tensile Test Specimens Three-Point Bending Test

Specimens

Honeycomb
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Table 1. Cont.

Compression Test
Specimens Tensile Test Specimens Three-Point Bending Test

Specimens

Diamond-celled
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In aviation, sandwich structures are used in the structure of the wings, on their leading-edge.
The sandwich structures follow the outline of the aerodynamic profile of the wing in order to stiffen
the wing. The modelling of the leading-edge of the wing starting with the introduction of the NACA
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Table 2. Wing leading edges specimens.

Honeycomb Core Diamond-Celled Core Corrugated Core
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BCN3D Sigma is a high-quality 3D printer, characterized by its innovative dual extrusion approach,
with a construction volume of 210 mm × 297 mm × 210 mm. The 3D printing parameters of the
specimens are described in Table 4.

Table 4. 3D printing parameters of the specimens.

Parameter Value

Layer height 0.15 [mm]
Infill 100 [%]

Print speed 50 [mm/s]
Travel speed 200 [mm/s]

Printing temperature 200 [◦C]
Building plate temperature 60 [◦C]

Hotend 0.4 [mm]

Normally, a sandwich structure consists of two skins and a core and the material from which the
core is made can be the same or different from that of the skins. In the case of the sandwich structures
made by additive technologies, the material used for the core and skins was the same (PLA/PHA),
with the manufacture being done in a single stage, as studied in this work; alternatively the core and
skin may be made from different materials, in a situation in which the skins will be later attached to
the core. The BCN3D Cura printer software converts the digital model into a set of instructions for the
3D printer and with it the manufacturing parameters have been set. The manufacture of the specimens
was carried out without material support (the samples subjected to compression tests (Figure 2a) and
the specimens subjected to three-point bending (Figure 2b), with the exception of tensile specimens
(Figure 2c), due to their geometry, which required the use of PVA (Polyvinyl Alcohol) support material
which is water soluble.
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In the manufacturing process of the specimens there were no problems, and their quality and
accuracy were high, without any layer debonding. The technological process of additive manufacturing
of the leading edge of the wing (Figure 2d) has the same parameters of additive manufacturing and
the same material (PLA/PHA), as those used in the specimens of sandwich structures.

2.4. Mechanical Testing

2.4.1. Compression Tests

Compression, tensile and three-point bending testing, of sandwich structure specimens was
performed on the WDW-150S universal testing machine (Jinan Testing Equipment IE Corporation,
Jinan, China). For testing the sandwich structures, 5 specimens were made for each configuration
of the core of the structure (honeycomb, diamond-celled, corrugated), depending on the type of test
the specimen will be subjected to. Thus, 15 specimens were manufactured for each category of tests,
including compression, three-point bending and tensile, totaling 45 specimens.

The mechanical compression tests of the lightweight sandwich structures were performed on
the WDW-150S mechanical test machine (Figure 3a). The compression tests were performed with
a crosshead speed of 5 mm/min. Five tests were performed for each of the lightweight sandwich
structures studied (honeycomb, diamond-celled, corrugated).
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Figure 3. The mechanical tests: (a) compression testing of diamond-celled core sandwich specimens;
(b) three-point bending testing of honeycomb core sandwich structures.

Equation (1) and Equation (2) were used to determine the compressive strength (σc) and
compressive modulus (Ec) values of the sandwich specimens [24].

σc =
Pc

Ac
(1)

Ec =
m · t
Ac

(2)

where Pc is the ultimate load on the compression tests (N); Ac is cross sectional area of the sandwich
specimens (mm2); m is the slope of the tangent to the initial straight line portion of the load-deflection
curve (N/mm); t is the nominal facing thickness (mm).

2.4.2. Three-Point Bending Tests

Three-point bending tests (Figure 3b) were performed according to ASTM C 393 standard [25], with
the crosshead speed of 5 mm/min until breaking. For bending tests, 15 specimens were manufactured,
5 for each type of structure core configuration (honeycomb, diamond-celled, corrugated). The radius
of punch and supports in the three-point bending was 15 mm, the span length was 110 mm.
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The bending strength (σb) and bending modulus (Eb) values of the sandwich specimens [26] were
determined using the following equations:

σb =
3PS

2bd2 (3)

Eb =
S3m
4bd3 (4)

where P is the force at a given point on the load deflection curve (N); S is the length of support span
(mm); b is the sandwich specimen width (mm); d is the sandwich specimen thickness (mm).

The core shear ultimate strength (τcsu (Equation (5))) and facing stress (σf (Equation (6))) were
determined with relations provided by the ASTM C393 standard, specific to three-point bending tested
sandwich specimens.

τcsu =
P

(d + c)b
(5)

σf =
PS

2t(d + c)b
(6)

where c is the core metastructure thickness (mm).

2.4.3. Tensile Tests

The method is used to determine the tensile behavior of the sandwich structures and to determine
the tensile strength, the tensile modulus and other aspects of the stress–displacement under the
defined conditions. The specimens are stressed along its main axis (Figure 4a) at a constant speed of
2 mm/min until breaking according to the conditions of the ASTM D638 standard [27]. For the tensile
tests, 15 specimens were manufactured, 5 for each type of core structure configuration (honeycomb,
diamond-celled, corrugated).
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Figure 4. The mechanical tests of the sandwich specimens: (a) tensile testing of diamond-celled core
sandwich structures; (b) charpy impact device.

The tensile strength (σt) and tensile modulus (Et) values of sandwich specimens were calculated
using Equation (7) and Equation (8), respectively. Tensile modulus was determined from the slope of
stress (σ)–strain (ε) curves of the sandwich specimens.

σt =
Pt

At
(7)
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Et =
σt

ε
(8)

Pt is ultimate load (N); At is the cross sectional area of the sandwich specimen (mm2).

2.4.4. Impact Tests

For the three types of core configurations in the structure of the leading edge of the wing impact
tests were performed using the Charpy hammer. The initial data were as follows: hammer weight,
6.8 kg; length of pendulum, 380 mm; and the initial potential energy, 49 J. The motivation of these
tests comes from the fact that the leading edge of a wing is predisposed to impact with various
objects, both in flight and on the ground. Thus, 15 leading edges were tested, 5 for each configuration
(honeycomb, diamond-celled, corrugated), having the dimensions of 70 mm length, 45.7 mm width
and 50 mm height.

For the specimens with different cores (honeycomb, diamond-celled, corrugated) from the wing
leading edges, the Charpy impact strength, aCU (kJ/m2) was determined by the following relation [28]:

aCU =
Ec

d · b
· 103 (9)

where Ec is the energy (J), absorbed by breaking the wing leading edges specimen; d is the thickness
(50 mm) of the specimen; and b is the width (45.7 mm) of the specimen.

The device used for testing the impact (Figure 4b) on the sandwich specimens was the Charpy
hammer (Web Werkstoffprüfmaschinen, Leipzig, Germany). Double faced adhesive tape was used for
fixing the specimens on the Charpy device.

3. Results and Discussion

3.1. Compressive Performances of Sandwich Specimens

The numerical results shown in Figure 5 represent the average values of the five tests, of
compressive stress and compressive modulus. As can be seen from Figure 5, the compressive strength
ranges from 1 to 3 MPa, and the compressive modulus falls within the range of 0.074 to 0.14 GPa.
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The diamond-celled core sandwich structure showed the best performances (compressive strength
and compressive modulus) based on experimental tests as compared against the other two types of
structures (honeycomb and corrugated), as seen in the Figure 5. The high bending performance of
diamond-celled core specimens is due to the dense network of rhombic structures, which also resulted
in a higher weight of these specimens. The three types of 3D-printed specimens presented the following
mass: 12 g specimens with honeycomb cores; 16 g specimens with diamond-celled cores; 9 g specimens
with corrugated cores. There is a very large difference in mass between the specimens, consequently,
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this variable influenced the entire mechanical analysis. After the compression tests, the upper skin was
deformed (Figure 6) on the surface where the punch loaded on the specimen. Deformations appear
in the core of the structure which indicates that these sandwich structures will fail locally. The main
cause of the structure failure was the shearing of the core sandwich. In the case of sandwich structures
subjected to compression tests, the skins were too thick and too strong to be crushed, and therefore a
core shear mode will occur.
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Figure 6. Core shear failures of the sandwich specimens subjected to flatwise compression tests:
(a) honeycomb core sandwich specimens; (b) diamond-celled core sandwich specimens; (c) corrugated
core sandwich specimens.

The optical images of sandwich specimens were taken with a metallographic microscope Nikon
Eclipse MA 100 (Nikon Corp., Tokyo, Japan). The specimens shown in Figure 6 were analyzed
microscopically. Thus, in Figure 7a,b, a debonding of the extruded filament layers was found, which
determined the shearing of the core. In Figure 7c, the shearing of the core did not determine the
debonding of the extruded filament layers, because the core has a high flexibility.
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Figure 7. Optical micrographs of failed sandwich specimens subjected to compression tests
(magnification 25×): (a) honeycomb core sandwich specimens; (b) diamond-celled core sandwich
specimens; (c) corrugated core sandwich specimens.

The graphical representation of the load–displacement is the most used in the experimental study
of sandwich structures and obviously describes their mechanical behavior. The load–displacement
curves on the compression tests (Figure 8) for each type of cores (honeycomb, diamond-celled,
corrugated) show a similar tendency: the load–displacement responses essentially remain linear until
the initiation of the core shear, where a sudden drop of load occurs.
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Figure 8. Load–displacement curves obtained from the compressive test of the sandwich specimens:
(a) honeycomb core; (b) diamond-cell core; (c) corrugated core.

It can be seen that the maximum force, until the irreversible damage in the PLA/PHA material of
the sandwich structure had occurred, was approximately 10 kN, in the diamond-cell core structures.
Additionally, the displacement at which the irreversible damage occurred in the material of the
sandwich structure was 1.3 mm, for the same type of diamond-cell core. The statistical parameters
(mean, standard deviation, coefficient of variation) were determined for the sandwich structures with
honeycomb, diamond-celled and corrugated core topologies, according to the statistical relationships
provided in the ASTM C393 standard, for each data series (compressive strength and compressive
modulus). For compressive strength/modulus, the coefficient of variation was determined so as to
have a clear image of the homogeneity of the experimental data. The coefficient of variation, as can
be seen in Table 5, has values between 5.405% and 10.000% and it can be estimated that the mean is
representative for the six sets of experimental data.

Table 5. Statistical parameters determined from the compressive test of sandwich specimens.

Sandwich
Specimens

Mean
(m)

Standard Deviation
(s)

Coefficient of Variation
(CV)%

Honeycomb core–
Compressive Strength (MPa) 1.600 0.154 9.625

Diamond-celled core–
Compressive Strength (MPa) 3.000 0.244 8.133

Corrugated core–
Compressive Strength (MPa) 1.000 0.077 7.700

Honeycomb core–
Compressive Modulus (GPa) 0.080 0.007 8.750

Diamond-celled core–
Compressive Modulus (GPa) 0.140 0.014 10.000

Corrugated core–
Compressive Modulus (GPa) 0.074 0.004 5.405

3.2. Mechanical Characteristics of Sandwich Structures under Three-Point Bending Tests

This test method is used to investigate the mechanical performance of lightweight sandwich
structures (bending strength, bending modulus and stress–displacement aspects). The diamond-celled
core sandwich structures showed the best three-point bending results. The corrugated core sandwich
specimens had the lowest average bending strength of 5.4 MPa. The diamond-celled core sandwich
specimens had an average value of bending strength twice as high as the bending strength of honeycomb
core sandwich specimens (Figure 9a). The test machine program automatically calculated the most
important three-point bending characteristics (bending strength and the bending modulus), using
Equation (3) and Equation (4) and the dimensions of the sandwich specimens. The core shear ultimate
strength (τcsu) and facing stress (σf) were calculated and plotted in Figure 9b,c, according to ASTM C393
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standard. The three types of 3D-printed specimens presented the following mass: 14-g specimens with
honeycomb cores; 16-g specimens with diamond-celled cores; 9-g specimens with corrugated cores.
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Figure 10 describes the main failure modes of sandwich structures subjected to three-point bending
tests. The results of the bending tests showed that a failure of tension in the upper skin occurs in this
type of sandwich specimen with honeycomb core as compression face wrinkling [29].
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Figure 10. Failure mechanisms of sandwich specimens obtained from the three-point bending test:
(a) honeycomb core; (b) diamond-cell core; (c) corrugated core.

Face wrinkling failure mode (Figure 10a) is known as local short-wavelength buckling of skins [30].
Because diamond core sandwich skins almost support all the compressive and tensile stresses in
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bending, sandwich specimens with thin skins may easily fail in a yield mode (Figure 10b). When
the core sandwich is thick enough, an indentation mode occurs firstly, but the sandwich structures
will finally fail in a face yield failure mode (first phase), of the upper skin, under sufficient impact
energy [31]. A second phase consists of the onset of the crack of the diamond core and the subsequent
propagation of the crack to the lower skin [32]. The sandwich structures with corrugated core showed
a debonding between the skin and the core mainly due to the small contact surface between them
(Figure 10c).

Figure 11a shows the debonding of the extruded filament layers which determined the failure
of the sandwich specimen. For the sandwich specimens with a diamond-celled core (Figure 11b),
the complete breakage of the structure appeared during the bending tests. Figure 11.c shows the
detachment of the upper skin from the corrugated core of the sandwich structure.
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Figure 11. Optical micrographs of failed sandwich specimens subjected to three-point bending tests
(magnification 25×): (a) Honeycomb core sandwich specimens; (b) Diamond-celled core sandwich
specimens; (c) Corrugated core sandwich specimens.

The behavior regarding the load–displacement curves of the 15 specimens tested for three-point
bending (Figure 12) presents two main stages: linear increase between the applied load and the
displacement with some nonlinear behavior towards the maximum of the curve and then a sudden
decrease to maximum load when the specimens broke. Load–displacement curves showed similar
shapes for the three types of core studied (honeycomb, diamond-celled, corrugated). After analyzing
these curves, it was observed that the maximum force recorded was about 0.428 kN at a displacement
of 4.357 mm of diamond-celled core sandwich specimens.
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Figure 12. Load–displacement curves obtained from three-point bending tests: (a) honeycomb core;
(b) diamond-cell core; (c) corrugated core.

The high bending performance of diamond-celled core specimens is due to the dense network
of rhombic structures, which also resulted in a higher weight of manufactured specimens (12-g
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specimens with honeycomb cores; 16-g specimens with diamond-celled cores; 9-g specimens with
corrugated cores).

The statistical parameters for the bending strengths and bending modulus for the 3D-printed
lightweight sandwich with different topologies (honeycomb, diamond-cell and corrugated) are shown
in Table 6. The experimental data are homogeneous and the mean is representative because the
coefficient of variation of the bending strength/modulus is lower than 30%.

Table 6. Statistical parameters determined from the tests at three-point bending of sandwich specimens.

Sandwich
Specimens

Mean
(m)

Standard Deviation
(s)

Coefficient of Variation
(CV)%

Honeycomb core–
Bending Strength (MPa) 8.800 0.836 9.500

Diamond-celled core–
Bending Strength (MPa) 16.200 0.908 5.604

Corrugated core–
Bending Strength (MPa) 5.400 0.547 10.129

Honeycomb core–
Bending Modulus (GPa) 0.500 0.035 7.000

Diamond-celled core–
Bending Modulus (GPa) 1.000 0.079 7.900

Corrugated core–
Bending Modulus (GPa) 0.300 0.035 11.666

3.3. Tensile Behavior of Sandwich Specimens

Corrugated core sandwich structures showed the best tensile results. The high performances of
these types of specimens are due to the corrugated elastic core, which at the tensile stress was almost
completely flattened, resulting in higher values of tensile strength and tensile modulus. As it can
be seen in Figure 13, the tensile strength ranges between 2.4 and 5.4 MPa, and the tensile modulus
falls within the range of 0.36 to 0.68 GPa. The three types of 3D-printed specimens presented the
following mass: 18-g specimens with honeycomb cores; 21-g specimens with diamond-celled cores;
17-g specimens with corrugated cores.
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All the sandwich specimens typically failed through face sheet yielding, followed by core shear
failure (Figure 14). The face sheet yielding of the sandwich specimens occurred at the upper face sheet,
the crack propagated through the entire core and stopped at the lower level, where it caused a cracking
of the lower face sheet.
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Figure 14. Failure modes of sandwich specimens under tensile load: face sheet yielding and core
shear failure.

As can be seen in Figure 15a,b, the specimens showed a complete breakage of the entire structure
starting from the upper skin, the core and finally the lower skin.
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Figure 15. Optical micrographs of failed sandwich specimens subjected to tensile tests (magnification
25×): (a) honeycomb core sandwich specimens; (b) diamond-celled core sandwich specimens.

Load–displacement curves, specific to each honeycomb (Figure 16a), diamond-celled (Figure 16b),
corrugated cores (Figure 16c), followed the same pattern for all series of sandwich structures. It is well
observed that the highest maximum load (0.874 kN) in the load–deflection curves was found for the
corrugated core sandwich specimens.

Polymers 2020, 12, x FOR PEER REVIEW 14 of 19 

 

sheet, the crack propagated through the entire core and stopped at the lower level, where it caused a 

cracking of the lower face sheet. 

 

Figure 14. Failure modes of sandwich specimens under tensile load: face sheet yielding and core 

shear failure. 

As can be seen in Figure 15a and Figure 15b, the specimens showed a complete breakage of the 

entire structure starting from the upper skin, the core and finally the lower skin. 

  

(a) (b) 

Figure 15. Optical micrographs of failed sandwich specimens subjected to tensile tests (magnification 

25X): (a) honeycomb core sandwich specimens; (b) diamond-celled core sandwich specimens. 

Load–displacement curves, specific to each honeycomb (Figure 16a), diamond-celled (Figure 

16b), corrugated cores (Figure 16c), followed the same pattern for all series of sandwich structures. It 

is well observed that the highest maximum load (0.874 kN) in the load–deflection curves was found 

for the corrugated core sandwich specimens. 

   

(a) (b) (c) 

Figure 16. Load–displacement curves obtained from three-point bending tests: (a) honeycomb core; 

(b) diamond-cell core; (c) corrugated core. 

Figure 16. Load–displacement curves obtained from three-point bending tests: (a) honeycomb core;
(b) diamond-cell core; (c) corrugated core.

The values of the coefficient of variation (Table 7) of the two sets of experimental data (tensile
strength and tensile modulus) is relatively low CV = 10.120% (for tensile strength) and CV = 8.611%
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(for tensile modulus), so it can be appreciated that the experimental data are homogeneous and the
mean is representative.

Table 7. Statistical parameters determined from the tensile tests of sandwich specimens.

Sandwich
Specimens

Mean
(m)

Standard Deviation
(s)

Coefficient of Variation
(CV)%

Honeycomb core–
Tensile Strength (MPa) 2.400 0.200 8.333

Diamond-celled core–
Tensile Strength (MPa) 2.800 0.273 9.750

Corrugated core–
Tensile Strength (MPa) 5.400 0.547 10.120

Honeycomb core–
Tensile Modulus (GPa) 0.360 0.031 8.611

Diamond-celled core–
Tensile Modulus (GPa) 0.400 0.028 7.000

Corrugated core–
Tensile Modulus (GPa) 0.680 0.024 3.529

3.4. Strength-to-Mass Ratio Analysis of the Sandwich Specimens

For a more efficient comparison of the mechanical characteristics of the sandwich structures,
a strength-to-mass ratio analysis was used. The strength-to-mass ratio was determined for each type
of test (compression, bending and tensile) and also for all three core configurations (honeycomb,
diamond-celled and corrugated). Analyzing from the point of view of strength-to-mass ratio (Figure 17),
the following conclusions were drawn:

• Based on the compression tests, the sandwich structures with a diamond-celled core presented
the best performances;

• Based on the bending tests, the sandwich structures with a diamond-celled core showed the
best performances, and the other two core configurations (honeycomb and corrugated) showed
similar characteristics;

• Based on the tensile tests, the sandwich structures with a honeycomb core and the sandwich
structures with a diamond-cell core showed identical performances, and the sandwich structures
with a corrugated core presented the highest performances.
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3.5. Impact Testing Properties of Wing Leading Edges

The Charpy impact strengths for the 15 specimens were determined using Equation (9). Figure 18
describes the calculated Charpy impact strengths, which were between 6.8 kJ/m2 (honeycomb core) and
16 kJ/m2 (corrugated core). Although honeycomb core specimens and corrugated core specimens had
the same weight (32 g), corrugated core specimens exhibit approximately twice the impact resistance,
compared to the honeycomb specimens, due to the longitudinal skin-like structures which create
increased rigidity. The impact tested specimens showed a complete failure. The breakage was initiated
at the level of the specimen skin and propagated throughout the structure.
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Figure 18. Charpy impact strengths of the wing leading edges specimens.

In the case studies from the engineering field, usually the value of the coefficient of variation has
to be between 1% and 30%. Corresponding to the data presented in Table 8, the uncertainty of the set
of experimental data (impact strength) is relatively low and shows the values CV = 6.599% and it can
be estimated that the mean is representative for the set of experimental data.

Table 8. Statistical parameters determined from the impact test of wing leading edges specimen.

Wing Leading Edges
Specimens

Mean
(m)

Standard Deviation
(s)

Coefficient of Variation
(CV)%

Honeycomb core–
Impact Strength (kJ/m2) 7.546 0.498 6.599

Diamond-celled core–
Impact Strength (kJ/m2) 13.486 0.354 2.624

Corrugated core–
Impact Strength (kJ/m2) 15.270 0.610 3.994

3.6. Results of Finite Element Analyses

In the simulation model, the dimension of the specimen, the material properties of the specimen,
the radius of punch and supports, and the span were set up in agreement with three-point bending tests.
In this study, the reaction forces that appear on the sandwich structures using the commercial finite
element analysis (FEA) software, ANSYS 19.1 (ANSYS, Inc., Canonsburg, PA, USA) were investigated.

In the finite element analysis, the elastic-plastic model was used for the both components of the
sandwich structure (the skin and the honeycomb, diamond-celled, corrugated core). The model was set
up and assembled in SolidWorks, and then, was imported in the Ansys 19.1. The sandwich specimen
was meshed with fully reduced integration elements (SOLID45 element type), and the mesh size was
0.2 mm (Figure 19a). The punch and supports were meshed with SOLID45 elements as rigid bodies and
the mesh size was 0.5 mm. The displacement control method was applied to control the loading step,
and the maximum bending deflection of the middle point of specimen was 5 mm (Figure 19b). Friction
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was considered between the punch, supports and the specimen’s surface and the frictional coefficient
was 0.1 [33]. The finite element analysis was carried out following the two aspects: comparative study
of the breaking behavior of the three-point bending specimens with that of the finite element analysis
of the same specimens; comparative study of the reaction forces that appeared in the breaking of the
samples by three-point bending testing and the reaction forces that appeared in the structure of the
supports of the FEA model.
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Figure 19. Finite element analysis subject to three-point bending loading: (a) finite element analysis
(FEA) model—three-point bending; (b) deflection of specimen; (c) equivalent stress distribution;
(d) comparative study of reaction forces.

After examining the sandwich specimens with a diamond-cell core subjected to three-point
bending tests and those analyzed with finite elements, it can be stated that the breaking occurs, in both
cases, at the upper skin of the structure (Figure 19c). The equivalent Von Misses stress presents the
maximum value (75.095 MPa) at a middle section on the upper skin of the sandwich structures. Thus,
it can be observed that the upper skin of the sandwich specimens, analyzed with FEA, shows the same
failure mode as that of the bending tested specimens, namely the face yielding.

The result of the comparative study, between the bending reaction forces resulting from the
experimental tests and the reaction forces that appeared in the supports of the FEA model (Figure 19d),
presents an adequate validation of the information measured and used when testing the specimens
and the FEA model [34], the errors that appear between these results are within a range of 0.4% to 3%.

4. Conclusions

Lightweight sandwich structures are extensively used in aviation and automotive industries to
reduce the overall weight of the mechanical components. Three different topologies with honeycomb,
diamond-celled and corrugated cores were designed and fabricated by fused filament fabrication of
PLA/PHA biodegradable material.

The compressive, three-point bending and tensile properties of sandwich 3D-printed structures
with three different core topologies (honeycomb, diamond-celled, corrugated) were investigated. It was
found that the diamond-celled core topology presents the highest compression strength and three-point
bending strength and the corrugated core exhibited the best tensile strength. The core plays a significant
role in the failure of sandwich structures, and after conducting the mechanical tests, the following
defects can be distinguished: face yielding, face wrinkling, core shear, and core/skin debonding.
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In order to demonstrate and validate the usefulness of the proposed sandwich structures,
the leading edge of the wing segments were developed, with three different topologies (honeycomb,
diamond-celled and corrugated cores) using FFF technology. These wing segments were impact tested,
and the corrugated core sandwich structure had the highest performance. In addition, the experimental
results of the three-point bending tests were validated, making a comparison between the reaction
forces that appeared in the experimental tests and the reaction forces of the model analyzed with finite
elements, resulting in maximum errors of 3%.
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