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Abstract: Steel reinforcements in concrete tend to corrode and this process can lead to structural
damage. Fiber-reinforced polymer (FRP) reinforcements represent a viable alternative for structures
exposed to aggressive environments and have many possible applications where superior corrosion
resistance properties are required. The use of FRP rebars as internal reinforcements for concrete,
however, is limited to specific structural elements and does not yet extend to the whole structure.
The reason for this relates to the limited availability of curved or shaped reinforcing FRP elements on
the market, as well as their reduced structural performance. This article presents a state-of-the art
review on the strength degradation of curved FRP composites, and also assesses the performance
of existing predictive models for the bend capacity of FRP reinforcements. Previous research has
shown that the mechanical performance of bent portions of FRP bars significantly reduces under a
multiaxial combination of stresses. Indeed, the tensile strength of bent FRP bars can be as low as
25% of the maximum tensile strength developed in a straight counterpart. In a significant number of
cases, the current design recommendations for concrete structures reinforced with FRP were found to
overestimate the bend capacity of FRP bars. A more accurate and practical predictive model based on
the Tsai–Hill failure criteria is also discussed. This review article also identifies potential challenges
and future directions of research for exploring the use of curved/shaped FRP composites in civil
engineering applications.

Keywords: Curved FRP bars; bent fiber-reinforced polymer (FRP); bend capacity; bend strength;
bent test; strength and testing of materials; material characterization

1. Introduction

Since the late 1980s, fiber-reinforced polymer (FRP) reinforcements have emerged as an alternative
to replace conventional steel bars in reinforced concrete (RC) structures [1–8]. Since FRP reinforcements
do not corrode and are very durable, they can extend the structures’ service life and reduce the
maintenance/repair costs of concrete structures [9–15]. To date, internal FRP reinforcements for concrete
are mainly limited to specific structural applications, such as bridge decks, road barriers, marine
structures, and tunnel and underground infrastructure. The limited use of internal FRP reinforcements
could be partly due to the lack of commercially available curved or shaped reinforcing elements needed
for complex structural connections [16,17], concerns with durability issues [18–23], and the potential
degradation of fiber/matrix compositions when FRP reinforcements are exposed to fire [20,21,24–29].

In current construction practice, most curved/shaped steel bars are pre-bent and pre-cut to the
right shapes and lengths off-site. Unlike FRP reinforcements, steel bars have an elastoplastic behavior
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and can thus be easily shaped by cold bending. Existing guidelines for the cold bending of steel
bars (e.g., BS 8666 [30]) specify a bend radius to diameter ratio (r/d) of 2 for mild steel, which can
induce a maximum strain value of 20% in the steel (see Figure 1). In the case of cold-bent FRP
reinforcements, however, there are problems associated with the potential buckling of fibers located on
the compression side.

Moreover, the typical ultimate strain value of commercial FRP composites used as embedded
reinforcements in concrete structures varies from 1% to 2.5%. Hence, the induced strain in the
fibers needs to be controlled to avoid premature failure of the reinforcement [31–33]. As a result,
cold bending of FRP reinforcements requires larger r/d ratios than those currently specified for steel
reinforcements [16,34–37].
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Figure 1. Induced strain values in cold-bent bars (adapted from Imjai et al. [38]).

To date, only a few commercially available FRP bars are supplied in bent configurations, and all of
them are pre-bent during manufacturing. Bends are usually created while the material is partially cured.
Typical bent shapes available include thermoplastic FRP stirrups [38] (Figure 2a), J-hook thermoplastic
FRP strips, pre-bent GFRP thermoset composites (Figure 2b,c), and U-shaped thermosetting FRP
bars [16,38,39] (Figure 2d). Whilst carbon (CFRP), glass (GFRP), aramid (AFRP), and basalt (BFRP) bars
exist on the market, CFRP and GFRP seem to be much more widely used in actual RC applications and
research [40]. This is understandable since CFRP has better properties than all of the other composites,
whereas GFRP is significantly cheaper than other composites [8,36,41,42].
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Figure 2. Commercially available curved fiber-reinforced polymer (FRP) reinforcements:
(a) thermoplastic FRP stirrup; (b) J-hook FRP strip; (c) pre-bent FRP bar; and (d) U-shaped FRP bar.

Whilst FRP materials work most effectively when subjected to pure axial tension, most FRP RC
structures are subjected to a combination of stresses. Previous studies have reported that the tensile
strength of FRP reinforcements reduces under a combination of tensile and shear stresses [32,33,43–53].
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This becomes an issue in curved FRP reinforcements in RC structures, since premature failures can
occur at the bent corner, as reported in the existing literature [33,43,53–56]. Indeed, the results from
such research studies have shown that the tensile strength of a bent portion of an FRP bar can be
as low as 25% of the maximum tensile strength of that developed in the straight part. Strength
degradation that occurs at the bent portion of an FRP bar can be quantified using empirical equations,
such as the one initially proposed by the Japanese Society of Civil Engineering (JSCE) [45], which is
currently adopted in other design guidelines. To account for this potential failure, several design
guidelines ([34,36,45,57,58]) limit the design strain values in the case of curved FRP reinforcements
in RC structures. However, equations included in the current design guidelines to predict strength
degradation at the bent portion of an FRP bar were empirically derived and are mainly a function of
the bend geometry. The results given by such equations do not seem to yield consistent results when
different types of composite are used [59]. As a result, there is a need to reassess the accuracy of such
equations in light of the existing and new experimental evidence.

This article provides an overview of existing and ongoing research on the strength of curved FRP
reinforcements in RC structures. Extensive experimental works investigating the strength degradation
of curved FRP composites are chronologically presented. Test data available from the literature
are also included in the appendix as an additional source. Modern techniques used to fabricate
customized/complex shaped FRP composites are also discussed as emerging challenges.

2. Research on the Strength Degradation of Curved FRPs

Pioneering research by Ozawa et al. [60] examined the “bend capacity” of curved FRP reinforcements
by testing concrete beams. The concrete beams were reinforced with flexural and shear FRP
reinforcements. The reinforcements consisted of continuous glass and carbon fibers impregnated with
resin and formed by filament winding. A total of 10 beam specimens were tested under two-point
bending; two of them were statically loaded and the other eight were fatigue loaded. The authors
reported that, if the beams failed in shear, FRP stirrups could fail at the bent portion at a stress
lower than the ultimate strength of the equivalent straight bar. Ozawa et al. concluded that the
stress concentration that developed at the bent portion of the bar caused rupture—a failure which
originated from the inside of the bend. Similar conclusions were also reported in a subsequent study
by Miyata et al. [61], after carrying out a series of pull-out tests that studied the effect of bends on
hybrid FRP bars embedded in concrete blocks (see Figure 3a). Direct tensile tests were performed on
the reinforcement, which consisted of a 10 mm-diameter hybrid FRP composite made of continuous
glass and high-strength carbon fibers impregnated with resin. The main parameter investigated was
the variation of the tensile strength of bent FRP bars as a function of the internal bending radius (r).
Five different bar diameters were used in the test and the bending radius was set to three times the bar
diameter (i.e., r/d = 3). The authors reported that most of the bent specimens failed due to the rupture
of the FRP bars at the bent section, and that the fibers started to break from the inside portion of the
bend. They also concluded that the failure load increased as the internal bending radius increased.
Although the studies by Ozawa et al. [60] and Miyata et al. [61] provided some insight into the strength
degradation of bent FRP bars, the tests only considered a few test parameters and their conclusions
were therefore not general. Additionally, these tests did not consider the bond contribution along the
bent portion and the effect of tail anchorage. Other parameters that could affect the bond stress, such as
the concrete strength and surface treatment of FRP bars, were also excluded in these tests.



Polymers 2020, 12, 1653 4 of 23

Polymers 2020, 12, x FOR PEER REVIEW 4 of 25 

 

 
Figure 3. Different pullout setups for examining the bend capacity of FRP reinforcements; (a) J-hook 
specimen, (b) U-shaped specimen, (c) J-hook specimen with anchorage, and (d) J-hook specimen with 
unbonded unloaded end (illustration adopted from [38]). 

To examine the factors that influence the shear capacity of concrete beams with FRP stirrups, 
Nagasaka et al. [47] tested 35 half-scale beams internally reinforced with FRP bars. The parameters 
investigated were the type and reinforcement ratio of FRP stirrups, as well as the concrete strength. 
Nagasaka et al. also tested four panel specimens to investigate the bend capacity of FRP stirrups with 
the main reinforcement, so as to simulate the bond at the bent location around the main bar (see the 
pullout arrangement shown in Figure 3b). The FRP bars were aramid, carbon, glass, and hybrids of 
glass and carbon FRP. The vertical leg was left unbonded to the beginning of the bent portion, and 
the bend radius was two times the bar diameter (r/d = 2). Nagasaka et al. reported that the ultimate 
shear capacity of concrete beams reinforced with FRP stirrups was determined by the tensile rupture 
of stirrups at the curved sections, or by crushing of a concrete strut formed between diagonal cracks. 
They also found that the tensile strength of curved FRP bars was only 25%-80% of that of a straight 
counterpart. One of the main contributions of Nagasaka et al.’s study is the finding that the degree 
of bend capacity reduction depends on the material compositions of the FRP composite. 

Similar tests were carried out by Maruyama et al. [43], who tested 14 bent FRP samples 
embedded in concrete blocks with a 50 mm embedment length (ldb) and an anchor at the end of the 
tail to improve bonding (Figure 3c). The main parameters studied were different types of composite 
materials, bending radii, and the concrete strength. Curved pultruded CFRP rods, seven-strand CFRP 
rods, and braided AFRP rods were tested in direct tension and compared to steel bars with similar 
configurations. The bending radii (r) considered in this study were 5, 15, and 25 mm for each type of 
rod. Two different concrete strengths were used (f’c = 50 and 100 MPa) for each type of FRP rod. It 
was reported that all of the specimens failed due to rupture of the composite at the start of the bend 
on the loading side. All of the bend capacities of FRP bars were 48–82% lower than the tensile 
strengths of the straight portions. Moreover, the bend capacity trended to decrease hyperbolically as 
the bending radius decreased, and the bend capacity of FRP specimens increased in higher strength 
concrete and became more pronounced with seven-strand CFRP rods and braided AFRP rods. This 
may have been due to the better bond developed by the stranded and braided composites, and the 
resulting lower amount of tensile stress transferred to the bend. In the case of pultruded CFRP rods, 
the concrete strength had little effect on the bend capacity. This may have been because the bond 
given by the roving wrapped around the rod was lost during the pullout tests, and adhesion at the 
bar-concrete interface thus became less significant. The authors also reported that the tensile strength 
at the bend varied with the type of fiber and the method of bending. The highest bend capacity-to-
strength ratio was mobilized by braided AFRP rods, followed by strand CFRP and pultruded CFRP 
rods. These results indicated that the bend capacity depended on the type of FRP and the 
reinforcement surface (i.e., on bond properties). It should be mentioned that the test results of 
Maruyama et al. [43] were later used to calibrate the predictive equation for calculating the bend 
capacity of FRP reinforcements in JSCE’s guidelines [45]. Such an equation is also included in the 
current ACI guidelines [62] to predict the bend strength of FRP bars. 

Va
ri

ed

Varied

FRP sample

ldb

lc

ldb

r

lc

r

De-bonded length
FRP sample

ldb

ldb
r

De-bonded length

ldb

r

Anchorage
Concrete block

Va
ri

ed

Varied

Va
ri

ed

Varied

Va
ri

ed

Varied

( )a ( )b (c)

Main rebar

( )d

Figure 3. Different pullout setups for examining the bend capacity of FRP reinforcements; (a) J-hook
specimen, (b) U-shaped specimen, (c) J-hook specimen with anchorage, and (d) J-hook specimen with
unbonded unloaded end (illustration adopted from [38]).

To examine the factors that influence the shear capacity of concrete beams with FRP stirrups,
Nagasaka et al. [47] tested 35 half-scale beams internally reinforced with FRP bars. The parameters
investigated were the type and reinforcement ratio of FRP stirrups, as well as the concrete strength.
Nagasaka et al. also tested four panel specimens to investigate the bend capacity of FRP stirrups with
the main reinforcement, so as to simulate the bond at the bent location around the main bar (see the
pullout arrangement shown in Figure 3b). The FRP bars were aramid, carbon, glass, and hybrids of
glass and carbon FRP. The vertical leg was left unbonded to the beginning of the bent portion, and the
bend radius was two times the bar diameter (r/d = 2). Nagasaka et al. reported that the ultimate shear
capacity of concrete beams reinforced with FRP stirrups was determined by the tensile rupture of
stirrups at the curved sections, or by crushing of a concrete strut formed between diagonal cracks.
They also found that the tensile strength of curved FRP bars was only 25%-80% of that of a straight
counterpart. One of the main contributions of Nagasaka et al.’s study is the finding that the degree of
bend capacity reduction depends on the material compositions of the FRP composite.

Similar tests were carried out by Maruyama et al. [43], who tested 14 bent FRP samples embedded
in concrete blocks with a 50 mm embedment length (ldb) and an anchor at the end of the tail to improve
bonding (Figure 3c). The main parameters studied were different types of composite materials, bending
radii, and the concrete strength. Curved pultruded CFRP rods, seven-strand CFRP rods, and braided
AFRP rods were tested in direct tension and compared to steel bars with similar configurations.
The bending radii (r) considered in this study were 5, 15, and 25 mm for each type of rod. Two different
concrete strengths were used (f’c = 50 and 100 MPa) for each type of FRP rod. It was reported that all of
the specimens failed due to rupture of the composite at the start of the bend on the loading side. All of
the bend capacities of FRP bars were 48–82% lower than the tensile strengths of the straight portions.
Moreover, the bend capacity trended to decrease hyperbolically as the bending radius decreased,
and the bend capacity of FRP specimens increased in higher strength concrete and became more
pronounced with seven-strand CFRP rods and braided AFRP rods. This may have been due to the
better bond developed by the stranded and braided composites, and the resulting lower amount of
tensile stress transferred to the bend. In the case of pultruded CFRP rods, the concrete strength had
little effect on the bend capacity. This may have been because the bond given by the roving wrapped
around the rod was lost during the pullout tests, and adhesion at the bar-concrete interface thus became
less significant. The authors also reported that the tensile strength at the bend varied with the type
of fiber and the method of bending. The highest bend capacity-to-strength ratio was mobilized by
braided AFRP rods, followed by strand CFRP and pultruded CFRP rods. These results indicated that
the bend capacity depended on the type of FRP and the reinforcement surface (i.e., on bond properties).
It should be mentioned that the test results of Maruyama et al. [43] were later used to calibrate the
predictive equation for calculating the bend capacity of FRP reinforcements in JSCE’s guidelines [45].
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Such an equation is also included in the current ACI guidelines [62] to predict the bend strength of
FRP bars.

Ehsani et al. [46] investigated the bond behavior of 90o degree-hooked GFRP bars in concrete
through thirty-six direct pullout tests such as those shown in Figure 3d. The main parameter examined
in Ehsani et al.’s study was the relationship between the strength capacity of curved FRP bars and the
concrete compressive strength (f’c), which varied between 28 and 56 MPa. Other examined parameters
included the bend radius to FRP bar diameter ratio (r/d = 0,3) (diameters, d = 9.5, 19.0, and 28.6 mm),
embedment length, and tail length (lc) beyond the hook. In these tests, the tensile load was horizontally
applied through a gripping system (Figure 3d). Ehsani et al. found that the bend capacity was highly
affected by the bend radius and bar diameter. When using r/d = 3, the bend capacity ranged from 64%
to 70% of the ultimate tensile strength and the bend capacity tended to increase when a higher concrete
strength was used. Based on their results, the authors recommended a minimum bend radius of 3d for
GFRP hooks, as well as a tail length of 12d, since the tail length beyond 12d had no beneficial effect on
the strength of the bent bar. As the bend capacity increased with the embedment length, Ehsani et al.
also recommended a minimum development length of 16d for a 90o standard GFRP hook. The results
from this study confirmed that the concrete strength, embedment length, and tail length are important
parameters that influence the bent portion of FRP bars. Unfortunately, the study by Ehsani et al. [46]
did not consider the types of composite used or the different bending geometries that could affect the
bend capacity of FRP bars.

The effectiveness of a bent FRP reinforcement depends on the bond characteristics of the
reinforcement itself, but also on the characteristics of the embedment and tail lengths. Accordingly,
Vint and Sheikh [33] examined the bond performance of GFRP bars with different anchorage
configurations (90◦ degree-hooked bars and straight bars with mechanical anchor heads). A total of
72 pullout GFRP specimens (as shown in Figure 3b) were tested using different anchorage configurations:
Straight anchorage, mechanical anchor heads, or bends. Bent GFRP bars with different bending radii
and surface coatings were used to examine the performance of this anchorage solution. Vint and
Sheikh concluded that a full tensile strength in the fiber direction could be developed for bonded
lengths of 5d in specimens with bent bars and 10d for specimens with an anchorage head. However,
the bend capacity of the GFRP bars was only 58–80% of the ultimate tensile strength of the straight
portion. This indicates that, although mechanical anchor heads could potentially enhance the bond
behavior of bent FRP bars, the theoretical ultimate tensile strength of the bars cannot be achieved.

The above mentioned studies examined the bend capacity of FRP bars using geometries typical of
end anchorages (e.g., a relatively large corner radius). However none of the previous studies tested
FRP reinforcements with geometries similar to those used in steel stirrups [16,33,38].

Previous research has also studied the effect of bends in FRP stirrups, but using geometries similar
to those used in conventional steel stirrups [48,51,59,63–72]. In these conditions, the tight corner radius
of FRP stirrups tended to limit the shear capacity of the concrete beams, where premature failure was
generally observed in the proximity of the bent portion [51,64,72]. To study the failure behavior of
thermoplastic FRPs as shear reinforcements in concrete beams, Currier et al. [73] carried out bent tests
on thermoplastic FRP stirrups made of nylon/carbon and nylon/aramid FRP fibers formed using a
thermoplastic matrix resin during the pultrusion process. The thermoplastic FRP strips were bent in
the laboratory by applying heat to create the closed shape of shear links, having an internal bending
radius of 12.7 mm. The bend capacity of the thermoplastic FRP links was evaluated using a test setup
similar to the ACI B.5 method. The bend capacity of the thermoplastic FRP bars was 25% of the ultimate
tensile strength of the straight portion, and failures on all of the tested specimens were observed at the
bent portion of the stirrup.

Ueda et al. [65] investigated the performance of FRP stirrups partially embedded into a concrete
block, which aimed to simulate a shear crack crossing the FRP stirrups. The 6 mm-diameter FRP rods
used in Ueda et al.’s study were braided, epoxy-impregnated aramid fibers. The main variables in the
study were the embedment length and the distance from the artificial crack to the bend. Tensile forces
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were transferred through steel plates and by steel rods to the bearing plates. The test setup was adopted
from the ACI B.5 method, except that the free distance between two concrete blocks was not 200 mm,
but the artificial crack width instead. The artificial crack initiated with a 0.5 mm gap and began to open
as the tensile forces were applied in the bent portions of the FRP sample. Ueda et al. also conducted
Finite Element Analyses (FEA) to assess the nature of the stress–strain fields developed in the bent
region. Their results showed that the bend capacity varied between 40% and 100% of the ultimate
capacity in the direction of the fibers. The FEA showed that high strains developed in the inner portion
of the bend, which was assumed to be the location of failure initiation. For an embedment length of
100 mm, the failure stress was higher than the nominal strength of the straight bar. The numerical
analysis performed by Ueda et al. was perhaps the first that focused on the stress–strain field at the
bent portion of FRP bars. Their results also agreed with previous research where premature failure
mostly initiated at the proximity of the bends.

Morphy et al. [53] tested sixteen specially-designed specimens using different types of FRP
stirrups by employing the ACI B.5 method [74]. The parameters investigated were the type of FRP
material, bar diameter, stirrup anchorage and embedment length of the stirrup in the concrete, and the
configuration of the stirrup anchorage. Three types of FRP reinforcements were used: Carbon FRP
Leadline bars, Carbon Fiber Composite Cables (CFCC), and GFRP bars (C-BAR). All of the bent
stirrups were embedded in concrete blocks with f’c = 45 MPa. The embedment length within the block
varied by the debonding part of the stirrups. The authors found that a decrease in the embedment
length increased the tendency of failure at the bent region of the stirrup, which resulted in a bend
capacity of 40% of that developed in a straight bar. From the results, it was suggested that a 150 mm
embedment length was sufficient to achieve the full strength in the direction of the fibers. Morphy
et al. also found that when a large bending radius to bar diameter ratio (r/d) is used, a higher bend
capacity is observed. Based on their test results, and using the stirrup spacing recommended by the
ACI codes [75], they proposed to limit the strength of CFRP stirrups to 50% of the unidirectional tensile
strength, in order to account for strength degradation due to the bend.

More recently, Imjai et al. [33] studied the bend capacity on bent FRP stirrups using the pullout
test shown in Figure 4a. A total of 47 bent thermoset and thermoplastic FRP bars with 19 different
configurations were investigated. The parameters investigated included the ratio r/d, surface treatment,
embedment length (lb), and concrete strength (f’c). It was found that the capacity of the curved FRP
composites could be as low as 25% of the ultimate tensile strength of the material parallel to the fibers.
Based on the results, it was recommended that a minimum ratio r/d = 4 was used to guarantee that the
composite could resist 40% of its unidirectional tensile strength parallel to the fibers. Imjai et al. also
conducted FEA to study the bond stress along the bent portion of an FRP bar embedded in concrete.
The bond mechanism between the bent bar and the concrete was explicitly modeled with identical
non-linear spring elements, with the stiffness determined from the load-slip characteristic obtained
from the pullout tests (Figure 4b). The FEA results confirmed that high stress concentrations develop
at the start of the bent portion, thus indicating that failure could be expected to occur at this location
(Figure 4c). However, by using a larger bending radius or providing a sufficient bond along the bent
portion, the stress concentration at the start of the bend can be significantly reduced, and a higher bend
capacity can be achieved.

Although all of the studies summarized above examined the behavior of curved FRP bars
embedded in concrete structures such as stirrups or anchorages, whereas externally bonded FRP
reinforcements (EBR) are widely used as strengthening material in RC structures [76–78]. In this
situation, the EBR provides additional confinement and/or shear capacity around members, and thus
may also suffer from the bent effect at the member corners. The need to bend the composites may
deteriorate the performance of the FRP laminate and the efficiency of its confining/strengthening action.
Yang et al. [79] studied the effects of the corner radius on the strength of FRP lamina using a test setup
similar to the ACI B.12 [74]. In their experimental program, one and two plies CFRP lamina were
applied by the manual lay-up procedure over interchangeable corner inserts. They concluded that the
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corner radius (r) affects the strength of CFRP laminates. The test results showed that only 67% of the
ultimate laminate strength could be developed when a large-radius insert was used. As the corner
radius was decreased, the strength capacity of the FRP lamina further reduced. A higher failure stress
was achieved by increasing the number of layers used.

Figure 4. Physical model vs. mathematical finite element (FE) model for a bent FRP bar; (a) pullout 

test on J-hook FRP bar, (b) modelling of bond along FRP/concrete interface, and (c) strain distribution 

along the bent portion of FRP bar. 
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Figure 4. Physical model vs. mathematical finite element (FE) model for a bent FRP bar; (a) pullout test
on J-hook FRP bar, (b) modelling of bond along FRP/concrete interface, and (c) strain distribution along
the bent portion of FRP bar.

Most research studies available in the literature have investigated the performance of FRP
reinforcements at ambient room temperature [80–83]. However, the low glass transition temperature
of FRPs makes them very susceptible to high temperatures. Fire exposure can lead to a rapid loss of
mechanical properties, such as the stiffness and strength [84–86]. To study the mechanical properties
of FRPs exposed to fire, Abbasi and Hogg [24] tested two full-scale RC beams (350 × 400 mm with a
span of 4400 mm) reinforced with both thermoset and thermoplastic GFRP reinforcements in flexure
and shear. The beam specimens were heated on three sides using a maximum temperature of 462 ◦C.
The furnace temperatures were recorded, monitored, and controlled to follow the standard fire curve
in accordance with BS 476: Part 20 [87]. It was recommended that a minimum clear concrete cover of
70 mm is required to meet the fire design requirements for the minimum periods of fire resistance (fire
endurance) of up to 90 min. Using the experimental result from Abbasi and Hogg [24], Hawileh and
Naser [88] developed a 3D nonlinear finite element (FE) model built from their previous studies [89,90]
to predict temperature and mid-span deflection of a GFRP RC beam when exposed to fire. From their
transient thermal-stress finite element analysis, it was recommended that the FE model was used to
predict the mechanical performance of FRP RC beams when exposed to fire when fire endurance is
required [91].

Based on the literature summarized in this section, it is evident that relatively little information
is available to develop accurate predictive models for curved FRP reinforcing bars [60,61,92]. Whilst
different test configurations were used in examining the bend capacity of FRP bars, the majority of
studies used pullout tests on bent FRP bars embedded in concrete specimens, such as those shown
in Figure 3. It is also evident that numerous factors affect the bend capacity of FRP reinforcements,
such as the bend geometry, materials from which the type of composite is made, concrete strength,
and bond stress between the concrete/FRP bar interface. Advanced FE techniques were used to study
the stress–strain field along the bent portion of FRP bars and the results confirmed that premature
failure always initiated at the proximity of the bends, which confirmed the reports from companion
works in the literature. However, issues such as mechanics at a macro-scale of the material composition
of the composite bent portion when subjected to external loads, irregular shape, and cross-section and
bond stress along the bent portion have not yet been investigated and are a matter of future research.
The results from the tests discussed in this section have also been reflected in the development of a
predictive equation included in the current design guidelines, as discussed in the following section.
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3. ACI Testing Methods to Determine the Bend Capacity of FRP Reinforcements

Different tests have been proposed to calculate the strength reduction in bent bars. For instance,
ACI 440.3R [74] proposes using the B.5 method (bent bar capacity) and the B.12 method (corner radius),
as illustrated in Figure 5a,b, respectively. The B.5 method measures the ultimate capacity of the FRP by
testing (in tension) the straight portion of an FRP C-shaped stirrup whose bent ends are embedded in
two concrete blocks (Figure 5a). The bend capacity of bent FRP bars is measured and compared to the
ultimate tensile strength of the bar to obtain the strength reduction factor due to bend effects. The B.12
method measures the effect of the corner radius on the tensile strength of the FRP bar using the testing
apparatus shown schematically in Figure 5b. The apparatus applies tension in the U-shaped FRP that
reacts against the bent portion mounted on a yoke.
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ISIS Canada [93] and ACI 440.6M-08 [94] suggest using either of the ACI B.5 or B.12 methods to
determine the bend capacity of curved FRP reinforcements. Ahmed et al. [51] compared the two ACI
methods by testing four CFRP stirrup specimens using the B.5 method and 12 GFRP stirrup specimens
using the B.12 method. Ahmed et al. concluded that the B.5 test method led to more realistic results
for the bend capacity of the FRP stirrups because the test arrangement better simulates the actual
mechanism of stirrups embedded in concrete. The ACI B.12 method led to more realistic results when
the FRP composite was applied externally.

Based on the review in this section, it is evident that the ACI guidelines only provide two standard
test configurations for assessing the bend capacity of FRP reinforcements. Out of these two, the ACI
B.5 method is the most feasible for examining the bend strength of FRP composites used as shear
reinforcements. In reality, however, simple pullout tests have been widely used in the literature due
to the fact that the setup can be practically achieved and parameters such as the bend geometry,
embedment length, and tail length can be easily installed in the setup. Conversely, the ACI B.5 and
B12 methods require more detailing in the test setup and the eccentricity of the applied loads has to be
carefully monitored. The results of the bend tests performed by several test methods in the literature
were used in the process of the development of the predictive model for the bend capacity and will be
described in detail in the following section.
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4. Models to Assess the Bend Capacity of FRP Reinforcements

In 1995, Nakamura and Higai [52] conducted a theoretical study on the bend capacity of FRP
stirrups based on test results from Miyata et al. [61]. As a result of their study, the authors proposed an
empirical model to calculate the bend capacity of FRP composites (fb), as shown in Table 1; Equation (1).
The model primarily depends on the bend ratio r/d, and therefore neglects the variation of the
composite cross-section, the type of composites, and the influence of bond characteristics between the
FRP/concrete interface.

Based on test results from Ueda et al. [65], Ishihara et al. [50] analysed the behavior of bent FRP
stirrups embedded in concrete using a 2D FEA. The results of their study showed that the strength of a
bar at its bent portion directly increases with the radius of the bend. Based on an FEA parametric study,
Equation (2a,b) was proposed to assess the strength of the bent portion (fb). Note that Equation (2b) is
a special case of Equation (1) in which λ replaces d/r. The study by Ishihara et al. showed that the
reduction in bend strength was also a function of the different types of FRP composites. Ishihara et al.
suggested that bond characteristics and differential slippage of the FRP rod (which were not considered
in their FEA) could play an important role in strength reduction.

The chronological development of predictive models for the bend capacity and evolution of design
guidelines is shown in Figure 6. The initial JSCE guidelines were based on early work by Japanese
researchers. In North America, the ACI and ISIS recommendations were mainly influenced by the
work of American-based researchers. It is also evident that the development of research accompanied
the development of design guidelines, but only until the early 2010′s. Accordingly, none of the current
guidelines reflect the state of the art in the subject.

Figure 7a,b compare, respectively, the predictions given by Equations (1) and (2a) and test data
from Miyata et al. [61] and Ishihara et al. [50]. The results show that the experimentally-derived
bend capacity increases with an increasing r/d ratio. Figure 7a also shows that the predictions from
Equation (1) agree better with the test results when compared to Equation (2a). This is not surprising
as Equation (1) was empirically derived using test data from Miyata et al. [61]. In Figure 7b, it can
be observed that Equation (2a), as proposed by Ishihara et al. [50], predicts the experimental results
more accurately than Equation (1). This is because the equation proposed by Ishihara et al. [50] was
empirically derived using their own test data.
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Table 1. Summary of equations used to predict the strength degradation of curved FRP reinforcements.

References Remarks

Nakamura and Higai [52]
Empirical model derived using test data from Miyata et al. [61].fb = r

d ln
(
1 + d

r

)
· fu (1)

Ishihara et al. [50]
Derived using test data from Ishihara et al. [50] and further compared to the numerical results obtained from a 2D FE analysis.fb = 1

λ ln(1 + λ)· fu (2a)
where lnλ = 0.90 + 0.73ln (d/r) (2b)

JSCE [45] Empirical model based on test results obtained by Japanese researchers. Unfortunately, information on these tests is not available
for all of the specimens and only selected test data from JSCE extracted from Ishihara et al. [50] are presented in the appendix.fb = (α r

d + 0.3) fu (3)

Lee et al. [48] Equation (4) is a modification of Equation (3), but the former can be applied to non-circular sections. The model uses the
diameter of the equivalent circular section by converting non-circular bars to equivalent circular bars, d f i. α values were

obtained from linear regression analysis from 14 tests.fb =

[
0.02

(
α r

d f i
+0.47

)
· fu

]
Fs

(4)

Imjai et al. [59]
The model adopts the Tsai–Hill failure criterion for a unidirectional orthotropic laminar composite at a macroscopic level and

considers force equilibrium at the bent zone. The model is calibrated using test results from 26 tests [33] and subsequently
verified against 54 test results available in the literature.

fb = k· f f u (5a)
where k = 1√

1+(ξ· 1r )+(ξ·
1
r )

2
β2 (5b)

fb = bend capacity; fu = ultimate strength parallel to the fibers; r = bend radius; α = 0.05 corresponds to a 95% confidence limit; α = 0.092 corresponds to a 50% confidence limit;
d = nominal diameter of the bars; dfi = diameter of the equivalent circular section; Fs = the safety factor; ξ = πd

4 or t for circular or rectangular cross-sections, respectively; β = strength ratio;
and k = strength reduction factor for bent FRP bars.
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Figure 7. Predicted bend capacity of FRP bars from Nakamura and Higai’s (a) and Ishihara et al.’s
(b) models.

The strength degradation at the bent portion of FRP composites is often quantified using
Equation (3) (see Table 1), which is included in current design recommendations for concrete structures
reinforced with FRP composite materials [34,36,94–96]. It should be noted that Equation (3) is based
on the JSCE guidelines [45]. In Equation (3), the strength of the bent portion, fb, is solely expressed as a
function of the uniaxial tensile strength of the composite, fu, and the bar geometry (i.e., bar diameter, d,
and bend radius, r). The strength of the bent portion varies greatly, even for the same type of fibers,
depending on the bending characteristics and type of resin used. Therefore, the strength of the bent
portion should be determined on the basis of suitable tests. The regression line in Figure 8 is supposed
to give an adequate margin of safety. It should be noted that Equations (1) to (3) are only applicable to
circular FRP bars.
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Figure 8. Bend capacity by the Japanese Society of Civil Engineering’s (JSCE’s) equation (data from
JSCE document [45]).

More recently and based on modifications to Equation (3), Lee et al. [48] proposed Equation (4)
to calculate the bend capacity of non-circular FRP sections. Non-circular bars are converted into
equivalent circular bars using an equivalent diameter with the safety factor (Fs). The safety factor,
Fs, is given different values, such as Fs = 1.3 in JSCE [45] and 1.5 in ACI440.1R-15 [62], CAN/CSA
S6–06 (CSA 2006), and ISIS-M03-07 [96]. Lee et al. also proposed different values of α (suitable for
Equation (3)) using linear regression analysis from 14 tests. The researchers validated their model
(Equation (4)) using previous ACI B.5 bent test data from the literature [49,51,64].
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It should be noted that Equations (1) to (4) are empirical and only depend on the geometry of the
bend, whilst the bond characteristic between the FRP bar/concrete interface, type of FRP, and material
composition are neglected. Recent research by Imjai et al. [59] demonstrated that the predictions of
Equations (1) to (4) do not match the experimental data available in the existing literature. As a result,
Imjai et al. proposed a new macromechanical-based equation (Equation (5a)) that more accurately
calculates the bend capacity of a bent FRP reinforcement. Equation (5a) adopts the Tsai–Hill failure
criterion [42,97] for a unidirectional orthotropic lamina with fibers in one-direction and subjected to
plane stress in the 1–2 plane. The bend capacity (fb) is expressed as a function of the strength reduction
factor (k) multiplied by the ultimate strength parallel to the fibers (fu). The strength reduction factor
(k) is less than unity and ranges from 0.25 to 0.70, depending on the value of β (e.g., Equation (5b)).
The factor β is the ratio of the longitudinal tensile strength and transverse compressive strength
of the FRP material. In their model, the factor β is explicitly derived from the Tsai–Hill failure
criterion [97], which represents the physical meaning of materials at the macro-scale, and the type of
composite/resin composition is considered when determining the bend capacity of unidirectional FRP
composites [59,97,98].

Appendix A compares the bend capacity calculated by the different equations in Table 1 against test
data available in the literature. In Equation (5), the strength reduction factor k used in the calculations
depends on the parameter β, which is the ratio of the longitudinal tensile strength (fu) and the transverse
compressive strength (fcT). The values of fcT were not available for any of the composite specimens
summarized in Appendix A. Accordingly, a value β = 7.5 is recommended as the back-calculation of
the transverse compressive strength in the range 80–246 MPa, which lies within the typical range for
FRP composites reported in the literature [59].

Figure 9 compares 80 test results from the literature and results calculated with the equations
in Table 1. The comparative results presented in Figure 9 clearly show that the JSCE’s equation
(α = 0.05) is conservative, with a mean prediction/experiment ratio of P/E = 1.02 and a standard
deviation of SD = 0.27. It can also be seen that the five equations yield quite different ranges of results.
For instance, Equations (1) and (2) overestimate the bend capacities for the data in the literature,
as shown by P/E = 1.66 and SD = 0.46 for Equation (1), and P/E = 1.34 and SD = 0.33 for Equation (2).
In comparison, Equation (4) better predicts the test results and has less scatter (P/E = 1.08, SD = 0.28).
Equation (5) shows the best agreement with the test results and has a low scatter (P/E = 1.00, SD = 0.25).
The differences between the calculated values can be attributed to differences in the original formulation
of the empirical equations that can be attributed to the influence of the types of composites used in the
experimental program.
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5. Prefabricated FRP Composites and Future Challenges

In the past, the methods employed to manufacture complex or customized FRP shapes were very
expensive and required a complicated manufacturing process. Nowadays, with the aid of computer
automatic control and 3D printing, various shaped FRP reinforcements (shown in Figure 10) are
currently available on the construction market. An advanced filament winding manufacturing process
has been developed, in which resin-impregnated fibers are wound onto specially-designed mandrels
to produce customized closed shapes such as shear stirrups [55,99]. In these pre-bent closed loop
stirrups, the material is wound around a mold into one large stirrup. After the completion of the curing
process, the mold is removed and the large stirrups are then cut into smaller stirrups of appropriate
width links (e.g., pre-bent open/closed stirrup). The advanced filament winding process can produce a
tailored FRP reinforcement with a tensile strength exactly where it is needed. Experimental studies
by Lee et al. [48,100] have proved that advanced filament winding forms the fibers in wide and thin
cross sections suitable for the manufacturing of closed FRP stirrups. This method also allows for the
quick and accurate fabrication of reinforcement cages with a consistent quality of material and uniform
cross-section. This is because the winding system allows the internal radius of the bend to be tighter
than for traditional open stirrups as the fibers do not need to slide over each other, as is required when
bending a straight pultruded bar before the resin polymerizes [99,101].
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Shear reinforcement is often produced from pultruded bars prior to resin polymerization in
circular, rectangular, and other forms, such as a spiral shaped stirrup [102]. A recent study [68] reported
that prefabricated 3D FRP reinforcement cages produced using filament winding were successfully
used in concrete elements. The manufacturing process of the 3D reinforcement FRP cage included
wet and dry winding process. In the wet-winding process, each layer of fiber was impregnated with
a two-component epoxy resin, squeezed with a polytetrafluorethylene tool to remove any excess,
and wound around the mold. The stirrups were cured at room temperature for 72 h, prior to being
demolded. In the dry winding process, the pre-preg tow was wound around the mold, before
being packed in a vacuum bag and cured at 120 ◦C for 4 h. The results obtained from tests on bent
reinforcement showed that the use of wound CFRP instead of conventional circular CFRP stirrups
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offered advantages in terms of construction flexibility at more affordable costs, but it can also help
mitigate the strength reduction at bent corners.

Whilst current advanced technology exists to produce complex 3D shaped FRP composites for
engineering applications, a gap remains between the feasibility and durability of these engineering
products to be used in concrete structures over the design lifetime. Full-scale testing of structural
aspects and durability tests should be performed prior to fully exploiting the full functionality of
shaped FRP reinforcements in civil engineering applications.

Due to the nature of FRP reinforcement manufacturing and its material anisotropic properties,
advanced FEA should also be used to assess the structural behavior of concrete elements when FRP is
used as reinforcement.

6. Concluding Remarks

This article presents an extensive literature review on the strength degradation of curved FRP
composites, and discusses the performance of exiting predictive models for calculating the bend
capacity of FRP reinforcements. The literature review indicates that the use of FRP bars as internal
reinforcements for concrete is still limited to specific structural elements and does not yet extend to the
whole structure. The reasons for this can be related to the limited availability of curved or shaped
reinforcing elements on the market and their limited structural performance. Previous studies hwv4
shown that the mechanical performance of bent portions of composite bars significantly reduces under
a multiaxial combination of stresses, and that the tensile strength at the bend can be as low as 25%
of the maximum tensile strength developed in the straight part. The capacity of the bent specimens
does not seem to vary linearly with the r/d ratio (as currently defined in the JSCE’s equation) and
does not appear to only be a function of the bend geometry. Rather, bond characteristics appear to be
important in controlling the development of stresses along the embedded portion of the composite
and in dictating its ultimate behavior. In a significant number of cases, the equation included in the
JSCE guidelines was found to overestimate the bend capacity of FRP bars with Prediction/Experiment
(P/E) ratios and Std Dev of up to 1.02 and 0.27, respectively. A more recent practical predictive model
based on the Tsai–Hill failure criteria predicted the experimental results more accurately (P/E = 1.0)
and with less scatter (Std Dev = 0.25) than the predictions of existing models.

It is worth noting, however, that none of the models considered in this analysis, including the
macromechanical failure-based model, account for the influence of the concrete strength, embedment
length, and tail length. These parameters are believed to play an important role in determining the
behavior of bent bars embedded in concrete and could be responsible for the large variation observed
in the test data. Future research should focus on the use of advanced finite element modeling to
capture the true behavior of unidirectional FRP composites at the micro level. This includes an input
of the full definitions of material properties in both transversal and longitudinal directions. Biaxial
tests on FRP composites should be performed in order to obtain the failure surface of the materials.
However, the durability of curved FRP reinforcements should be assessed over the design lifetime.
An advanced filament winding manufacturing process has been developed, in which resin-impregnated
fibers are wound onto specially designed mandrels to produce customized closed shapes and these
were successfully used as 3D reinforcement cages for concrete elements. However, the long-term
durability should be further investigated before completely replacing internal steel reinforcements in
concrete structures.
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Abbreviations

The following abbreviations are used in this paper:
ACI American Concrete Institute
AFRP Aramid Fiber-reinforced polymer
BS British Standard
BSI British Standard Institute
CEB Comit Euro-international du Beton
CEN Comite Europeen de Normalisation
CFCC Carbon Fiber Composite Cable
CFRP Carbon Fiber-reinforced polymer
EC Eurocode
FEA Finite Element Analysis
FIB Federation Interationale du Beton
FRP Fiber-reinforced polymer
GFRP Glass Fiber-reinforced polymer
ISE Institution of Structural Engineering
ISIS Intelligent Sensing for Innovative Structures
JSCE Japanese Society of Civil Engineers
NFR Non-Ferrous Reinforcement
OPC Ordinary Portland Cement
RC Reinforced Concrete
SLS Service Limit State
ULS Ultimate Limit State
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Appendix A

Table A1. Bent test data from 1997–2017.

Reference No.
Type of FRP

Specimen d (mm) r (mm) dfi (mm) r/d r/dfi fu (MPa) fb (MPa) Equation (1) Equation (2)
Equation (3)

Equation (4)
Equation (5)

α = 0.05 α = 0.092 βset βopt

JSCE [45]

1

Braided
AFRP

8 16 8 2.0 2.0 1369 812 1110 840 548 663 698 952 463

2 6 12 6 2.0 2.0 1142 796 926 700 457 553 582 794 387

3 8 12 8 1.5 1.5 1369 846 1049 778 513 600 685 830 359

4 10 12 10 1.2 1.2 1283 775 933 684 462 527 634 683 273

5 6 12 6 2.0 2.0 1142 824 926 700 457 553 582 794 387

6

7-stranded
CFRP

8 16 8 2.0 2.0 1794 557 1455 1100 718 868 915 596 607

7 6 12 6 2.0 2.0 1620 552 1314 994 648 784 826 538 548

8 8 16 8 2.0 2.0 1794 595 1455 1100 718 868 915 596 607

9 10 12 10 1.2 1.2 2271 553 1652 1211 818 932 1122 474 484

10 6 12 6 2.0 2.0 1620 485 1314 994 648 784 826 538 548

Shehata et al.
[49]

11

7-stranded
CFRP

3.59 10.8 3.59 3.0 3.0 1782 916 1538 1201 802 1026 944 1199 838

12 3.59 10.8 3.59 3.0 3.0 1782 1455 1538 1201 802 1026 944 1199 838

13 4.4 13.2 4.40 3.0 3.0 1842 983 1590 1241 829 1061 976 1239 866

14 4.4 13.2 4.40 3.0 3.0 1842 1187 1590 1241 829 1061 976 1239 866

15 6.22 18.7 6.22 3.0 3.0 1875 1900 1618 1264 844 1080 994 1261 882

16 6.22 18.7 6.22 3.0 3.0 1875 1421 1618 1264 844 1080 994 1261 882

17 6.22 18.7 6.22 3.0 3.0 1875 798 1618 1264 844 1080 994 1261 882

18
CFRP strip

5 15.0 5.00 3.0 3.0 1800 1242 1553 1213 810 1037 954 815 846

19 5 15.0 5.00 3.0 3.0 1800 715 1553 1213 810 1037 954 815 846

Shehata et al.
[49]

20

CFRP strip

5 35.0 5.00 7.0 7.0 1800 1163 1682 1413 1170 1699 1098 1350 1376

21 5 35.0 5.00 7.0 7.0 1800 988 1682 1413 1170 1699 1098 1350 1376

22 5 35.0 5.00 7.0 7.0 1800 858 1682 1413 1170 1699 1098 1350 1376

23 GFRP 12 48.0 12.00 4.0 4.0 713 346 636 509 357 476 392 346 410
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Table A1. Cont.

Reference No.
Type of FRP

Specimen d (mm) r (mm) dfi (mm) r/d r/dfi fu (MPa) fb (MPa) Equation (1) Equation (2)
Equation (3)

Equation (4)
Equation (5)

α = 0.05 α = 0.092 βset βopt

El-Sayed
et al. [64]

24

CFRP rod

9.5 38.1 9.50 4.0 4.0 1328 701 1186 949 665 888 731 698 764

25 9.5 38.1 9.50 4.0 4.0 1328 761 1186 949 665 888 731 698 764

26 9.5 38.1 9.50 4.0 4.0 1328 656 1186 949 665 888 731 698 764

27 9.5 38.1 9.50 4.0 4.0 1328 596 1186 949 665 888 731 698 764

28 9.5 38.1 9.50 4.0 4.0 1328 789 1186 949 665 888 731 698 764

29 12.7 50.8 12.70 4.0 4.0 1224 681 1093 874 612 818 673 643 703

30 12.7 50.8 12.70 4.0 4.0 1224 539 1093 874 612 818 673 643 703

31 12.7 50.8 12.70 4.0 4.0 1224 697 1093 874 612 818 673 643 703

Ahmed et al.
[51]

32 CFRP rod 9.5 38 9.50 4.0 4.0 1538 712 1373 1099 769 1027 846 712 883

33

GFRP rod

9.5 38 9.50 4.0 4.0 664 387 593 474 332 444 365 407 381

34 15.9 63.6 15.90 4.0 4.0 599 404 535 428 300 400 329 367 344

35 19.1 76.4 19.10 4.0 4.0 533 310 476 381 267 356 293 327 292

Lee et al.
[48]

36
CFRP rod

9.5 42.8 9.50 4.5 4.5 1880 778 1698 1373 987 1343 1053 896 1161

37 9.5 42.8 9.50 4.5 4.5 1880 1014 1698 1373 987 1343 1053 896 1161

Lee et al.
[48]

38

CFRP strip

4 14.3 4.51 3.6 3.2 1850 763 1631 1293 886 1163 987 762 987

39 4 14.3 4.51 3.6 3.2 1850 1012 1631 1293 886 1163 987 762 987

40 4 28.5 4.51 7.1 6.3 1850 1102 1731 1456 1214 1768 1103 1224 1424

41 4 28.5 4.51 7.1 6.3 1850 1192 1731 1456 1214 1768 1103 1224 1424

42 4 42.8 4.51 10.7 9.5 1850 935 1769 1535 1545 1850 1220 1465 1604

43 4 42.8 4.51 10.7 9.5 1850 1167 1769 1535 1545 1850 1220 1465 1604

44 3 28.5 3.39 9.5 8.4 1740 1079 1654 1423 1349 1740 1111 1318 1466

45 3 28.5 3.39 9.5 8.4 1740 1215 1654 1423 1349 1740 1111 1318 1466

46 3 42.8 3.39 14.3 12.6 1740 1267 1682 1490 1763 1740 1258 1499 1589

47 3 42.8 3.39 14.3 12.6 1740 1373 1682 1490 1763 1740 1258 1499 1589

48 0.9 18 1.02 20.0 17.7 1880 1731 1835 1660 1880 1880 1550 1724 1782

49 0.9 18 1.02 20.0 17.7 1880 1703 1835 1660 1880 1880 1550 1724 1782

50 0.9 27 1.02 30.0 26.6 1880 1882 1849 1710 1880 1880 1880 1799 1827

51 0.9 27 1.02 30.0 26.6 1880 1586 1849 1710 1880 1880 1880 1799 1827

Vint and
Sheikh [44]

52

GFRP rod

9.43 51 9.43 5.4 5.4 833 555 764 628 475 664 481 701 568

53 11.93 36 11.93 3.0 3.0 655 522 565 441 295 377 347 450 308

54 13 23 13 1.8 1.8 912 531 721 540 353 420 461 457 275
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Table A1. Cont.

Reference No.
Type of FRP

Specimen d (mm) r (mm) dfi (mm) r/d r/dfi fu (MPa) fb (MPa) Equation (1) Equation (2)
Equation (3)

Equation (4)
Equation (5)

α = 0.05 α = 0.092 βset βopt

Imjai et al.
[33]

55

GFRP strip

3 6 3.39 2.0 1.8 720 236 584 442 288 348 364 227 244

56 3 9 3.39 3.0 2.7 720 309 621 485 324 415 377 318 339

57 3 12 3.39 4.0 3.5 720 324 643 514 360 481 389 393 414

58 3 15 3.39 5.0 4.4 720 370 656 536 396 547 402 451 472

59 3 9 3.39 3.0 2.7 720 316 621 485 324 415 377 318 339

60 3 15 3.39 5.0 4.4 720 415 656 536 396 547 402 451 472

61 3 9 3.39 3.0 2.7 720 340 621 485 324 415 377 318 339

62 3 15 3.39 5.0 4.4 720 399 656 536 396 547 402 451 472

63 3 9 3.39 3.0 2.7 720 367 621 485 324 415 377 318 339

64 3 15 3.39 5.0 4.4 720 464 656 536 396 547 402 451 472

65 3 9 3.39 3.0 2.7 720 299 621 485 324 415 377 318 339

66 3 15 3.39 5.0 4.4 720 334 656 536 396 547 402 451 472

67 3 9 3.39 3.0 2.7 720 324 621 485 324 415 377 318 339

68 3 9 3.39 3.0 2.7 720 345 621 485 324 415 377 318 339

69 3 6 3.39 2.0 1.8 720 183 584 442 288 348 364 227 244

70 3 9 3.39 3.0 2.7 720 280 621 485 324 415 377 318 339

71 3 12 3.39 4.0 3.5 720 301 643 514 360 481 389 393 414

72 3 15 3.39 5.0 4.4 720 316 656 536 396 547 402 451 472

73 3 9 3.39 3.0 2.7 720 281 621 485 324 415 377 318 339

Imjai et al.
[33]

74

GFRP rod

9 54 9 6.0 6.0 760 611 703 583 456 648 448 494 545

75 9 54 9 6.0 6.0 760 645 703 583 456 648 448 494 545

76 9 54 9 6.0 6.0 760 592 703 583 456 648 448 494 545

77 9 54 9 6.0 6.0 760 617 703 583 456 648 448 494 545

78 13.5 54 13.5 4.0 4.0 590 382 527 422 295 394 325 296 339

79 13.5 54 13.5 4.0 4.0 590 345 527 422 295 394 325 296 339

80 9 54 9 6.0 6.0 760 419 703 583 456 648 448 494 545

Mean value (Prediction/Experiment) 1.66 1.34 1.02 1.28 1.08 0.98 1.00

Standard deviation (Prediction/Experiment) 0.46 0.33 0.27 0.32 0.28 0.18 0.25

Note: r is the internal bending radius, d is the nominal diameter (diameter for the circular section and thickness for the strip), dfi is the transformed diameter, fb is the experimental average
failure stress, and fu is the ultimate strength of the FRP bar.
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