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Abstract: Herein, poly(amic acid) (PAA) was synthesized using 4,4’-(hexafluoroisopropylidene)
diphthalic anhydride (6FDA) as a dianhydride and 2,2-bis(3-aminophenyl)hexafluoropropane (6FAm)
and 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (6FAm-OH) as diamines. Poly(vinyl
alcohol) (PVA) at various contents (0–5.0 wt%) was blended with PAA to prepare a composite material.
Then, colorless and transparent polyimide (CPI) composite films were prepared by applying various
stages of heat treatment using the PAA/PVA blend film as a precursor. These film-type composites
were immersed in water to completely dissolve PVA, a water-soluble polymer, and their pore sizes
were investigated to determine their potential as a porous membrane. According to the results of
scanning electronic microscopy (SEM), as the concentration of PVA increased from 0 to 5.0 wt% in
the CPI/PVA composite films, the size of the pores resulting from the dissolution of water-soluble
PVA increased. Further, the micrometer-sized pores were uniformly dispersed in the CPI films.
The thermal properties, morphology, and optical transparency of the two types of CPI membranes
synthesized using 6FAm and 6FAm-OH monomers were examined and compared.

Keywords: colorless and transparent membrane; polyimide; poly(vinyl alcohol); blend

1. Introduction

Several impurities, such as synthetic materials, present in drinking water and industrial
wastewater, are difficult to remove naturally due to their complex structures. Conventional methods
for treating wastewater and contaminated solvents include the use of filters, biological drainage,
ozonation, coagulation flocculation, powdered activated carbon adsorption, electrochemical processes,
and photocatalysts [1–4]. However, it is difficult to completely remove impurities using these methods.
In addition, most of the abovementioned methods result in the generation of new impurities due to the
addition of chemicals during the purification process.

Membrane processes, including microfiltration (MF), ultrafiltration (UF), nanofiltration (NF),
and reverse osmosis (RO), have been used for water purification and wastewater and dye treatment.
These membrane processes were developed to separate materials of different sizes and types. That is,
MF can separate particles, UF can separate macromolecules, and NF can separate nano-sized materials.
In addition, RO can separate ionic compounds. Therefore, of the membrane processes used in current
water treatment technologies, MF is employed to remove suspended solids, protozoa, and bacteria,
and UF is used to remove viruses and colloids. NF is commercially available for the removal of
hardness, heavy metals, and dissolved organic matter, and RO is used for desalination, water reuse,
and water purification. These methods have already been widely applied in various field and are
described in numerous studies [5–7]. However, in pressure-based liquid-phase membrane processes,
flux reduction due to concentration polarization and fouling is a problem to overcome, to prevent
additional resistance to the transport of materials through the membrane.
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The properties and effects of several MF membranes produced for water treatment have been
characterized. In 1997, Mueller et al. [8] reported that a ceramic MF membrane using polyacrylonitrile
(PAN) achieved 99% purity in the treated water. Moreover, Zhong et al. [9] developed a next-generation
ceramic MF membrane using zirconia (ZrO2), which has been proven to be more effective in water
treatment. In addition, according to previous MF membrane studies, inorganic membranes such
as ceramic membranes were more effective in reducing fouling via pre-treatment stages such as
flocculation [10].

Research results [11,12] have been applied to the production of inorganic UF and NF membranes
since the 1940s. In general, an inorganic membrane has a dense structure on a porous support.
Materials used to produce inorganic membranes include mechanically stable alumina, silica, silver,
zirconia, mullite, oxide mixtures such as titanium oxide (TiO2) and zinc oxide (ZnO), and sintered
metal. In particular, by using nano-sized particles, NF membranes can be manufactured with enhanced
selective permeability, mechanical properties, and hydrophilicity. Zhang et al. [13] used the inorganic
precursors tetraethoxysilane (TEOS) and tetra-n-butyl titanate (TBOT) in polyethyleneimine (PEI) to
prepare PEI-silica and PEI-titania nanocomposite membranes, respectively. These NF membranes
exhibited excellent thermal properties and were structurally stable [14].

Unlike the membrane technologies described above, photocatalytic technology uses chemical
reactions initiated by light and is a useful technology capable of producing hydrogen energy and
purifying air and water without environmental load. Currently, it is receiving attention as a way to solve
serious energy and environmental problems. In particular, photocatalytic membrane reactors (PMRs)
using photocatalytic technologies are inexpensive and environmentally friendly and have been shown
to be highly efficient in the treatment of water and wastewater [15]. In addition, photocatalytic reactors
can decompose untreated organic and toxic pollutants present in water sources and treated sewage
effluent into simple, harmless inorganic molecules. PMRs are superior to conventional photocatalytic
reactors in that it is possible (1) to reduce the loss of photocatalysts in large-scale applications, (2) to
control the retention time of molecules in the reactor, and (3) to continuously separate catalysts and
products. Other advantages of PMRs include improved process efficiency and stability, and reduced
cost by reusing photocatalysts [16].

Polyimides (PIs) can be easily processed into the form of a membrane with high chemical and
thermal stability over a wide range of operating conditions. PI membranes are known to have
excellent permeability for gas or liquid phase separation [17,18]. As a conventional polymeric material,
PI has extensively shown its commercial potential as a permeable membrane material with good
physicochemical properties, including high thermal stability, excellent mechanical properties, and good
processability [19]. PI can also interact with water molecules or smaller molecules because the imide
groups of PI can form hydrogen bonds with these molecules. Despite the abovementioned advantages,
most of the PI membranes suffer from stability problems due to expansion at high temperatures,
resulting in reduced production stability and poor performance during the separation process.
Therefore, various methods, such as blending, heat treatment, and crosslinking, have been developed
for the modification of PI membranes to achieve improved stability, performance, and physicochemical
properties. Among them, blending has been widely used as a simple and inexpensive method to
improve the original properties of PI membranes [20,21].

Generally, PI is dark brown due to the charge transfer complex (CT complex) formed between
the straight and rigid imide and benzene structure [22–24]. The formation of this CT complex can
be inhibited by introducing a bent monomer with a strong electron-withdrawing group such as
trifluoromethyl (–CF3) and sulfone (–SO2–) into the PI main chain, thereby hindering the movement
of electrons between the PI backbones. Thus, by simply modifying the structure of the monomer,
optically colorless and transparent PI (CPI) can be synthesized. CPIs containing the –CF3 group exhibit
a high modulus and low coefficient of thermal expansion and can be used in electronic materials such
as flexible display materials and transparent electrodes [25,26]. As described above, the main chain of
CPI is a kinked structure and includes an asymmetrical substituent. Thus, the processing temperature
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is lower and the membrane manufacturing process is superior to that of conventional PI. In addition,
conventional PI is dark yellow or brown, so it is mainly used as an interior material. Although its
thermal stability is slightly inferior to conventional PI, CPI is colorless and transparent. Therefore,
it can be used for interior materials and also for exterior materials that require optical transparency.

Poly(vinyl alcohol) (PVA) is a water-soluble polymer extensively used in paper coating,
textile sizing, and production of flexible water-soluble packaging films [27]. Such applications
have stimulated interest in improving the mechanical, thermal, and permeability properties of thin film
composite (TFC) membranes [11,28–30]. Since PVA exhibits strong water solubility, it is possible to
make pores of uniform size when preparing a TFC membrane in aqueous solution. This result allows
the membrane to maintain uniform properties.

Polymers used in various types of MF and UF membranes include PAN, PVA, polyether sulfone
(PES), polysulfone (PSF), polypropylene (PP), polytetrafluoroethylene (PTFE), poly (vinylidene fluoride)
(PVDF), and sulfonated PSF and PES. These polymer membranes show excellent selectivity, stability,
and permeability during water treatment. PES and PSF membranes are not only the most used materials
for UF membranes, but are also widely used for NF and RO composite membranes. In addition, PP and
PVDF are also widely used materials for MF membranes [10,12].

Herein, we synthesized two poly(amic acid)s (PAAs) by reacting 4,4’-(hexafluoroisopropylidene)
diphthalic anhydride (6FDA) as a dianhydride with 2,2-bis(3-aminophenyl) hexafluoropropane
(6FAm) and 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (6FAm-OH) as diamines. The blend
materials were fabricated by blending PVA in various amounts, ranging from 0 to 5 wt% with the
synthesized PAAs. The CPI/PVA blend films were prepared by heat treatment at various temperatures,
and porous CPI membranes were prepared after removing PVA from the films. The thermal properties,
morphologies, and optical transparencies of the two types of CPI films, synthesized using two different
monomers (6FAm and 6FAm-OH), were investigated and compared.

The purpose of this study was to investigate the possibility of synthesizing membranes using
CPI in solution blending processes and to determine the suitability of CPI for the manufacture of
membranes by characterizing their thermal and optical properties. Further, we aimed to control
the pore size in CPI membranes by a simple solution-based process, such as the dissolution of a
water-soluble filler.

2. Experimental Details

2.1. Materials

In this study, 6FAm was purchased from Santa Cruz Biotechnology (Shanghai, China) and
6FAm-OH was purchased from TCI (Tokyo, Japan). DMAc, a solvent, was purchased from Junsei
Chemical Co. (Tokyo, Japan) and used after completely removing the moisture with a molecular
sieve (4 Å). PVA with 80% saponification (DP = 2.04 × 102) was purchased from Aldrich Chemical
Co. (Yongin, Korea). and used as received. A general purpose solvent was used as it did not
require purification.

2.2. Preparation of the CPI/PVA Blend Film

With each of the two monomers, 6FAm and 6FAm-OH, PI was synthesized by the same method.
Therefore, the method is described for the synthesis using 6FAm: In a 250-mL three-necked flask,
4.39 g (1.3 × 10−2 mol) 6FDA was added to 80 mL of DMAc followed by stirring for 1 h for complete
dissolution. Then, 5.83 g (1.3 × 10−2 mol) 6FAm was dissolved in this solution. Under a nitrogen
atmosphere, a PAA solution was prepared by slowly stirring the abovementioned solution for 1 h
at room temperature for stabilization, followed by stirring at 0 ◦C for 1 h and at room temperature
for 12 h.

After mounting a reflux reactor on the three-necked flask, 0.10 g (2.27 × 10−3 mol) PVA
corresponding to 1 wt% PAA solid was added to the abovementioned solution and dispersed
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by stirring for 3 h at 50 ◦C under a nitrogen atmosphere. The resulting PAA/PVA solution was evenly
spread on a clean glass plate and cast, and then, the solvent was slowly removed while stabilizing
PAA for 2 h at 50 ◦C in a vacuum oven. Thereafter, vacuum was applied at 80 ◦C for 1 h to remove
the solvent.

The thermal imidization reaction system was maintained under a vacuum atmosphere at 110, 140,
and 170 ◦C for 30 min, followed by heat treatment at 195 and 220 ◦C for 50 min, and finally, maintained
at 235 ◦C for 2 h to complete thermal imidization. The prepared CPI/PVA film was slowly removed
from the glass plate in water at 90 ◦C. The size of the films were 50 × 50 mm2. A detailed synthetic
route is shown in Scheme 1.
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2.3. Preparation of a Porous CPI Membrane Film

PVA is a hydrophilic polymer that is completely soluble in water; thus, the CPI/PVA blend film
was immersed in water at 30 ◦C for approximately 8 h to completely dissolve the PVA component in
the blend film, and a porous CPI membrane film of a desired size (thickness: 18–21 µm) was obtained.
Then, this porous CPI membrane film was dried in a vacuum oven at 50 ◦C for 12 h.

2.4. Characterization

Fourier-transform infrared spectroscopy (FTIR) (Bruker, VERTEX 80v, Berlin, Germany) was used
to confirm the synthesis of the CPI membrane film, with particular attention to the absorption peak
related to the imide group. Carbon-13 nuclear magnetic resonance (13C-NMR, Bruker 400 DSX NMR,
Berlin, Germany) spectra were recorded at the Korea Basic Science Institute in Western Seoul Center.

Differential scanning calorimetry (DSC, NETZSCH 200F3, Berlin, Germany) and thermogravimetric
analysis (TGA, TA instrument TA Q500, New Castle, DE, USA) were conducted under a nitrogen
atmosphere to investigate the thermal properties of the CPI membrane film. The temperature increased
at a rate of 20 ◦C/min. The degrees of crystallinity of the films were determined using an X-ray
diffractometer (XRD, Rigaku SWXD, Tokyo, Japan), with Cu-Kα radiation. The measurement was
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conducted at a scanning speed of 2◦/min in the range of 2θ = 2◦–32◦. The pore sizes of the films
were examined using a field scanning electron microscope (SEM, JEOL JSM-6500F, Tokyo, Japan).
To characterize the optical properties, a color difference meter (Konica Minolta CM-3600D, Tokyo, Japan)
and an ultraviolet/visible spectrophotometer (UV-vis, Shimadzu UV-3600, Tokyo, Japan) were used.

3. Results and Discussion

3.1. FTIR and NMR

Figure 1 shows the FTIR spectra of the CPI films containing 6FAm and 6FAm-OH. For the CPI films
containing 6FAm (6FAm PI), the C=O aromatic stretching peaks were observed at 1787 and 1720 cm−1,
and the C–N–C peak at 1368 cm−1 indicated the imidization of PI. By contrast, for the CPI films
containing 6FAm-OH (6FAm-OH PI), a broad O–H stretching peak was observed around 3120 cm−1.
As the -OH group is sensitive to hydrogen bonding, the intensity of the -OH stretching peak observed
for this CPI film was less than that of the typical hydroxyl peak. Molecules with -OH functionalities
are capable of forming intramolecular hydrogen bonds in the PI main chain and show broad stretching
absorption peaks over a wide range of 3000–3300 cm−1. Therefore, the spectrum of 6FAm-OH PI in
Figure 1 shows a broad peak for the hydrogen bond between the phenolic -OH group and nitrogen
in the adjacent imide rings [31]. Similar to the case of 6FAm PI, the spectrum of 6FAm-OH PI shows
C=O aromatic stretching peaks at 1786 and 1718 cm−1, and the C-N-C peak indicating imidization was
observed at 1378 cm−1. These FTIR results suggest that both CPIs underwent a complete imidization
reaction [32].
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Solid-state NMR was used to further confirm the structure of the synthesized CPI films, and the
results are shown in Figure 2. The chemical shifts of the carbons in 6FAm PI and 6FAm-OH PI were
recorded by solid-state 13C CP/MAS NMR at room temperature. The MAS rate was set to 10–12 kHz,
and the spinning sidebands are marked with an asterisk. For 6FAm PI, the 13C chemical shifts of the
benzene ring were observed at 127.80, 132.06, and 137.41 ppm. The chemical shifts of 13C adjacent to
–CF3, 13C in –CF3, and the carbonyl carbon were observed at 64.67, 127.80, and 165.23 ppm, respectively,
as shown in Figure 2a. For 6FAm-OH PI, the chemical shifts of 13C in benzene were observed at 118.18,
132.77, and 137.03 ppm. Moreover, the chemical shifts of 13C adjacent to –CF3, 13C in –CF3, and 13C
adjacent to –OH were observed at 63.96, 124.18, and 153.49 ppm, respectively, as shown in Figure 2b.
The 13C signal at 165.94 ppm corresponds to the carbonyl carbon [33,34]. The chemical shifts of all
carbons are consistent with the structures shown in Figure 2.
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3.2. Thermal Properties

The thermal properties of the CPI, PVA, and CPI membranes with various contents (wt%) of PVA
in the CPI synthesized using two diamines, 6Fam and 6FAm-OH, are summarized in Table 1. The Tgs
of the CPI films containing 6FAm showed a nearly constant value at 233–238 ◦C, as the PVA content
increased from 0 to 5.0 wt%. This result was the same for the CPIs containing 6FAm-OH. For example,
6FAm-OH PIs showed a constant Tg value of 302–303 ◦C, regardless of the amount of PVA in the PI
blend. Upon comparing the Tg values of the CPI blends with 6FAm and 6FAm-OH, the Tg values of
the CPI membrane with 6FAm-OH were found to be higher than those of the CPI membrane with
6Fam, regardless of the amount of PVA. These results show that the -OH groups of 6FAm-OH in CPI
increase the Tg value of PI through hydrogen bonding, resulting in intermolecular attraction between
PI chains. The hydrogen bonds between the CPI polymer chains impede free chain movement, thereby
increasing Tg. Similar results have been reported in numerous studies [35,36]. Figure 3 shows the DSC
thermograms of the CPI membranes with various PVA contents.
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Table 1. Thermal properties of CPI membrane films with various PVA contents.

PVA in PI
(wt%)

6FAm PI 6FAm-OH PI

Thickness
(µm)

Tg
(◦C)

TD
i a

(◦C)
wtR

600 b

(%)
D.C c

(%)
Dia d

(µm)
Thickness

(µm)
Tg

(◦C)
TD

i

(◦C)
wtR

600

(%)
D.C
(%)

Dia.
(µm)

0 (pure PI) 19 237 350 77 0 - 18 302 328 55 0 -
0.5 21 238 349 76 0 0.14 20 302 329 55 0 0.12
1.0 20 235 348 74 0 0.29 21 303 328 57 0 0.13
2.0 18 233 351 76 0 0.41 21 302 327 58 0 0.37
5.0 20 234 349 73 0 0.69 19 303 329 54 0 0.61

100 (pure PVA) - 44 201 30 18 - - 44 201 30 18 -
a At a 2% initial weight-loss temperature. b Weight percent of residue at 600 ◦C. c Degree of crystallinity.
d Pore diameter.
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Table 1 also shows the initial decomposition temperature (TD
i) of the CPI blend films containing

6FAm and 6FAm-OH, depending on the concentration of PVA. In the CPI membranes with 6FAm,
although the PVA content increased from 0 to 5.0 wt%, their TD

i values remained constant at 348–351 ◦C
(see Table 1). This result was almost the same as that obtained for the CPI membranes containing
6FAm-OH; with an increase in the PVA content from 0 to 5.0 wt%, the TD

i value remained constant at
327–329 ◦C. The TGA thermograms of the CPI membranes obtained using two different monomers are
shown in Figure 4. For the two CPI membrane series, no transition temperatures (Tg, Tm, and TD

i)
corresponding to PVA were observed, and the thermal properties of each series were almost the same,
regardless of the PVA content; this indicates that PVA was completely removed from the CPI blend
and a pure CPI membrane was obtained.

In the TGA thermograms shown in Figure 4b for the CPI membrane film with 6FAm-OH,
several stages of thermal decomposition were observed upon heating. This is because PI with the -OH
group undergoes thermal rearrangement (TR) with polybenzoxazole (PBO) at high temperatures [37–39].
Several studies have demonstrated that PBO membranes produced by TR show unusual microporous
properties due to a significant increase in free volume during the TR process in the solid phase. The PBO
membranes obtained by the heat treatment of PI with -OH groups are excellent materials for gas
separation applications, such as CO2 separation for carbon capture, because they exhibit excellent gas
selectivity for mixed gases such as CO2/CH4 and CO2 /N2 [38,39]. The process of PBO formation by
the heat treatment of PI containing an -OH group is shown in Scheme 2.
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Similar to the values of Tg and TD
i, values of the weight residue at 600 ◦C (wtR

600) for the two CPI
membrane films remained almost constant, regardless of the PVA content. That is, the wtR

600 values of
the CPI membrane films containing 6FAm and 6FAm-OH remained 73–77% and 55–58%, respectively,
regardless of the concentration of PVA. Unlike Tg, the TD

i and wR
600 values of the PIs with 6FAm-OH

are lower than those of the PIs with 6FAm due to the low thermal stability caused by the -OH groups
in 6FAm-OH. The values of Tg, TD

i, and wtR
600 indicated that PVA exerted negligible effects on the

thermal properties of the films because the PI membrane films were immersed in water to remove the
water-soluble PVA.

3.3. Morphology

Figure 5 shows the XRD patterns of the two types of CPI membrane films with PVA at various
contents. The characteristic peak of PVA was found at 2θ = 19.68◦ (d = 4.51 Å) and 23.64◦ (d = 3.75 Å).
However, for 6FAm PI, even when the concentration of PVA increased from 0 to 5.0 wt%, no characteristic
peaks corresponding to PVA were observed, and a similar result was obtained for 6FAm-OH PI.
Additionally, there was almost no change in the degree of crystallinity, regardless of the amount
of PVA that was added to the PI membrane film (see Table 1). These results indicate that the PVA
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component was completely removed, regardless of the concentration of PVA in the PI blend films.
The data obtained using XRD are the initial results on filler dispersion in the membrane film and must
be cross-checked with an electron microscope to comprehensively observe the removal of the filler.
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The morphology of the films was investigated by immersing them in water to dissolve the
water-soluble PVA portion of the CPI/PVA blend films. SEM was used to confirm the porosity of
the CPI membrane films in which PVA was removed. Figure 6 shows the SEM images of the porous
CPI membrane films, with 6FAm containing PVA at varying concentrations. As the concentration
of PVA increased from 0 to 5.0 wt%, the pore size gradually increased. For example, when the
PVA concentration was 0.5 wt%, the average pore diameter was 0.14 µm; however, when the PVA
concentration increased to 2.0 wt%, the pore diameter also increased to approximately 0.41 µm.
The pore size increased to approximately 0.69 µm at the PVA concentration of 5.0 wt%. Most of the
pores were evenly distributed throughout the PI film, as shown in Figure 6.Polymers 2018, 10, x FOR PEER REVIEW  10 of 14 
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As the PVA content of the CPI blend increased from 0.5 to 5.0 wt%, PVA agglomerated to increase
the particle size. When these particles are dissolved in water and removed, the pore size in the
CPI membrane correspondingly increased. The shape of the membrane pores, depending on the
concentration of PVA, is also shown in Figure 6.

Similar results were obtained for CPI with 6FAm-OH, as listed in Table 1. As the amount of PVA
in this CPI/PVA blend increased from 0 to 5.0 wt%, the pore diameter slowly increased. For example,
when the amount of PVA in the CPI membrane increased from 0 to 1.0 wt%, the pore diameter increased
to 0.13 um, and when the amount of PVA increased to 5.0 wt%, the diameter of the pores increased
to 0.61 um on average. The variation in pore sizes with increasing PVA concentration in the CPI
membrane films with 6FAm-OH is shown in Figure 7.
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To investigate the overall pore size and dispersion of pores in the CPI membrane, SEM images of
the two series of films containing the same concentration of PVA were obtained at a low magnification
of ×3000, and the results are shown in Figure 8. The pore diameters of the CPI membrane films
with 6FAm and 6FAm-OH containing 5 wt% PVA were approximately 0.64–0.75 and 0.53–0.69 µm,
respectively; moreover, the overall size of the pores was constant and the dispersion was excellent.
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Upon comparing the average diameters of the CPI membranes containing two different monomers,
the average pore diameters of the CPI films containing 6FAm-OH were found to be smaller than those
of the CPI films containing 6FAm at the same PVA content. This result is attributable to the formation
of dense structures due to the hydrogen bonds between 6FAm-OH PI and PI and PVA containing -OH
groups. PVA was then dissolved and removed from the PI blend film, and the removal of PVA can be
verified by the smaller pores in the CPI film containing 6FAm-OH than those in the CPI film containing
6FAm, as shown in Table 1.

3.4. Optical Transparency

The optical properties of the synthesized CPI membrane films can be represented by the cut-off

wavelength (λo), transmittance at 500 nm wavelength (500 nmtrans), and yellow index (YI) [40,41].
The UV transmittances and summarized results are shown in Figure 9 and Table 2, respectively. It was
found that the λo value, indicating the initial transmission in all CPI membrane films, was <400 nm,
and the films started to transmit light before the visible-light region. CPI with 6FAm showed very low
λo values of 280–290 nm regardless of the PVA content. However, CPI with 6FAm-OH showed a λo

value of 345–360 nm at various PVA contents of 0–5 wt%. The λo values of CPI with 6FAm-OH were
higher than those of CPI with 6FAm because the hydroxyl groups in 6FAm-OH were hydrogen-bonded
to form a denser polymer structure, as explained earlier. However, these values are very low as
compared to those of other polymer films and are indicative of the almost colorless and transparent
properties of the films.
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Table 2. Optical transparencies of CPI membrane films with various PVA contents.

PVA in PI
(wt%)

6FA6FAm PI m PI 6FAm-OH PI

λ0
(nm)

500 nmtrans

(%) YI a λ0
(nm)

500 nmtrans

(%) YI

0 (pure PI) 280 89 3 350 87 2
0.5 285 89 3 353 87 3
1.0 280 87 2 360 88 3
2.0 290 88 3 355 88 2
5.0 280 89 3 345 89 3

a Yellow index.

The two series of CPI membrane films exhibited excellent optical properties, with a maximum UV
transmittance of 87–89% at 500 nm regardless of the content of PVA, as shown in Table 2. The YI of the
two series of CPI membrane films with different contents of PVA was measured, and the results are
also listed in Table 2. The YI values of these CPI membrane films are very low (2–3). In the CPI/PVA
blend, when PVA was removed from the aqueous solution, the YI value of the CPI blend remained
constant, regardless of the PVA content. All CPI membrane films containing PVA in the range of
0–5.0 wt% were almost colorless and transparent. Additionally, the optical transparency was excellent
because there was no difficulty in reading the letters through the film. Since the PVA component of the
CPI membrane was completely removed, it was not possible to determine the effect of the PVA content
on the optical transparency in the two membranes series, as demonstrated with the thermal properties
of the films.

4. Conclusions

Colorless and transparent porous PI membranes were prepared using a CPI/PVA blend.
To synthesize CPI, 6FDA was used as a dianhydride and 6FAm and 6FAm-OH were used as diamines.
To prepare porous membranes, water-soluble PVA was used in the CPI blend. As 6FAm-OH contains
-OH groups in the main chain, hydrogen bonding is possible not only in the PI chain itself but also
between PI and PVA present in the blend.

In this study, the CPI membranes synthesized using 6FAm and 6FAm-OH were compared with
each other at different PVA concentrations. As a very thin CPI membrane film (18–21 µm) was prepared,
a pure CPI membrane could be prepared by almost completely removing the PVA component in an
aqueous solution. The Tg of CPI with 6FAm-OH was higher than that of CPI with 6FAm PI due to
hydrogen bonding between the polymer chains; in the latter films, the pore diameter was small due to
the tighter structure. In contrast, the TD

i and wtR
600 values of CPI with 6FAm-OH were lower than

those of CPI with 6FAm due to the low thermal stability of the -OH group. Regardless of the amount
of PVA, the optical transparency of all the obtained CPI membranes was excellent.

In conclusion, these CPI membrane films are expected to be useful as high functional polymeric
materials as well as in the field of filtration, due to their superior thermal property and optical
transparency as compared to that of general purpose engineering polymers. Specifically, in the case
of 6FAm-OH PI, because of its hydrophilicity, the pore size can be easily adjusted. Therefore, it is
expected that 6FAm-OH PI can be used for MF membranes that require optical transparency.
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