Supplementary Materials

for

Simultaneously Improved Thermal and Dielectric Performance of Epoxy

Composites Containing Ti₃C₂T_x Platelet Fillers

Lin Chen^{1,*}, Yu Cao¹, Xuebo Guo¹, Ping Song¹, Kai Chen², Diansen Li³, Jun Lin^{4,**}

¹ MOE Key Laboratory of Power Station Energy Transfer Conversion and System, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China

² MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China

³ MOE Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

⁴ School of Renewable Energy, North China Electric Power University, Beijing 102206, China

* Correspondence: chenlin@ncepu.edu.cn, +86-10-6177-3372; jun.lin@ncepu.edu.cn, +86-10-6177-2185

S1. Three forms of Ti₃C₂T_x materials

According to our previous study on $Ti_3C_2T_x$ MXene films[1], there are roughly three forms of $Ti_3C_2T_x$, including $Ti_3C_2T_x$ micro-platelets/particles resulted from hydrofluoric acid (HF) etching of Ti_3AlC_2 (herein, termed as HF- $Ti_3C_2T_x$) and its derivants of un-delaminated multi-layer $Ti_3C_2T_x$ nanoflakes (ML- $Ti_3C_2T_x$) and delaminated few-layer $Ti_3C_2T_x$ nanosheets (FL- $Ti_3C_2T_x$).

Figure S1 shows the relation and difference among the three forms of $Ti_3C_2T_x$. The filler used in this work is the non-exfoliated HF-Ti₃C₂T_x micro-platelets/particles, which are produced by direct HF etching of Ti₃AlC₂ but without further DMSO intercalation and exfoliation by ultrasonication. Therefore, the thickness of the HF-Ti₃C₂T_x is still on the order of micrometers, resulting in a relatively low aspect ratio. In Figure S1, the FL-Ti₃C₂T_x is the MXene of which the thickness is on the order of nanometers and therefore has very high aspect ratio.

Figure S1. The process of manufacturing three forms of Ti₃C₂T_x

S2. Equations for calculating density and residual mass

The theoretical density is calculated by

$$\rho_{c} = \frac{1}{W_{f} / \rho_{f} + (1 - W_{f}) / \rho_{m}}$$
(S1)

where W_f is the weight percentage of HF-Ti₃C₂T_x filler, ρ_f , ρ_m and ρ_c are the densities of HF-Ti₃C₂T_x filler, epoxy matrix and composite, respectively.

The theoretical residual mass, i.e., "Calculated residual mass" in Table 1, is calculated by

$$m_{cal} = W_f \cdot m_{mea,f} + (1 - W_f) \cdot m_{mea,m} = W_f \times 92.3 + (1 - W_f) \times 8.3$$
(S2)

where W_f is the weight percentage of HF-Ti₃C₂T_x filler, m_{cal} , $m_{mea,f}$ and $m_{mea,m}$ are the calculated residual mass, measured residual mass of HF-Ti₃C₂T_x filler and measured residual mass of epoxy, respectively.

S3. Evaluation of orientation angle of filler

The images in Figure 2 mainly show the filler distribution in the matrix and the interface of filler and matrix. However, Figure 2 also shows the platelet fillers are more likely distributed along the in-plane direction, as indicated by the dashed lines for filler and filler chains in Figure 2b ~ 2f.

Figure S2 shows an example of estimating the orientation angle of filler. The composite specimen is adjusted to the horizontal position at low-resolution when taking SEM images, as shown in Figures S2a and S2b. In this way, the filler position observed at high-resolution image reveals its relation with the horizontal direction, namely, the in-plane direction, as shown in Figure S2c. A couple of orientation angles are measured, which are mainly in the range of $10 \sim 30^{\circ}$, and the average value of ca. 20° is used in the modeling.

front view of the sample

top view of the sample

Figure S2. Demonstration of estimating orientation angle using SEM

S4. Mechanical properties of composites

Nanoindentation tests were performed by a Nano Indenter G200 (Keysight, USA) for epoxy and HF-Ti₃C₂T_x/epoxy composites containing 10wt%, 20 wt% and 30wt% fillers. Since the main topic of this paper is thermal and dielectric performance of HF-Ti₃C₂T_x/epoxy composites, the mechanical results is not included in the main content of manuscript. However, this information may be of interest when considering possible applications. The load-displacement results are shown in Figure S3. Based on the load-displacement results, the Young's modulus and hardness can be obtained, which are shown in Figure S4 and Figure S5, respectively.

Figure S3 Load-displacement results in nanoindentation tests

Figure S4 Young's modulus for epoxy and HF-Ti₃C₂T_x/epoxy composites

Figure S5 Hardness for epoxy and $\mathrm{HF}\text{-}\mathrm{Ti}_3\mathrm{C}_2\mathrm{T}_x\!/\mathrm{epoxy}$ composites

References

- 1. Chen, L.; Shi, X. G.; Yu, N. J.; Zhang, X.; Du, X. Z.; Lin, J., Measurement and Analysis of Thermal Conductivity of Ti3C2Tx MXene Films. *Materials* **2018**, 11, (9).
- Aakyiir, M.; Araby, S.; Michelmore, A.; Meng, Q.; Amer, Y.; Yao, Y.; Li, M.; Wu, X.; Zhang, L.; Ma, J., Elastomer nanocomposites containing MXene for mechanical robustness and electrical and thermal conductivity. *Nanotechnology* 2020, 31, (31), 315715.