Table S1. Subgroup analysis and forest plot of hardness (Shore A) studies.

| Author (year) | Year | Type of Silicone | Filler with \% | Tensile Strength (MPa) | Tear Strength ( $\mathrm{N} / \mathrm{mm}$ ) | Hardness <br> (Shore A) | Elongation at Break (\%) | Author remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mohamm ad et al | 2019 | VST-50F | $\mathrm{Y}_{2} \mathrm{O}_{3}(1 \%-1.5 \%)$ | more in 1.5\% filler $\begin{aligned} & 5.650 \mathrm{MPa} \\ & (\mathrm{P}>0.05) \end{aligned}$ | More in 1.5\% filler $\begin{aligned} & 27.98 \mathrm{~N} / \mathrm{mm} \\ & (\mathrm{P}<0.05) \end{aligned}$ | More in 1.5\% filler <br> 32.31 $(\mathrm{P}<0.05)$ | Increased by 574 <br> for $1.5 \%$ concentration ( $\mathrm{P}>0.05$ ) | 1. Adding $\mathrm{Y}_{2} \mathrm{O}_{3}$ significantly increase tear and hardness but nonsignificantly increase in tensile strength. |
| Salih et al | 2019 | VST-50F | Pomegranate <br> Peels Powder <br> (PPP), powder of | More in $0.2 \%$ PPP $7.888 \text { MPa, }$ <br> 0.3\% SPDA <br> 7.3 MPa | More in $0.2 \%$ PPP <br> $31.1 \mathrm{~N} / \mathrm{mm}$, $\begin{array}{lll} 0.3 \% & \text { SPDA } & 30.6 \\ \mathrm{~N} / \mathrm{mm} & & \end{array}$ | More in $0.4 \% \mathrm{PPP}$ 30.5, <br> $0.3 \%$ SPDA 30.00 | Not seen | 1. Author did not use net silicone, they added PMMA with silicone. <br> 2. $P$ value was not mentioned. |
| Salih et al | 2019 | VST-50F | Pomegranate <br> Peels Powder <br> (PPP), woven <br> fibers <br> (UHMWPE) <br> (0.0\%, 0.5\%, 1\% <br> UHMWPE fiber, <br> $0.2 \% \mathrm{PPP}$ ) | More in 0.5\% <br> UHMWPE <br> chopped fibers 8.05 MPa <br> continuous fibers10.4 MPa | More in 0.5\% <br> UHMWPE <br> continuous fibers <br> $48.00 \mathrm{~N} / \mathrm{mm}$ | More in $1 \%$ <br> UHMWPE <br> continuous fibers $37.00$ | Not seen | 1. Chopped and continuous UHMWPE was used. <br> 2. In certain concentrations property increase then decrease. <br> 3. Author did not use net silicone. He added PMMA with silicone. <br> 4. $\quad$ P value was not mentioned. |
| Haider et al | 2019 | A-2186 | Polyester powder $(1 \%, 3 \%, 5 \%)$ | More in 1\% filler $5.010 \mathrm{MPa}$ | More in $1 \%$ filler $23.48 \mathrm{~N} / \mathrm{mm}$ | More in 5\% filler $34.6750$ | Not seen | 1. Polyester showed no significant effect on the hardness of the |




| , |  |  |  | 36.63 MPa | $21.408 \mathrm{~N} / \mathrm{mm}$ |  |  | 2. | In one group color change is seen. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mohamm ed |  |  |  | ( $\mathrm{P}<0.01$ ) | ( $\mathrm{P}<0.01$ ) | ( $\mathrm{P}<0.01$ ) | concentration $(\mathrm{P}<0.01)$ |  |  |
| Moudhaff er M. Ali |  |  |  |  |  |  |  |  |  |
| Alsamara <br> ay et al | 2017 | A-2186 | Polyamide-6 <br> (Nylon-6) (1\%,3\%,5\%) | Non-significant increase in 1\% filler | Non-significant increase in $1 \%$ filler | Increased in 1\% filler | More in control group 270.69 | 1. | PA-6 micro fillers prevent rapid degradation of mechanical properties of silicone under aging |
|  |  |  |  |  | $20.122 \mathrm{~N} / \mathrm{mm}$ | 44.52 | ( $\mathbf{P}<\mathbf{0 . 0 1 )}$ |  | condition. |
|  |  |  |  | $\begin{aligned} & 5.505 \mathrm{MPa} \\ & (\mathrm{P}=0.49) \end{aligned}$ | ( $\mathrm{P}=1.452$ ) | ( $\mathrm{P}<0.01$ ) |  | 2. | Variation in the mechanical properties of silicone value is directly proportional to the dose and duration of the radiation. |
| Kalamarz <br> et al | 2016 | polydime thylsiloxa ne, | hydrophobic <br> fumed silica, <br> silanamine ( $10 \%$, | More with $15 \%$ hydrophobic fumed silica | Not seen | More with $15 \%$ hydrophobic fumed silica | Not seen | 1. | Change in properties was seen after 24 hours, after 7 days and after 28 days. |
|  |  | Methylhy drosiloxa ne | $15 \%)$ | $(\mathrm{P}<0.01)$ |  | $(\mathrm{P}<0.01)$ |  | 2. | Particular value not mentioned only bar chart given |
| Nobrega et al | 2016 | $\begin{aligned} & \text { MDX4- } \\ & 4210 \end{aligned}$ | ZnO , barium sulphate ( $\mathrm{BaSO}_{4}$ ), $\mathrm{TiO}_{2}(1-2 \%)$ | Not seen | More in 1\% barium sulphate | More in $2 \% \mathrm{ZnO}$ $29.33$ | Not seen | 1. | Oil paint was used in one group. Only hardness was seen with and without incorporated oil paint. |
|  |  |  |  |  | $\begin{aligned} & 3.11 \mathrm{~N} / \mathrm{mm} \\ & (\mathrm{P}=0.01) \end{aligned}$ | ( $\mathrm{P}<0.001$ ) |  |  |  |
| Liu et al | 2015 | MDX4- $4210$ | Expancel , $\mathrm{SiO}_{2}$ <br> (5\%,10\%,15\% by volume) | More in $10 \% \mathrm{SiO}_{2}$ | More in control group | More in $\mathrm{SiO}_{2} 15 \%$ | Not seen | 1. | $\mathrm{SiO}_{2}$ is better than expancel. <br> specific value was not mentioned. |



| Aziz et al | 2003 | Cosmesil <br> (HC), <br> Cosmesil <br> (Standard ) | silica R104, R106, <br> R202, R972, R974, <br> R812s (0\%, 5\%, <br> $10 \%$, $15 \%$, $20 \%$, <br> 25\%) | More in silica filler 20\% R812s with $30 \%$ DMS <br> 4.137 MPa <br> ( $\mathrm{P}>0.05$ ) | More in silica filler R812s 20-25\% <br> $7.41 \mathrm{~N} / \mathrm{mm}$ <br> ( $\mathrm{P}<0.001$ ) | More in silica $20 \%$ R812s with $50 \%$ DMS <br> 68.15 <br> ( $\mathrm{P}<0.001$ ) | More in control group $\begin{aligned} & 475.9 \\ & (\mathrm{P}<0.001) \end{aligned}$ | 1. Author used various type of silica filler. <br> 2. They used $(0 \%, 5 \%, 10 \%, 15 \%$, $20 \%, 25 \%$ ) only for tear strength but only $20 \%$ R812s for tensile and hardness. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Andreopo ulos et al | 1998 | A poly (dimethyl siloxane) | Silica (up to $50 \%$ ) by volume | More in 35\% silica | More in $50 \%$ silica | Not seen | More in $35 \%$ silica | 1. Specific measurement of properties was not mentioned. <br> 2. tensile strength increased up to $35 \%$ but tear strength increased with the increase of filler <br> 3. Inadequate description of sample size. |
| Andreopo ulos et al | 1994 | A poly (dimethyl siloxane) rubber | Silica $\begin{aligned} & (30 \%, 35 \%, 40 \%, 45 \\ & \%, 50 \%, 55 \%) \quad \text { by } \\ & \text { volume } \end{aligned}$ | More in 55\% silica | More in 55\% silica | More in 55\% silica | $\begin{aligned} & \text { More in } \\ & 35 \% \\ & \text { silica } \end{aligned}$ | 1. Specific measurement of properties was not mentioned. <br> 2. They also used aramid, UHMPE and glass as a reinforcement. <br> 3. Silica loading up to $35 \%$ increases mechanical strength, which is then decreased. <br> 4. Inadequate description of sample size. |

