

SUPPLEMENTARY MATERIAL 1

Details of the total energy calculation in DFT.

The total energy, $E_{tot_{i}}$ in density functional theory (DFT) is given by the sum of the kinetic energy, E_{kin} ; the electron-core Coulomb energy, E_{ec} ; the electron-electron Coulomb energy, E_{ee} ; the exchange-correlation energy, E_{xc} ; and the core-core Coulomb energy, $E_{cc_{i}}$ between the pseudocore charges Z_{i} and Z_{j} as follows:

Ì

$$E_{tot} = E_{kin} + E_{ec} + E_{ee} + E_{xc} + E_{cc}$$
(1)

with

$$E_{kin} = 2 \sum_{i\alpha,j\beta} \rho_{i\alpha,j\beta} \int d(r) \chi_{i\alpha} \hat{T} \chi_{i\beta}$$
⁽²⁾

$$E_{ec} = E_{ec}^{(L)} + E_{ec}^{(NL)} = \int d(r)n(r)\sum_{k} V_{L,k}(r - R_k) + \int d(r)n(r)\sum_{k} NV_{L,k}(r - R_k)$$
(3)

$$E_{ee} = \frac{1}{2} \iint d(r) d(r') \frac{n(r)n(r')}{|r-r'|}$$
(4)

$$E_{xc} = \int d(r) n \varepsilon_{xc}(n)$$
⁽⁵⁾

$$E_{cc} = \frac{1}{2} \sum_{i,j} \frac{Z_i Z_j}{|R_i - R_j|}$$
(6)

where *i* and α are the site and basis function indices, respectively. $\rho_{i\alpha,j\beta}$ is the density matrix associated with two basis functions, *i* and *j*, and is defined by $\chi_{i\alpha}$ and $\chi_{j\beta}$. These are defined by $\sum_{v} \Theta(\varepsilon_{v} - \mu)c_{i\alpha,v}c_{j\beta,v}$ with the linear combination of numerical atomic local basis orbitals (LCAO) coefficient, $c_{i\alpha,v}$; the one particle eigen-energy, ε_{v} ; the chemical potential, μ ; and a step function, $\Theta(x)$. *n* is the electro density defined by $2\sum_{i\alpha,j\beta} \rho_{i\alpha,j\beta} \chi_{i\alpha} \chi_{j\beta} \cdot V_{L,k}$ and $V_{NL,k}$ are the local and non-local parts in the norm-conserving pseudopotential of atom *k*, respectively. The factor 2 in E_{kin} and *n* is for the spin multiplicity [1].

 Ozaki, T., Kino, H., Efficient projector expansion for the ab initio LCAO method. *Physical Review* B 2005, 72, 045121.