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Abstract: In this study, the solution casting method was employed to prepare plasticized polymer 

electrolytes of chitosan (CS):LiCO2CH3:Glycerol with electrochemical stability (1.8 V). The 

electrolyte studied in this current work could be established as new materials in the fabrication of 

EDLC with high specific capacitance and energy density. The system with high dielectric constant 

was also associated with high DC conductivity (5.19 × 10−4 S/cm). The increase of the amorphous 

phase upon the addition of glycerol was observed from XRD results. The main charge carrier in the 

polymer electrolyte was ion as tel (0.044) < tion (0.956). Cyclic voltammetry presented an almost 

rectangular plot with the absence of a Faradaic peak. Specific capacitance was found to be 

dependent on the scan rate used. The efficiency of the EDLC was observed to remain constant at 

98.8% to 99.5% up to 700 cycles, portraying an excellent cyclability. High values of specific 

capacitance, energy density, and power density were achieved, such as 132.8 F/g, 18.4 Wh/kg, and 

2591 W/kg, respectively. The low equivalent series resistance (ESR) indicated that the EDLC 

possessed good electrolyte/electrode contact. It was discovered that the power density of the EDLC 

was affected by ESR. 

Keywords: chitosan; glycerol plasticizer; electrical properties; impedance study; EDLC fabrication 

 



Polymers 2020, 12, 1433 2 of 20 

 

1. Introduction 

Renewable energy and high-performance energy devices are required for the human lifestyle 

because of the increasing demand for a clean environment [1]. Recently, an electrochemical double-

layer capacitor (EDLC) emerges as a potential alternative for conventional batteries and even fuel 

cells. The principle of energy storage mechanism in this device is based on the non-Faradaic process, 

where the ions accumulate at the interfacial region in the form of a double-layer [2]. This means only 

charge accumulation occurs between the electrode surfaces and the bulk electrolyte, and there is no 

electron transfer (i.e., Faradaic process). Based on the relatively high power density, durability, and 

thermal stability, EDLC is superior over supercapacitors. It is also taken into consideration that the 

cost-effectiveness and straightforwardness of the fabrication of EDLC are of significant importance 

in terms of technological aspects [2–4]. For EDLC fabrication, the electrodes have been made from 

several materials, such as graphite [5], carbon aerogel [6], carbon nanotubes [7], and activated carbon 

[8]. The activated carbon is intensively and extensively utilized as characterized by a large surface 

area, satisfactory chemical stability, and high electronic conductivity [9]. Another component in 

EDLC design is the electrolyte between the electrodes where solid polymer electrolytes (SPEs) with 

conductivity between ~10−4 and 10−3 Scm−1 have been used. A few attempts have been introduced to 

improve the conductivity of such electrolytes, for instance, salt impregnation and plasticization 

[10,11]. Gupta et al. [12] studied the conductivity of hydroxyl ethyl cellulose film, which was 

increased up to 3.8 × 10−5 Scm−1 and 4.4 × 10−3 Scm−1 with the addition of 0.5 wt.% lithium tetraborate 

(Li2B4O7) salt and 20 wt.% glycerol, respectively. In another study, there has been an increase in 

conductivity of dextran-ammonium nitrate (NH4NO3) system from 3.00 ± 1.60 × 10−5 Scm−1 to 1.15 ± 

0.08 × 10−3 Scm−1 with 20 wt.% of glycerol addition [13]. The critical step in increasing conductivity 

depends upon the plasticization process, which facilitates the degree of dissociation of salts [14]. The 

liquid electrolytes are widely used because of their high performance in various energy devices 

despite the ease of evaporation and leakage, which causes corrosion [15,16]. However, the SPEs have 

several advantages compared to liquid electrolyte counterparts, such as safety and ease of fabrication, 

as well as long shelf life [17]. There are two categories of polymer hosts—natural and synthetic 

polymers. These are commonly documented in the synthesis of SPEs that are used in electrochemical 

energy devices [18]. The synthetic polymers are non-biodegradable that impact petroleum resources; 

hence, it is detrimental to the environment [19]. In terms of biodegradability, the synthetic polymers 

as a polymer host in the study of energy storage devices have been utilized over the last decades. 

Thereby, less plastic waste pollutants will release into the environment. The natural polymers and 

biopolymers are used interchangeably, are typically characterized by cost-effectiveness, high 

compatibility with solvents, high capability in film-forming, and natural abundance [20,21]. For 

example, starch, cellulose, and carrageenan are most commonly used as polymer hosts [22–24]. 

Another common biopolymer that is extensively under intensive investigation in energy storage 

devices is chitosan [25]. This biopolymer enriches in various oxygen-containing functional groups 

(i.e., availability of non-bonding electron pair) based on chemical structure. The problem of low 

conductivity in chitosan is solved by salt incorporation, where the mechanism of conduction is 

significantly affected. The ions from the incorporated salts are in sufficient contact with functional 

groups within the polymer body that provide dative bond [26]. Recently, it has been shown that the 

addition of glycerol accompanying specific lithium salt into chitosan-based polymer electrolyte 

improves conductivity. Such a conducting electrolyte system has been employed in EDLC 

fabrication. 

2. Materials and Methods 

2.1. Materials 

In the present work, chitosan with a relatively high molecular mass of around 310,000 to 375,000 

g/mol along with glycerol in the fabrication of plasticized systems was used as received. Both 

chemicals were purchased from Sigma-Aldrich (Missouri, MO, USA). 
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2.2. Polymer Electrolyte Preparation 

The procedure involved the addition of 1 g of Chitosan (CS) into 50 mL of acetic acid (1%) 

solution. Afterward, a constant weight ratio (40 wt.%) of lithium acetate (LiCO2CH3) salt was added 

to the previous solution. The solution was stirred continuously with the magnetic stirrer at room 

temperature until a homogenous solution was obtained. Then, a various weight percentage ratio of 

glycerol was added to the polymer-salt mixture, with stirring continuously until a clear solution was 

gained. The percentage of glycerol content in the prepared samples varied from 14 to 42 wt.%. The 

samples were then coded as CSGL1, CSGL2, and CSGL3 for CS:LiCO2CH3 electrolyte incorporated 

with 14 wt.%, 28 wt.%, and 42 wt.% of glycerol, respectively. Finally, the solutions were then spilled 

into different clean and dry glass Petri dishes, covered with filter paper to prevent any contamination. 

The Petri dishes were left to evaporate solvent slowly at room temperature, to obtain dry and a free-

standing plasticized CS polymer electrolyte films. 

2.3. Impedance and X-ray diffraction (XRD) Studies 

To investigate the electrical properties of the films, the electrochemical impedance spectroscopy 

(EIS) [HIOKI, 3532–50 LCR HiTESTER, Hioki, Nagano, Japan] from 50 Hz to 5 MHz was employed 

for receiving the impedance spectra of the samples. D5000 X-ray diffractometer (1.5406 Å)[ Bruker 

AXS GmbH, Berlin, Germany] was used for the structural study of the polymer films. The scanning 

angle of the films was set in the range of 10° to 80° (resolution = 0.1°). 

2.4. Transference Number (TNM) and Linear Sweep Voltammetry (LSV) Measurements 

The digital DC power supply, V&A Instrument (Neware, Shanghai, China ) DP3003, was 

employed to perform the transference number (TNM) analysis from the DC polarization technique. 

Before starting measurements, the relatively high conducting electrolyte was sandwiched between 

blocking stainless steel electrodes in a Teflon holder. The electrode polarization was carried out by 

holding potential at 0.8 V, and the DC current was recorded as a function of time at room 

temperature. The potential window of the conducting electrolyte was also determined using linear 

sweep voltammetry (LSV) analysis (DY2300 potentiostat, Neware, Shenzhen, China) at a scan rate of 

10 mV/s. The image of the fabricated SPE is indicated in Figure 1a, and the circle image of the SPE 

after LSV examination is shown in Figure 1b. It is seen in Figure 1b that the SPE film was oxidized 

beyond the decomposition voltage. 

  
(a) (b) 

Figure 1. (a) Image of the fabricated solid polymer electrolyte (SPE). (b) Circle image of the fabricated 

SPE after linear sweep voltammetry (LSV) examination. 

2.5. EDLC Preparation 

The electrode made of polyvinylidene fluoride (PVdF), activated carbon, and carbon black 

materials was used in the EDLC study. The detail of the electrode preparation can be seen in our 

previous work [2]. The thickness of the electrodes varied to obtain an optimum of 25 μm. The specific 

capacitance (Cs) was calculated from the CV response using the following relation [27]: 
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where ʃ I(V)dV is the area of the CV curve, which was determined using Origin 9.0 software; m and 

v are the mass of active material and scan rate, respectively. The potential range of 0.9 V to 0 V from 

starting (V2) to the ending (V1), respectively, was applied. The charge-discharge profiles of the system 

were tested using a Neware battery cycler with a current density of 0.5 mA/cm2. The specific 

capacitance (Cs) from charge-discharge profiles and equivalent series resistance (ESR) were calculated 

using the Equations shown below [28,29]: 
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where i is the applied current, s is the slope of discharge part, and Vd is the voltage drop. 

3. Results and Discussion 

3.1. Dielectric Properties 

To deal with ionic transport phenomenon in the SPEs, it is of the best choice to analyze the 

dielectric relaxation. From this analysis, one can examine the nature and ionic movement of polymer-

plasticizer interactions [30,31]. To tackle dielectric properties, there are several parameters, such as 

relative permittivity, loss tangent, dielectric constant, microwave reflection coefficient, split post 

dielectric resonance technique, and terahertz material [31]. The dielectric constant or complex 

permittivity is defined by the following mathematical relation [32]: 

"'*)(  j  (4) 

where ε′ is the real dielectric constant, and ε″ is the imaginary dielectric loss, which essentially 

specifies the energy loss and storage in every cycle of the applied power supply [30]. Both the real 

and imaginary parts of complex permittivity (ε*) are calculated from the impedance data (i.e., Z′ and 

Z″) using the Equations presented below [33,34], 
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where ω is the angular frequency of the applied filed (ω = 2πf), and ε′ and ε″ are the dielectric constant 

and dielectric loss, respectively. The Co is the vacuum capacitance given by εoA/t, εo is the permittivity 

of free space, A is the electrode cross-sectional area, and t is the film thickness. Figure 2 and 3 show 

the real and imaginary part of dielectric constant (ε′, ε″) as a function of frequency at room 

temperature. It is observable that the value of ε′ rises very sharply for the high amount of glycerol 

plasticizer at the low-frequency region as a result of the influence of space charge and electrode 

polarization (EP) [35]. At the electrode/electrolyte interfacial region, a high concentration of charge 

carriers accumulated because of the increase in the polarization in the low frequency [36]. At the 

higher frequency regions, it is clearly seen that there is no possibility of excess ion dispersion to align 

with the direction of the field as the consequence of the periodic reversal of the electric field takes 

place rapidly. Regarding both dielectric constant and dielectric loss, there is a decrease in the values 

due to the polarity declination [37]. It is known that the carrier density is in strong association with 

the dissociation energy (U) as well as dielectric constant (ɛ′), which can be formulated in this 

relationship (n = no exp(−U/ɛ′KT)). 
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The value of dielectric constant increases with the increasing salt concentration and there is a 

substantial increase in the number of charge carriers and thus a rise in DC conductivity [38–41]. To 

investigate and comprehend the SPEs’ conductivity behavior, it is best to measure DC conductivity 

and dielectric constant, as well as a function of the concentration of the salt at room temperature. 

 

Figure 2. Dielectric constant versus log (f) for all polymer blend electrolytes. 

 

Figure 3. Dielectric loss versus log (f) for all polymer blend electrolytes. 
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3.2. Impedance Study 

Impedance spectroscopy is a powerful technique to be used in examining the ionic conductivity 

of polymeric materials [42–44]. Electrochemical impedance spectroscopy (EIS) is also used as an 

impressive technique to analyze electrical properties of the new materials that are utilized in 

electrochemical energy devices, for example, double-layer capacitance, diffusion layer, and charge 

transfer resistance [39]. 

Over the previous decade, the ion-conducting membrane is a class of materials, which have 

attracted attention owing to the wide applications in solid electrochemical devices [42]. The EIS 

responses of polymer electrolytes commonly consist of a semicircle and a spike at high and low-

frequency regions, respectively [43]. The semicircle results from charge transfer at the interface. On 

the contrary, similar behavior is not obtained in the measurement of the EIS, as presented in Figure 

4a–c. At the low-frequency region, the spike region arises owing to EP (that is, the effect of blocking 

electrodes). The EP phenomenon occurs as a result of the growth of electric double-layer, as a 

consequence of free charge accumulation at the solid electrolyte and electrode interface [45,46]. 

Accordingly, at the low frequency, it is supposedly for the complex impedance to show a straight line 

parallel to the imaginary axis. In other words, the straight line’s inclination ought to be 90°, and the 

blocking double-layer capacitance (EP phenomena) at the blocking electrodes is responsible for the 

inclination [47,48]. The ionic conductivity of the CS:LiCO2CH3:Gly systems can be calculated using 

the following Equation [49]: 


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
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


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
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A
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  (7) 

where t is the thickness of the sample, Rb is the bulk resistance of the material, and A is the area of the 

electrode [50,51]. It is of vital importance to determine the DC conductivity of the samples from the 

Rb value using the above Equation. 

The DC conductivities are calculated and tabulated, as shown in Table 1. It is seen that the 

highest ionic conductivity is recorded for lower bulk resistance Rb material, with 5.19 × 10−4 Scm−1. 

Therefore, one reason behind employing polymer blend electrolytes in practical usage in electrical 

double-layer capacitors (EDLCs) is a relatively high DC conductivity. The dependency of 

conductivity of electrolytes on the number density and the mobility of the ions is well-known and 

has been mathematically shown [40,50]: 

  q  (8) 

where ƞ denotes the carrier density, q denotes simple charge, and μ represents mobility. An earlier 

study has suggested that the charge species of Li+ ion is released by lithium salt within the polymer-

lithium salt system [51]. Table 1 shows the DC conductivity values of electrolyte samples at ambient 

temperature. From Figure 4, it is seen that there is a decrease in the bulk resistance with increasing 

plasticizer concentration from 14 to 42 wt.%. It has also been confirmed that it is essential for polymer 

electrolytes to be used in electrochemical device applications, such as batteries and EDLCs, if the DC 

conductivity lies between 10−5 and 10−3  S cm−1 [52,53]. It is worth-mentioning that glycerol is helpful 

in improving DC conductivity in polymer electrolytes when plasticized. The more insight into the 

influence of glycerol as a plasticizer in polymer electrolytes has been discussed in the next section. 
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Figure 4. Complex impedance plots for (a) CSGL 1, (b) CSGL 2, and (c) CSGL 3. 

Table 1. Calculated DC conductivity for CS:LiCO2CH3:Gly electrolyte films at room temperature. 

Sample Designation DC Conductivity (S/cm) 

CSGL1 1.66 × 10−4 

CSGL2 2.77 × 10−4 

CSGL3 5.19 × 10−4 

3.3. XRD Analysis 
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the broadness increases. Earlier studies have confirmed that plasticizer incorporation to polymer 

electrolytes is helpful for increasing both the conductivity and the amorphous phase [5,8,11]. 

Plasticizers also reduce the number of active centers, thereby weakening the intermolecular and 

intramolecular forces between the polymer chains. Consequently, the reduction in the degree of 

crystallinity makes the salt dissociation capability to be guaranteed, and as a consequence, an 

enhancement of charge carrier transport occurs [11]. Based on these observations, the increase in DC 

conductivity observed in impedance analysis (see Table 1) may be related to the increase in 

amorphous as well as the dissociation of salts. 

 

 

 

Figure 5. XRD pattern for (a) CSGL 1, (b) CSGL 2, and (c) CSGL 3. 
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3.4. TNM Study 

The transference number measurement (TNM) is performed to evaluate the conductivity of the 

glycerolized system. Figure 6 exhibits the plot of current against time during polarization for the 

relatively high conducting electrolyte (CSGL 3). Shukur et al. [54] stated that the ionic conductivity 

within the polymer electrolyte system is responded by ions if the transference number of ion (tion) is 

close to unity. The transference number of the ion and electron (tel) is calculated using the following 

Equations [55]. 

i

ssi
ion

I

II
t


  (9) 

ionel tt 1  (10) 

where Ii and Iss represent the current at initial and steady-state, respectively. 

 

Figure 6. Current versus time for the highest conducting electrolyte. 
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3.5. Linear Sweep Voltammetry (LSV) 

The potential window of the electrolyte at room temperature can be determined from the LSV 

study. The LSV response from 0 to 2.5 V for the relatively high conducting electrolyte (CSGL 3) at 10 

mV/s is presented in Figure 7. It is observed that there is no noticeable current flow at the potential 

below 1.80 V, indicating the absence of electrochemical reactions [62]. The final potential (i.e., 

decomposition) of the window of the electrolyte ends at 1.80 V, which is comparable with the value 

documented for the plasticized PEMA-based polymer electrolyte system by Anuar et al. [63]. 

Therefore, the decomposition potential obtained for the electrolyte under study is highly satisfactory 

to be applied in EDLC that normally operates at 1.0 V [64]. 

 

Figure 7. Linear sweep voltammetry (LSV) curve for the highest conducting electrolyte. 

3.6. CV and EDLC Characterization 

The cyclic voltammetry (CV) is carried out on the carbon electrode and chitosan 

(CS):LiCO2CH3:Glycerol to evaluate the capacitive behavior of the EDLC under study. The CV is 

carried out at different scan rates, as shown in Figure 8. It is interesting to note that the CV shape 

turns from leaf-shape to rectangular as the scan rate is decreased. To explain this phenomenon, the 

factor of the type of electrodes is crucial because the difference in internal resistance and porosity 

causes the shape of CV response to be an imperfect rectangular shape [65]. Of special interest, no 

peak is observed, suggesting no possibility of a Faradaic process (i.e., charge transfer) in the 

fabricated EDLC. Instead, both cations and anions in the EDLC migrate to negative and positive 

electrodes, respectively, during the charging process. The anion is attracted by the positive electrode, 

while the opposite situation occurs at the negative electrode. The high electric field holds the ions 

and electrons by electrolyte and electrode, respectively [66]. This indicates the development of a 

double-layer charge at the surface of carbon electrodes, where the energy is stored in the form of 

potential energy [67]. The values of Cs at each scan rate are calculated from the CVs using Equation 

(1) and are tabulated in Table 2. 

-0.001

0.004

0.009

0.014

0.019

0.024

0.029

0.034

0 0.4 0.8 1.2 1.6 2 2.4 2.8

Potential (V)

C
u
r
r
e
n
t
 
d
e
n
s
i
t
y
 
(
A
/
c
m
2
)

  Decomposition 
 voltage = 1.8 V



Polymers 2020, 12, 1433 11 of 20 

 

 

Figure 8. Cyclic voltammetry (CV) curves of the fabricated electrochemical double-layer capacitor 

(EDLC) at different scan rates. 

Table 2. Specific capacitance (Cs) of the electrochemical double-layer capacitor (EDLC) at different 

scan rates. 

Scan Rate (mV/s) Specific Capacitance, Cs (F/g) 
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50 37.85 

100 21.89 
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in the EDLC under the study, the galvanostatic technique is applied. Figure 9 exhibits the charge-

discharge profile of the EDLC on the carbon electrode and chitosan (CS):LiCO2CH3:Glycerol. The 

linear capacitive behavior in the EDLC is verified via the discharge slope [52]. The Cs of the EDLC 

from charge-discharge curves is calculated using Equation (2). 

 

Figure 9. Charge-discharge profile for the fabricated EDLC device. 
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extracted from CV analysis, which proves that EDLC exhibits the characteristics of the capacitor cell 

[69]. At the 400th cycle, the Cs increases to 132.8 F/g and becomes almost constant at an average value 

of 136.8 F/g up to the 700th cycle. An incredibly interesting observation is that the Cs obtained in this 

study is comparable to the Cs value for the fabricated EDLC, which was at ~130 F/g, as documented 

by Yadav et al. [70]. Consequently, it is suitable to use plasticized chitosan (CS): LiCO2CH3:Glycerol 

electrolyte as a new material in the fabrication of EDLC with high specific capacitance. It is also 

critical to know the columbic efficiency (η) parameter regarding the cycling stability of the EDLC, 

where it is calculated from the following Equation [13]. 

100
c

d

t

t
  (11) 

where td and tc are the discharge and charge time, respectively. Figure 10 shows the efficiency of the 

fabricated EDLC, where plasticized chitosan (CS):LiCO2CH3:Glycerol is used over 700 cycles. At the 

1st cycle, the efficiency is found to be 84.6% and increases to 91.4% at the 10th cycle. Importantly, at 

the 30th cycle, the efficiency is observed to be 98.8% and then kept constant at ~99.5% up to 700 cycles. 

This indicates plausible electrode-electrolyte contact as the efficiency is higher than 90.0% EDLC 

under study [71]. 

 

Figure 10. Specific capacitance, Cs, and efficiency, η, of the fabricated EDLC for 700 cycles. 

From the charge-discharge profile in Figure 9, there are tiny potential drops (Vd) before the 

discharging process begins. This can be related to the existence of internal resistance in the EDLC, 

which is called equivalent series resistance (ESR). This ESR of the EDLC can be obtained from 

Equation (3). Figure 11 exhibits the ESR of the EDLC for 700 cycles. It can be determined that the ESR 

value varies from 40 to 75 Ω over 700 cycles, and it is noticeable that the value is slightly increased 

with a positive slope throughout the 700 cycles. As mentioned by Arof et al. [72], the internal 

resistance exists due to the charge and discharge process of electrolytes, type of current collectors 

(aluminum foils), and also the gap between electrolyte and electrode. The small value of ESR portrays 

good contact between the electrode and the electrolyte and indicates that it is easy for ions to migrate 

toward the surface of the electrode to form an electrical double-layer [73]. A similar trend is observed 

for the starch-lithium acetate system, where the ESR is slightly increased when the Cs remains at a 

constant value [74]. Besides, the rapid charging and discharging process will lead to the 
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recombination of free ions, and then the ion pair will be developed, which leads to the conductivity 

decrement. Kang et al. [75] also stated that ESR is strongly related to the conductivity of an electrolyte. 

 

Figure 11. Equivalent series resistance (ESR) of the fabricated EDLC for 700 cycles. 

The energy density (E) and power density (P) are also important to describe the performance of 

the EDLC. These parameters can be expressed by using the following Equations [76]. 

2

2VC
E s  (12) 

)(4

2

ESRm

V
P   (13) 

Figure 12 exhibits the calculated energy density for 700 cycles. The EDLC obtains the energy 

density (E) of 14.7 Wh/kg at the 1st cycle, and the value is gradually increased to 18.4 Wh/kg at the 

450th cycle and then kept stable at 19.1 Wh/kg from 540th cycle towards the final cycle. This trend is 

harmonized with the pattern of Cs illustrated in Figure 10. This result explains that the charge carriers 

require almost the same amount of energy to migrate towards the surface of the electrodes for the 

entire process of charge and discharge [77]. The results of the present work reveal that biopolymer-

based electrolytes are crucial for energy storage applications. Previous studies have indicated that 

biopolymer-based electrolytes have been widely utilized in electrochemical devices, such as EDLC 

and batteries [78–82], but their electrochemical performances are still low. In the present work, high 

energy density (19.1 Wh/kg) is obtained, which can be considered as a new approach in this field. 

EDLCs are devices, which can occupy the spaces between electrochemical batteries and electrostatic 

capacitors with regard to energy density and power density [83]. The achieved energy density in the 

current work is 19.1 Wh/kg, which is in the range of the energy density of batteries (see Figure 13). 

Thus, the challenges in this field of study (EDLC study) are to design EDLC devices with an energy 

density close enough to batteries in addition to its high power density. Moreover, the power density 

(P) values are calculated by using Equation (13) for selected cycles, where P value at the 1st cycle is 

found to be 2.591 × 103 W/kg (see Figure 14). Then, it is dropped to 1830.6 W/kg at the 400th cycle and 

has remained constant until the EDLC has completed 700 cycles. The trend of P is in agreement with 

the trend of the ESR plot. This is because the depletion of electrolytes occurs when the internal 
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resistance increases, causing the recombination of ions due to the fast charging and discharging 

mechanism, thus resulting in reduced P at a high cycle number [84]. Both E and P values are clearly 

dependent on the mass loading of active material in the fabrication of EDLC. The low mass loading 

and relatively low current are reported to be responsible for providing enhanced electrochemical 

performance [85]. 

 

Figure 12. Energy density, E, of the fabricated EDLC for 700 cycles. 

 

Figure 13. Ragone plot of energy density versus power density for numerous electrical energy storage 

and conversion devices [83]. 
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Figure 14. The power density of the fabricated EDLC for 100 cycles. 

4. Conclusions 

Chitosan (CS):LiCO2CH3:Glycerol polymer electrolytes were prepared with a solution cast 

method. The electrolyte studied in this current work could be established as new materials in the 

fabrication of EDLC with high specific capacitance, energy density, and power density. The dielectric 

properties were correlated with DC conductivity to understand the conductivity behavior of the 

plasticized electrolytes. The system with high dielectric constant was also associated with high DC 

conductivity (5.19 × 10−4 Scm−1). The reduction of crystallinity and increase of DC conductivity upon 

the addition of glycerol were ascribed to the disruption of intermolecular hydrogen bonds and 

dissociation of more salts through the electrolyte. Li+ and CH3CO2- ions were the main charge carriers 

throughout the conduction process rather than electrons as tel was less than tion. These relatively high 

values of both ion transference number and potential stability confirmed the possibility of the 

fabricated systems for the electrochemical device as energy storage. The sharp drop in the current 

value of the TNM plot verified that the CS:LiCO2CH3:Glycerol was an ionic conductor. From CV 

analysis, it was found that the specific capacitance reduced from 77.36 F/g to 21.89 F/g as the scan rate 

changed from 10 mV/s to 100 mV/s, respectively. The capacitive characteristic of the fabricated EDLC 

was confirmed as no redox peaks were observed in the CV plot, as well as the linearity of the 

discharge curve. The EDLC was stable up to 700 cycles, where the efficiency was stable from 98.8% 

to 99.5%. Ions in CS:LiCO2CH3:Glycerol was considered to have almost the same energy barrier 

during the conduction process as the energy density (average E = 18.4 Wh/kg) was almost constant 

throughout 700 cycles. The specific capacitance of the EDLC was 132.8 F/g. The power density of the 

EDLC was quite high (2591 W/kg). This could be due to the low value of ESR, which was 40 Ω. 
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