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Abstract: In the past few decades, polymeric nanocarriers have been recognized as promising tools and
have gained attention from researchers for their potential to efficiently deliver bioactive compounds,
including drugs, proteins, genes, nucleic acids, etc., in pharmaceutical and biomedical applications.
Remarkably, these polymeric nanocarriers could be further modified as stimuli-responsive systems
based on the mechanism of triggered release, i.e., response to a specific stimulus, either endogenous
(pH, enzymes, temperature, redox values, hypoxia, glucose levels) or exogenous (light, magnetism,
ultrasound, electrical pulses) for the effective biodistribution and controlled release of drugs or genes at
specific sites. Various nanoparticles (NPs) have been functionalized and used as templates for imaging
systems in the form of metallic NPs, dendrimers, polymeric NPs, quantum dots, and liposomes.
The use of polymeric nanocarriers for imaging and to deliver active compounds has attracted
considerable interest in various cancer therapy fields. So-called smart nanopolymer systems are
built to respond to certain stimuli such as temperature, pH, light intensity and wavelength, and
electrical, magnetic and ultrasonic fields. Many imaging techniques have been explored including
optical imaging, magnetic resonance imaging (MRI), nuclear imaging, ultrasound, photoacoustic
imaging (PAI), single photon emission computed tomography (SPECT), and positron emission
tomography (PET). This review reports on the most recent developments in imaging methods by
analyzing examples of smart nanopolymers that can be imaged using one or more imaging techniques.
Unique features, including nontoxicity, water solubility, biocompatibility, and the presence of multiple
functional groups, designate polymeric nanocues as attractive nanomedicine candidates. In this
context, we summarize various classes of multifunctional, polymeric, nano-sized formulations such
as liposomes, micelles, nanogels, and dendrimers.
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1. Types of Stimuli

It is well established that drugs must be administered in a controlled manner to target sites to
boost therapeutic efficacy and reduce or avoid adverse effects. In this approach, stimuli-based drug
delivery systems have shown significant potential for the effective targeting of active drug moieties.
In 1978, thermosensitive liposomes were first used for drug delivery. Over the years, scientists have
designed and extensively used stimuli-responsive biomaterials for controlled drug administration,
leading to the birth of the field of stimuli-responsive polymers. Such frameworks have helped in
the observation of the physiological causes of illnesses, wherein the proportion of the administered
drug is influenced by physiological necessities. There are reports on multiple forms of stimuli, mainly
categorized as endostimuli (internal) and exostimuli (external), which have led to effective drug release
at targeted sites [1].

1.1. Properties of Internal Stimuli

The intrinsic properties of pathologically challenged tissue differ significantly from healthy normal
cells. These properties have helped in designing endostimuli-responsive nanocarriers for the transport
and effective targeting of drug cargos.

pH. pH is one of the most commonly used delivery stimuli, employed either on precise organs
(vagina/gastrointestinal tract) or on organelles (such as lysosomes, golgi, and endosomes); it has
also been used for the release of the drug moieties under altered pathological conditions, like cancer,
inflammation, or ischemia with marked pH changes [2]. Extracellular pH is generally maintained at
about 7.4 in healthy tissue and blood. Average extracellular pH values are typically acidic due to the
high glycolysis rates in many tumors [3]. A low pH can serve to highlight the tumor area to aid site
specific drug release. pH-responsive polymers, which are capable of accepting or donating protons
in pathological pH, allow moderate conformational changes to occur, and are mostly employed for
these systems [4]. Poly(ε-caprolactone) (PCL) nanoparticles have been modified to increase tamoxifen
concentrations in estrogen receptor (ER)-positive breast cancer [5]. pH-responsive copolymeric systems
can be formed either by introducing an acid functionalized group into the backbone of the polymer
which undergoes conformational and solubility variations upon environmental pH change, or by
employing acid cleavable bonds that break and permit the release of chemotherapeutics. TNFαwas
released from a chitosan entity when it was optimized by an amino group upon protonation at the
tumor site [6]. Recently, many researches have studied nanoformulations that are derived from natural
polysaccharides and modified by pH for successful drug delivery. For example, Chen et al. developed
biocompatible cellulose-based hydrogels that were incorporated with pH-sensitive diblock copolymer
micelles for prolonged drug delivery [6]. In another study, Luo et al. synthesized amphiphilic stearic
acid and carboxymethyl chitosan conjugated self-assembling nanoparticles incorporating paclitaxel.
pH stimuli helped in the effective apoptosis of cancer cells via this platform [7]. Saha et al. reported
on the development of a pH-triggered auto-fluorescent polymeric nanoplatform for the delivery of
nonfluorescent aromatic nitrogen mustard chlorambucil (CBL) to cancer tumors [8]. pH variance is,
therefore, a fundamental variable for the evolution of sophisticated DDSs. While pH is widely used in
smart drug delivery, it should be coupled with different stimuli, including temperature or redox, to
ensure very accurate and precise release at the target sites. The use of acidic pH as a trigger in tumor
microenvironments has its limitations. Firstly, acid pH in perivascular regions is usually far away from
the blood flow, leading to a lack of nanoparticle response. In addition, pH variations often do not
greatly differ in the healthy tissues and tumor tissues [9,10].
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Redox. This stimuli system has garnered a lot of attention over the years for the treatment of many
ailments, and has been widely explored for intracellular drug delivery systems [10]. The glutathione
(GSH) concentration in cancerous tissues is 100–1000 times greater than that in blood, and about
100 times more than that in healthy physiological tissue [11]. GSH, a powerful reducing agent
because of its intrinsic thiol group, inhibits reactive oxidative species (ROS) accumulation in diseased
tissues and serves as an interesting stimulus for the delivery of anticancer drugs. It has also been
shown that the ROS level is 10–100 times greater in inflamed tissue and colon cancer than in normal
tissue [12]. Copolymers that effect a response in the presence of glutathione possess disulfide linkage,
thereby enabling the formation of micelles which is disrupted in vivo to release the desired drug [13].
Tian et al. fabricated multifunctional mesoporous silica nanocarriers conjugated with transferrin via
disulfide linkage to release doxorubicin at cancer sites [14]. Various ROS-reactive DDS forms, including
thioether, selenium/tellurium, thioketal, boron ester, peroxalate ester, polyproline, polysaccharide, and
aminoacrylates, have been explored in drug administering applications. In a recent study, micelles
of PEG2000-S-S-PTX (PEG conjugated to paclitaxel via disulfide linkage) were manufactured and
characterized for use as a redox-sensitive prodrug for breast cancer cells [15]. The redox stimulant
DDSs revealed promising sensitivity and precision, but the complex biological climate and heterogenesis
nature of cancer cells make it very difficult to achieve the required specificity of the redox reaction.

Enzymes. Due to their unique substrate specificity and selectivity, enzyme-responsive DDSs
have been extensively studied as an emerging therapeutic field. Many enzymes like lipase,
protease, trypsin, glycosidase, phospholipase, oxidoreductase, etc. have been used to aid drug
delivery to cancer cells [16,17]. Among the various enzymes, proteases are of supreme interest for
the fabrication of novel DDS, since they are often overexpressed in diseases such as cancer and
inflammation. Trypsin, a critical digestive proteinase, plays a critical role in regulating the process
of exocrine pancreatic secretion, which affects the release of many other digestive enzymes [18].
Radhakrishnan et al. engineered trypsin/hyaluronidase enzyme-triggered hollow nanocarriers to fetch
anticancer agents intracellularly [19]. Matrix metalloproteases (MMPs) are a family of endopeptidases
that are zinc-dependent; they are famous for their involvement in the prognosis of cancer [20],
and have been widely explored for drug delivery as well as in imaging modalities [21]. Zhu et al.
fabricated MMP2-sensitive, PEG lipid conjugated liposomes with antinucleosome monoclonal
antibodies modified on their surface to enhance cancer targeting [22]. In a different work, Chen et al.
fabricated multifunctional poly (ethylene glycol)- blocked-poly(L-lysine) Biotin 6- maleimido- caproic
acid (Biotin-PEG-b-PLL(Mal)-peptide) polymeric micelles enclosing doxorubicin to enhance cancer
cell uptake by endocytosis [23]. Dendrimer-methoxy poly (ethylene glycol) doxorubicin (DOX)
conjugates were also synthesized with the aid of a cathepsin B-cleavable peptide for anticancer
targeting, as cathepsin B is overexpressed in tumor microenvironments [24]. Despite its usefulness,
enzyme-responsive DDS suffers from a lack of precise control of the initial system response time.

Hypoxia. Hypoxia affects tumors in several ways, including angiogenesis, epithelial to
mesenchymal transformation, invasiveness and metastasis [25]. Tumor hypoxia represents a promising
approach by which to impede tumor growth. Various reducing agents accumulate in hypoxic cells like
NADPH, nitoreductase, cytochrome P450 reductase, azoreductase, NADH, and alkaline phosphatase,
among others [26]. Myriad modifications caused by hypoxia pose prospective obstacles to the core
concepts of nanomedicine architecture. Throughout hypoxic tumor key cells, the hypoxic metabolic
cellular pathway can yield lactic acid, making the tumor microenvironment highly acidic. Consequently,
many attempts have been made in recent years to develop nanotherapeutics to combat hypoxia,
specifically acidic pHs and intracellular redox potential, which trigger anticancer drugs specifically
in low oxygen supply tumor cells, but not in healthy, oxygenated cells [27,28]. Several examples of
oxygen deprivation-responsive smart DDSs have been established, and have been shown to be useful
in the treatment of cancer. Ahmad et al. fabricated hypoxia-responsive, doxorubicin-encapsulating
polymeric micelles that demonstrated faster delivery in hypoxic tumor cells [29]. Kulkarni et al. created
a hypoxia-specific self-assembly polymersome from polylactic acidazobenzene, a polyethylene glycol
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that released 90% of the relevant drug in hypoxic tumor conditions [30]. To combat glioma, siRNA
anticancer drugs were delivered via hypoxia-sensitive liposomes that exhibited a marked cellular
uptake of hypoxic cells [31]. Recently, Yan et al. fabricated gated mesoporous silica nanoparticles
that responded to low oxygen concentrations, achieving significant results in both in vitro and in vivo
studies [32]. Hypoxia-responsive NPs show restricted extravasation in deep tumor interiors owing to
the substantially larger dimensions of synthetic prodrugs. In addition, the drug packing and discharge
capacity of NPs is a further constraint to their clinical use.

Temperature. Temperature-responsive, smart DDSs have been extensively explored for cancer
therapy [33]. The drug release process is governed by a nonlinear abrupt shift in the properties of at least
one component regarding the surrounding temperature. Thermosensitive DDSs depend on the speedy
delivery of the encapsulated drug when the tumor microenvironment is at an elevated temperature,
i.e., about 40–42 ◦C [2]. For most cases, thermosensitive DDS are liposomes, polymer nanoparticles, or
micelles, which are typically made of polymer (N-isopropyl acrylamide). In various several clinical trials,
thermoresponsive liposomes (TSLs) have been deemed to be the most specialized thermo-responsive
nanodrug delivery system. An increased temperature- or radiofrequency ablation-sensitive doxorubicin
liposome, namely ThermoDox® (Celsion Corporation), is in phase II trials, and is intended for use
on colorectal liver cancer, hepatocellular carcinoma, and breast cancer [2]. Functional modified
thermosensitive liposomes are also under extensive study for specifically targeting the human epidermal
growth factor receptor 2 antibody in the treatment of breast cancer [34]. Temperature-sensitive
DDS production is typically demanding, and requires the selection of a polymer that is both safe
and responsive to minor changes in temperature around normal physiological body temperature
(37 ◦C). Thermosensitive liposomes have reached the advanced stages of clinical trials and are most
frequently used.

Glucose. Glucose-responsive composites to produce smart insulin DDSs have caught the
eye of many researchers. These systems are composed of a glucose-responsive moiety and an
insulin vector that detects the blood glucose level [35]. Several modifications of drug carriers like
crosslinking, hydrophilicity, and pH are induced in the insulin carrier that regulates the rate of insulin
release [36]. Glucose-sensitive hydrogels have been extensively studied over the past few years.
Frequently, they utilize immobilized enzymes like glucose oxidase (GOx). These products form with
the help of enzymatic reactions in the gel phase transition. A sulfonamide-based, glucose-sensitive
hydrogel with glucose oxidase and catalase was fabricated and characterized [37,38]. Glucose-sensitive
materials have been formulated by means of carbohydrate-binding proteins, i.e., lectins, as natural
receptor-mediated glucose-sensing materials; one of the most widely employed lectins is concanavalin
A (ConA) [39]. Various approaches have been studied to understand the conjugation of ConA onto
polymers and its encapsulation within microcapsules to aid insulin release in a controlled fashion [40].
Glucose-responsive systems have been diligently studied, and a lot of polymers are available. Jamwal
et al. synthesized novel glucose sensitive and in-vitro-pH-responsive insulin DDS from glucose
oxidase immobilization on acryloyl cross-linked dextran dialdehyde (ACDD) nanocarriers. The carriers
demonstrated the release of 90% of the insulin in artificial intestinal fluid in the presence of glucose [41].
However, it is important to examine the biocompatibility of the delivery materials and their viability
for patient use.

In addition to GoX and Con A, boronic acid (BA)-derived polymers have also been the focus of
research in the fabrication of glucose-sensitive platforms for drug delivery [42]. Phenylboronic acid
(PBA) is among the most widely investigated functional sensing cue for glucose due to its versatile
design, high glucose-sensitivity, better stability, and long-term storability compared to protein-based
systems (i.e., GOD and Con A) [43]. It can develop reversible covalent complexes with molecules bearing
hydroxyl groups. As a Lewis acid, PBA exists in two forms in aqueous solution, i.e., uncharged trigonal
BA and charged tetrahedral boronate. The uncharged trigonal PBA-glucose conjugate is unstable at
a given pH value, whereas the ionized PBA can firmly bind with glucose moieties [44]. Increasing
glucose levels induce the formation of covalent bonds and generate PBA-glucose complexation, which
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reduces the pKa of the trigonal BA. This dynamic equilibrium allows the binding to occur of more
glucose to the PBA-functionalized hydrogel, causing the swelling or disassembly of the drug delivery
vehicles, resulting in glucose-triggered drug release. The incorporation of PBA into polymers might
provide PBA-modified materials with high glucose-sensitivity, making them potential candidates
for self-regulated drug delivery [45]. In contrast to natural proteins, BA derivatives possess greater
stability and do not induce immune responses in organisms due to their completely synthetic nature.
Theoretically, the complexation between glucose and BA produces Donnan osmotic pressure, resulting
in a volume phase transition of the hydrogel matrix that will shrink/swell to different extents according
to the concentration of glucose [42].

1.2. Properties of External Stimuli

Advancements in medical science have brought about the use of various external stimuli-based
energy sources that efficiently trigger drug release from nanocargos for effective delivery to targeted
sites. Below, we discuss a few of the stimuli that have used extensively over the past few years.

Light. Light-responsive drug delivery systems, that employ photosensitive carriers, display an
on/off drug release mechanism upon irradiation stimulation. For controlled drug delivery, various
wavelengths of light (ultraviolet, near infrared, visible) have been reported and discussed. Due to
their low penetration, visible as well as UV light were not deemed appropriate for clinical purposes
in vivo, whereas the NIR spectrum is considered to be an ideal light source for monitoring drug release
due its safety and strengthened tissue penetration [46]. Various mechanisms have been studied for
drug release via this system; the first is the photo-thermal effect based on the conversion of light
to heat via a photo-thermal agent that disintegrates the nanocapsule to release the drug. Li et al.
described multiple nanostructure liposomes loaded with a hydrophilic drug, AMD3100, along with
a hydrophobic NIR photo-thermal agent IR780 [47]. Another method which has also recently been
used is the two-photon absorption (TPA) method, which relies on the excitation of a molecule from
its ground state to a higher energy state with the aid of two photons of equal or different frequencies
which are simultaneously absorbed. The technique requires a pulsed laser source with a high energy
density to focus on small areas in order to acquire effective, instantaneous energy; this approach has
found broad application in biomedical imaging, e.g., the confocal fluorescence microscope of two
photons [48]. Following this, photoactivatable micellar systems were fabricated with a copolymeric
system containing 2-nitrobenzyl scaffold or 7-diethylamino-4- (hydroxymethyl)coumarin for lipophilic
substance drug delivery. Via two-photon NIR irradiation with laser, the prepared micelles disintegrated
and distributed the encapsulated drug into aqueous solution [49,50]. Similarly, various drug conjugates
have been developed, with a special focus on near infrared.

Magnetism. Due to its freely permeable nature, magnetic stimuli have been employed as a
noninvasive method for medical imaging though the process of MRI or for designing controlled drug
release platforms [51]. For instance, the most commonly utilized center/shell magnetic nanoparticles
(MNPs) display an assortment of unique magnetic traits, and when engineered properly, can give
added advantages such as enhanced sites for bioconjugation, enhanced plasma half-life, etc. [52,53].
Two mechanisms are important for controlled drug release in the presence of an external magnetic
stimulus: one is hyperthermia [54], and the other is drug targeting guided by a magnetic field [55].
Hypothermia-derived nanocarriers have gained significant attention in recent years. Thirunavukkarasu
et al. designed super-paramagnetic iron oxide (Fe3O4) nanoparticles (SPIONs) and loaded them with
SPIONs, along with doxorubicin, in a heat-sensitive PLGA matrix. Upon exposure to a magnetic field,
SPIONs generated heat that led to the release of the drug. The success of this platform in both in vivo
and in vitro studies revealed its promising chemotherapeutic attributes that should be explored in the
future [54]. However, this system needs further investigation to overcome the problem of low drug
loading and reduced specificity.

Ultrasound. Due to its many advantages like intrinsic tissue penetration, superior spatiotemporal
control, and enhanced safety, ultrasound has been extensively employed as a stimulus in clinical
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studies Recently, US has been extensively used in clinics as both a diagnostic and therapeutic tool [56].
The use of a technique called “sonoporation” induces temporary or permanent openings in the
membranes of the blood vessels, thereby dramatically improving the extravascular transmission of
medicinal substances in the area of interest [57,58] due to its intrinsic tissue penetration and safety.
Microbubbles are used as the contrast agent for ultrasound. A myriad of vectors were investigated
for ultrasonically-facilitated drug delivery, namely polymeric acoustic contrast agents with binding
capacity, enhanced lipospheres, as well as nano-/micro- bubble-enhanced therapy [59,60]. For example,
Kruskal et al. achieved tumor targeting by nanocarrier- DOX-encapsulated delivery method, followed
by ultrasonic tumor irradiation, resulting in the systemic release of the drug [61]. A recent study by
Wang et al. designed ultrasound-sensitive oxyl-alkylhydroxylamine (-oa-) linkages between amphiphile
segments. Hydrophobic DOX was enveloped between the hydrophobic amphiphile part to aid drug
delivery to hepatocellular cancer cells [62].

Electrical energy. Applying a weak electrical field to a targeted tissue area following the
administration of an electro-sensitive drug can bring about programmed drug delivery via different
mechanisms, such as redox reactions [63], carrier structure disruption [64], and through the production
of heat from electrical stimulation [65]. Neumann et al. employed local pH variation in electrochemical
reactions for controlled drug release. Drug loaded nanofilms were synthesized with a pH-sensitive
polymer, i.e., poly (methyl methacrylate-co-methacrylic acid) [66]. In a recent work, dextran and aniline
trimer-based electrical stimuli-responsive hydrogels were produced for controlled drug release [67].

2. Stimuli-Responsive, Polymeric Nanocarriers for Drug and Gene Delivery

2.1. Target-Specific Nanocarriers for Efficient Pharmacotherapy

Conventional drug delivery systems (DDSs) have presented severe limitations and challenges
which are often due to systemic adverse effects caused by unpredicted bio distribution and the
uncontrollable release behavior of drugs. Target-specific nanocarrier systems are among the most
typical nanocarrier systems for the delivery of drugs. These systems have helped to overcome the
limitations associated with conventional DDSs [68]. Nanocarrier-specific targeted DDSs significantly
enhance the therapeutic efficacy of the embedded molecules by precisely targeting them to the diseased
cells, tissue, or organs, thereby preventing the embedded moieties from undergoing hepatic first pass
metabolism, and thus, enhancing their therapeutic index. Also, these systems have shown significant
response and alterations in their properties in the presence of a stimuli (internal or external) [2].
It has been observed that mechanisms at the molecular or cellular levels of drug-loaded nanocarrier
systems for targeted delivery play crucial roles, and act simultaneously for effective diagnoses and
the management of disease [69]. Although these systems have been extensively used as potential
agents in pharmacotherapy, they have exhibited various adverse effects which have limited their
clinical and biomedical applications. To attain efficient pharmacotherapy, it is very important for the
nanocarrier-DDSs to release the drugs or active moieties selectively at the targeted sites in the body,
leading to enhanced therapeutic potential and reduced adverse effects of the enclosed drugs or active
moieties. For instance, chemotherapeutic agents which are used for chemotherapy have shown the
ability to eradicate the targeted carcinogenic cells; however, due to their cytotoxicity, they also kill
normal healthy cells, leading to adverse effects. Nonetheless, nanocarrier-based DDSs have significantly
enhanced the therapeutic efficacy, drug residence, and cellular uptake of the incorporated drug or gene
at targeted sites with minimum adverse effects [70]. Nanocarriers (NCs) or nanoparticles (NP) could be
produced from various organic-based and inorganic-based constituents comprising biodegradable and
nondegradable polymers (polymeric nanoparticles (PNPs), polymeric conjugates), lipids (solid-lipid
nanoparticles (SLNs), liposomes, and nanoemulsions), dendrimers, micelles, nanocrystals, nanofibers,
quantum dots, nanodiamonds, etc. [71]. The literature reveals that the selection of appropriate
constituents for the design and production of NCs or NCs-based approaches depends heavily upon
the desired pharmacological activity, payload type, disease type, route of administration, and safety
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profile of the incorporated moieties [69,71]. Stimuli-responsive nanocarrier systems (SNS) have offered
a promising platform for the efficient delivery of drugs and genes to targeted sites; such systems act as
active contenders, rather than passive carriers. In recent years, lipid- and polymer-based NCs such as
PNPs, liposomes, micellar assemblies, dendrimers, and others, have been utilized specifically for the
fabrication of SNS. Furthermore, each nanocarrier-based DDS can be efficiently modified to achieve
essential stimuli-sensitive activity by either an active or passive targeting approach. SNS has been
shown to be among the most significant approaches for the delivery of drugs and genes into targeted
sites, as it acts as “trigger” and reacts precisely to biotic stimuli (external or internal) [72,73]. The intra-
and extra-cellular pH values of the biological system are significantly affected by disease pathology.
For example, in a solid tumor, the extracellular pH is considerably more acidic (∼6.5) than the blood
pH (∼7.4) at 37 ◦C [74]. Additionally, inside the cell, the pH profiles of the lysosomal and endosomal
vesicle are substantially lower than those of the cytosol or cytoplasmic matrix. The selection of a
proper constituent composition plays a crucial role in the establishment of modified NCs which could
efficiently capitalize upon pH variances for the distribution of the incorporated moieties at specific intra
or extra cellular sites. Temperature could also be exploited for the release of the nanocarrier-mediated
drugs or genes to specific sites [75]. Finally, the concentration level of glutathione (GSH) could be
used via disulfide cross-linking with nanocarrier-mediated systems. For instance, these systems have
shown substantially enhanced the therapeutic activities, and have improved the targetability of nucleic
acid-mediated treatments. Similarly, external stimuli including ultrasonic energy, magnetism, and
thermal and light energy have shown potential [76]. For instance, magnetic fields have been extensively
used for iron oxide NP targeting. The main mechanism behind such systems is the accumulation of
drug-incorporated, magnetic NPs at targeted sites under the influence of an externally guided magnetic
field [77]. In the last few year, ultrasound or ultrasonic energy have been used as a potential tool for
targeted-DDSs. In some studies, the efficient delivery of active molecules (drugs or biomolecules)
at the tumor or cancerous sites has been achieved through local sonication after injecting micellar
formulations. This method not only influences the tumor uptake, but also allows for uniform delivery
of the drug and micellar assemblies throughout the tumor tissues [78]. Similarly, light-mediated
NP-based DDSs have gained considerable attention; light-responsive polymer-based systems which
experience inverse interruptions in the presence of light could be an apt means by which to achieve the
controlled release of drugs or genes at targeted sites [79].

2.2. Active and Passive Targeting

Active and passive approaches have been extensively used to target various NP-based DDSs to
achieve efficient systemic therapies. The mechanism of active targeting involves the addition of definite
ligands over the NP surface to improve the recognizing ability of cells at the diseased sites. Sometimes,
active targeting was achieved by the PEGylation process (addition of PEG), as PEG-modified NCs
enhance the circulation time and achieve passive targeting [80]. The endothelial cells in tumors
and capillaries expresses particular integrin (IG) receptors (αvβ3 or αvβ5), which could efficiently
conjugate with RGD (arginine–glycine–aspartic acid) sequences. RGD-variations have been specifically
used to target the NCs into tumors and endothelial cells present over angiogenesis-affected blood
vessels. Moreover, any particular peptide sequence could be identified specifically, using the phage
display technique [81]. Various studies have reported the use of this method to target recombinant
M13 phages [82], rheumatoid arthritis [83], and so on. Recently, a study demonstrated that aptamers
and nucleic acid-embedded NCs precisely recognize the prostate tissue antigen over the prostate
cancerous cells. Aptamer-associated approaches have provided an additional approach for the active
targeting of conjugated NCs into diseased cells [84]. These strategies were found to be more effective
when used with specific targeting of the monoclonal bodies which are present at the disease site.
For example, HER2 specific antibodies (Trastuzumab® or Herceptin®) -altered NPs localized and
delivered active moieties explicitly in HER2-overexpressing tumorous cells [85]. Torchilin’s group
was able to develop different approaches, including micelles-/liposomes-based systems conjugated
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with 2C5, a monoclonal antibody which precisely distinguishes antinuclear histones, for the active
targeting of drugs to tumor cells [86,87]. In particular, the epidermal growth factor receptors (EGFR)
showed overexpressions in prostate or breast cancers; therefore, EGFR acts as a potential candidate for
targeting the gene complexes at cancer sites [88]. In addition to tumor or cancer sites, the epithelium of
the pulmonary and gastrointestinal tract (GIT) environments, blood vessels lined with endothelial
cells, muscular myoblasts, and skin fibroblasts are other potential candidates for targeting gene-based
NCs [89]. The NCs not only improved the targetability, but also enhanced the transfection capability
by modifying the stimuli-responsive properties. For instance, in one of the studies, pH-triggered
PEGylated (lactose attached with PEG) nanogels exhibited endosomolytic capabilities and increased
the transfection efficacy [90].

Passive targeting is based on the characteristics of the DDSs and the pathological conditions of the
disease; it uses these parameters to accumulate and prevent insignificant delivery of the incorporated
payloads at specific sites. For example, intravenously administered, PEGylated NCs could specifically
accumulate in the tumor microenvironment based on their enhanced permeability and retention (EPR)
effect [91]. The EPR effect was also observed in other infections and chronic inflammations; thus, it
is expected that NCs or NCs-based systems serve as exhibit therapeutic aids for their treatment [92].
The ability of NCs to distribute in the reticuloendothelial system (RES) also offers hope for the passive
targeting of payloads into the macrophages of the spleen and liver. For instance, these approaches could
be used for the treatment of infections including leishmaniasis, candidiasis, and listeria [93]. Passive
targeting can also be achieved through other approaches, such as specific SNS that distribute bioactive
compounds only in the presence of a specific stimulus. For example, compared to drug delivery
through polycaprolactone (PCL; non-pH-sensitive polymer) NPs, pH-sensitive poly (beta-amino ester)
(PbAE) NPs significantly enhanced drug delivery and targeted tumor sites [72]. Moreover, alterations
in the surface charge and size of the NCs could lead to establishment of passive targeting-based
approaches. Studies have shown that NCs with a size of less than ~200 nm and bearing positive charge
over their surface accumulate and reside in tumor sites for extended periods, compared to neutral or
negatively-charged NCs [94]. Kommareddy et al. reported that the passive targeting of gelatin (type B)
-based NPs was highly effective in the delivery of genes at tumor sites [95]. In an another study, gelatin
(type B) was used for the development of NP-based DDSs incorporating plasmid DNA (pDNA) [96].
The encapsulation of DNA with PEGylated-gelatin NPs exhibited greater efficiency in vitro and in vivo
for targeting pDNA-expressed green fluorescent proteins and β-galactosidase [97]. PEGylated-gelatin
NPs have also been used to target DNA moieties in the treatment of lung carcinomas and suppressed
tumor growth, angiogenesis in breast cancer cells [98].

2.3. Various Stimuli-Responsive, Polymeric NCs for Drug and Gene Delivery

2.3.1. Internal Stimulus

pH-responsive. The pH of different human body parts varies significantly; from as low as 1.2,
it goes up to 7.2. pH-sensitive nano-DDSs are considered very robust for the site-specific delivery
of therapeutics to the GIT, as well as to tumor cells, because of the clear demarcation between
the tumor intracellular and extracellular pH. These pH-responsive, polymeric DDSs are usually
designed using building blocks of polymers that are capable of shifting their charge, and thereby,
hydrophilicity, depending on the environmental pH [2]. Two strategies have been employed to
devise such stimuli-sensitive, polymeric NCs; the first uses charge-shifting polymers. Polymers which
contain a weakly acidic moiety undergo swelling at basic pHs (anionic), while those with alkaline
moieties exhibit swelling at acidic pHs (cationic). This leads to basic conformational and/or solubility
changes in the polymeric scaffold, that, in turn, leads to drug release [99–104]. The second approach
is the incorporation of acid-cleavable bonds into the polymeric backbone, resulting in the release of
biomolecules [105].
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(i) Cationic and Anionic, pH-sensitive polymeric NCs. The use of pH-responsive, polymerics for
controlled drug delivery started by acknowledging the marked pH variance between the oral mucosa
(pH 5.8–7.4) and the stomach (pH 1.0–3.5). In 2002, Hashimoto et al. developed and characterized
polyvinylacetal diethylaminoacetate microspheres to masking the taste of trimebutine [106]. More recent
studies have been based on understanding the role of the anionic and cationic groups present in the
polymeric moiety in drug release. PDPAEMA homopolymer, containing a basic amino group, was used
to deliver a poly(ethylene glycol) (PEG)-doxorubicin (DOX) conjugate, after incorporating arginine and
histamine groups into the polymer. It was noticeable that at a pH of 5.5, almost 90% of the DOX was
released from the scaffold, with a marked cytoxicity against cancer cells [107]. Another study involved
nanoparticles made up of 2-(dimethylamino)ethyl methacrylate (DMAEMA) and pyridyl disulfide
ethyl methacrylate (PDSEMA). DEAME was complexed with CpG oligonucleotide, while PDSEMA
was linked to the antigen, ovalbumin, via disulfide linkage. This polymeric system dissembled at
a low endosomal membrane pH to act as a vaccine delivery system [108]. One of the most widely
employed amine-containing polymers is chitosan [109]. Chitosan hydrogels have been extensively
used to design pH-responsive, polymeric NCs. Chitosan modified with acrylic acid and DMAEMA
was formed from the in situ polymerization of free radicals, and helped in delivering 5-fluorouracil,
as well as bovine serum albumin. The findings revealed that the volume of 5-FU and BSA released
from the gel could be altered by adjusting the formulation makeup, by modulating the concentration
of the hydrogel as well as the pH of the environment. Toxicity tests verified that empty hydrogels had
marginal toxicity to regular cells, while 5-Fu-loaded hydrogels demonstrated sufficient cytotoxicity to
LO2 and HepG-2 cancer cells [110]. Recently, novel, biocompatible, carboxymethyl chitosan-layered
Pluronic® F68/poly(lactic-co-glycolic acid) (PF/PLGA) nanoparticles were designed and used to
deliver a poorly soluble tumor targeting drug, Gefitinib, orally [111]. Poly(N,N-dimethylaminoethyl
methacrylate) (PDMAEMA) and poly(N,N-diethylaminoethylmethacrylate) (PDEAEMA) are two
more synthetically-derived, cationic, pH-responsive polymers that undergo swelling in acidic
conditions because of their intrinsic tertiary amine group protonation [112]. A pH-responsive
hydrogel of poly(vinyl alcohol) and PDMAEMA was employed to deliver riboflavin [113].
Many PDEAEMA copolymeric systems have been utilized to deliver anticancer drugs. For example,
recently, DOX delivery was achieved using a mixture of polymers, i.e., poly (N,N-diethylaminoethyl
methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) (PDEAEMA-PPEGMA) with
polycaprolactone-b-poly (poly(ethylene glycol) methyl ether methacrylate) (PCL-PPEGMA) [114].
Inflamed tissues, just like cancerous cells, possess a unique acidic environment that can be utilized
to in the development of targeting scaffolds. Keeping this in mind, by incorporating a polyhistidine
moiety to a block copolymeric system of PLGA and PEG, systemic antibiotic delivery was achieved to
enhance the uptake of drug at bacterially-infected sites [115].

Anionic systems forming polymers such as albumin, cellulose [116], poly(methacric acid) (PMAA),
and poly(aspartic acid) (PAsp), and polymers based on sulfonamide [117] may be used to build
nanocarries which become more hydrophobic with a reduction in pH. Functional groups that tend to
become hydrophobic in acidic pHs could be used to destabilize the endosomal membranes and help in
drug transportation. One work employed poly(propyl acrylic acid) (PPAA) to aid in the intracellular
delivery of active pharmaceuticals [118]. The most widely reported anionic polymers include PAA and
PMA, along with their derivatives [58]. pH-responsive anionic PAA hydrogels were used to protect the
drug from denaturation at low gastric pH [119]. The pH and thermo-responsive copolymeric system of
PAA and pNIPAAM (pNIPAAm-b-PAA) was successfully used in DOX delivery [120]. In another study,
cationic β-CD-modified chitosan-PAA NCs was fabricated to enhance the drug delivery of paclitaxel
(PTX) [121]. Hydrogel made from Arabic gum with glycidyl methacrylate was employed to deliver
potassium diclofenac to simulated intestinal fluid [122]. Cationic polymers have also been used for
gene delivery. Yu et al. designed amphotericin B-loaded, dual pH-responsive, polymeric micelle-plexes
from PDMAEMA diblock copolymers to deliver siRNA [123]. A polymeric pH-responsive hydrogel
made from alginate and albumin helped in the delivery of prednisolone [124]. A pH-responsive
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hydroxyethyl cellulose and hyaluronic acid hydrogel was used to deliver isoliquiritigenin to treat skin
lesions and acne [125].

(ii) Acid labile linkers. By fabricating NCs which possess covalent pH-responsive bonds that can
easily be cleaved at acidic pHs, intrinsic body pH changes can be targeted. Hydrazone linkage is very
frequently employed in the design of pH-responsive delivery systems, because the bond is very stable
under normal physiological pH conditions, but undergoes hydrolysis in endosomal and/or lysosomal
acidic compartments. The first research using hydrazone linkage to deliver drugs was done by Etrych
and coworkers, who used N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers attached to DOX
via hydrazone linkage to achieve controlled drug release in mild acidic conditions [126]. In another
study, cisplatin was linked to PEG-b-PLA by hydrazine hydrate. PEG-b-PLA was complexed with
the ketone functional groups in Pt(IV) prodrug, and extent of drug release was estimated [127]. In a
recent study, galactosyl dextran- retinal nanogels were formulated and attached to alltrans retinal via
hydrazone bond [128].

Imine bonds have also emerged a successful linker in the design of DDSs. To load melphalan
into carboxymethyl cellulose polymeric micelles, hydrogen bonds were used and pyridyl groups were
attached to them, facilitating the systemic release of drug [129]. In a recent work, a dual pH- and
redox-responsive copolymeric system, formed by the polycondensation of a dimethyl l-cystinate (Cys)
and polycaprolactone (PCL) oligomer by imine bond, was used to deliver PTX [130]. Imine-linked
dextran- DOX conjugates were also synthesized by oxidizing the hydroxy group of dextran to aldehyde
and attaching it to DOX with the help of imine linkage. This system was used to deliver a drug to
B16F10 tumors [131].

Acetal bonds undergo pH-dependent hydrolysis to form biocompatible alcohol and aldehydes.
A pH-responsive, polymeric micellar DDS was fabricated by acetal-bonded poly(ethylene
glycol)-block-polylactide copolymer, and was employed to deliver the anticancer drug PTX. In other
research, a novel endosomal pH-responsive PTX prodrug micelle was formed from a poly(ethylene
glycol)-poly(ε-caprolactone) (mPEG-PCL) diblock polymer linked via acid-cleavable acetal linkage
(mPEG-PCL-Ace-PTX) [132].

The cis-aconityl group of the maleic acid amides (MAA) family was first employed as a
pH-stimuli-responsive linkage to fabricate PLL/daunomycin conjugates [133]. DOX was conjugated to
PEGylated polyamidoamine (PAMAM) dendrimers via cis-aconityl linkage, as well as acid-insensitive
succinic bonds, PPCD and PPSD, respectively [134]. In another study, hyaluronic acid (HA) was
functionalized with dual linkage of cis-aconityl and disulfide, fabricating pH and redox dual-responsive,
polymeric NCs which released DOX synergistically in the presence of both stimuli, making the
self-assembled nanoparticles dual responsive to pH and redox potential [135].

Redox-responsive. There is a marked difference in the redox potential between the intracellular
and extracellular spaces, the former being highly reductive because of the elevated concentration
of glutathione (GSH), and the latter with reductive moieties inside the cell [136]. It has also
been demonstrated that tumor tissues are significantly more reducing and hypoxic than normal
healthy cells [137]. This ensures the usefulness of the glutathione disulfide-glutathione redox couple
(GSSG/GSH) in the development of redox-responsive delivery systems [138]. The most widely
exploited redox-responsive linker is the disulfide linker, that can reduce to a thiol group in highly
reducing conditions. This results in basic conformational changes in the fabricated delivery system,
leading to drug release [139]. The discussion that follows shall divide the topic into two categories:
(i) disulfide-linked systems, and (ii) recently studied diselenide linked systems.

(i) Disulfide-linked systems. Disulfide linkage can easily be introduced into polymeric systems by
groups like L-cysteine, dithiodiglycolic acid, as well as pyridyl disulfide, to develop redox-responsive
drug/gene carriers. To counter the problem of nanoparticle stability in vivo, a cross linking technique
has been widely employed. The core of the micelle, when cross-linked with a reducible linker,
would only break in the reducible environment of the cell. For example, self-assembling, rice-grain
shaped, novel redox-responsive, polymeric DDSs were formulated from the diblock copolymeric
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system of poly(ethylene glycol)-b-poly(lactic acid) (MPEG-SS-PLA) to deliver PTX. In vitro studies
revealed that these systems were highly biocompatible, and aided in the endocytosis of PTX [140].
Another example could be of a copolymeric redox-responsive system based on poly(ethylene
oxide)-b-poly(N-methacryloyl-N′-(t-butyloxycarbonyl) cystamine) (PEO-b-PMABC) to regulate the
release of DOX [141]. Another research group investigated a poly(DTPA-co-Cys) polyionic nanogel to
encapsulate curcumin-derived chemotherapeutic agent [142]. To overcome the problem of multidrug
resistance, a disulfide-linked block copolymeric redox-responsive micelle of poly(ε-caprolactone),
i.e., PCL and poly(ethyl ethylene phosphate) (PEEP), was formulated, i.e., PCL-SS-PEEP, that made
it possible to achieve higher accumulations of DOX in MDR cancer cells [143]. In a different study,
α-tocopherol succinate, usually used to inhibit drug resistance, was grafted onto hyaluronate amphiphile
by disulfide linkage to form a polymeric micelle, and was used to deliver PTX to GSH-expressing
cells [144]. DOX- and verapamil-delivering polymeric nanoparticles were made from the block
copolymeric system of PEG and a poly(2-methacryloyloxy)ethyl-5-(1,2-dithiolan-3-yl)pentanoate
redox-responsive system [145]. A redox-responsive, polymeric micelle incorporating O,N-hydroxyethyl
chitosan bridged with octylamine by disulfide bond was developed to deliver PTX [146]. In a different
work, a polymeric micelle based on thiolated Pluronic® (Plu-SH) was fabricated, in which the micelle
core was derived by functionalizing a disulfide bond on Pluronic® F127 [147]. In a recent work, tumor
suppressive gene p53 was linked to a PEGylated glycolipid-like polymer (P-CSSO) via disulfide bond to
form P-CSSO/p53 complexes. Both in vivo and in vitro studies revealed that the PEGlylation resulted
in a weakened macrophage uptake of the formulated system, and enhanced tumor accumulation [148].
A thiolated nanoparticle made of gelatin was developed by introducing a 2-iminothiolane group into
the amino acid of gelatin which helped in faster transfection of the system by a NIH-3T3 cell line and a
rapid nanoparticle disruption to release DNA [149]. While the ability of redox-responsive systems
has been well established through a plethora of reports, the majority of such articles are focused on
xenograft animal models or cell line studies that are unlikely to match in vivo human conditions. When
compared to free drugs, most of these structures demonstrated early drug release in quantities that
might be sufficient to induce harmful effects. A thorough analysis is also essential to evaluate the exact
loaded drug dosage which is appropriate to achieve tumor regression without any side-effects with a
rest time. Finally, dynamic structures often have issues in industrial scale up.

(ii) Diselenide linkage-based systems. Selenium-based compounds are known to be sensitive to
oxidative or reductive environments. Diselenide groups, when linked with polymeric scaffolds, undergo
degradation upon oxidation to release their enclosed drugs. A few redox-responsive, polymeric NCs that
function on this principle were recently investigated. A redox-responsive diselenide linkage containing
a copolymeric system of Bi(mPEG-SeSe)-PCL,Bi(mPEG-SeSe)-PCL was fabricated to determine the
DOX release from it. Both in vitro and in vivo studies revealed that the formulated delivery system was
biocompatible and could further be used to develop more potent anticancer agents [150]. In another
study, a DOX-loaded redox-responsive amphiphilic polymer, Bi(mPEG-PLGA)-Se2, with diselenide
linkage, was formulated. In vitro studies using HeLa cells demonstrated a significantly higher drug
release, which could be further used to synthesize other such anticancer drugs [151].

Enzyme-responsive. The transformed enzyme expression profile serves as a vital marker to detect
pathologically-challenged conditions, and is utilized extensively to develop enzyme-responsive DDSs.

(i) Esterase-responsive, polymeric systems. One polymeric delivery system that relies on the ester
bond cleavage to release the drug to the targeted sites is made from esterase. Many esterase-responsive,
polymeric systems have been developed by researchers so far, some of which shall be discussed
here. A PAMAM-based, polymeric dendrimer was developed and linked to PTX via succinate bond.
This PTX/PAMAM G4 dendrimers were readily hydrolyzed by esterase to release the free drug,
aiding in effective cell internalization and reducing toxicity. Upon conjugation with PEG, these
systems revealed an enhanced action which could be explored to develop more anticancer drugs [152].
To target inflammation, a novel twin-drug system, i.e., Dexamethasone-Diclofenac, was fabricated by
esterification reaction and then encapsulated into polylactide (PLA) nanoparticles. The in vivo drug
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release was studied by employing esterase. It was revealed that esterase hydrolysis enhanced the drug
release rate, and the synergistic activity of the two anti-inflammatory drugs led to higher inhibition of
the TNF-α level than the free drug [153].

(ii) MMP-responsive, polymeric systems. Elevated concentrations of matrix metalloproteinases
(MMPSs) have been associated with many cancerous cells. This special type of enzyme could selectively
cleave peptide linkages in between nonterminal amino acid sequences [154]. An MMP2-sensitive siRNA
delivering, self-assembling, copolymeric system of polyethylene glycol-peptide-polyethylenimine-12,
along with dioleoyl-snglycero-3-phosphoethanolamine (PEG-pp-PEI-PE), was developed. The linker
was based on an octapeptide, GPLGIAGQ, which is extremely responsive to MMP2. This led
to high tumor targeting of the developed system [155]. In a different study, N-(3-aminopropyl)
methacrylamide (APM) and acrylaminde (AAM) were used to synthesize copolymeric nanocapsules
with MMP-responsive peptide cross-linkers to cargo BSF and VEGF [156]. In a recent study, novel MMP2
sensitive nanoparticles were designed from copolymeric TPGS3350-pp-PLA along with TPGS-folate
to deliver anticancer drugs [157]. An MMP 8-responsive, polymeric hydrogel was developed
from a diacrylate-containing polyethylene glycol-based moiety, along with a cysteine-terminated
peptide cross-linker (CGPQG↓IWGQC). The hydrogels were encapsulated with BSA, minocycline
hydrochloride, and antibacterial peptide KSL to target chronic periodontitis and peri-implantitis [158].

(iii) Cathepsin B. The tetrapeptide linkage Gly-Phe-Leu-Gly is mostly employed in the design of
enzyme-responsive, polymeric systems, as this group is easily cleaved by cathepsin B, an lysosomal
enzyme, which is typically overexpressed in tumor tissues [159]. A cathepsin B-responsive PEGylated
gemcitabine-containing system was developed to target tumor microenvironments [160]. In another
study, a peptide macromonomer was designed from BIM and cathepsin B substrate, which was then
incorporated into copolymeric deblock system of DEAEMA/BMA and DEAEMA. The system was
successful in the intracellular delivery of peptides [161].

Hypoxia-responsive. Nitroaromatics, as well as azo-derivatives, are usually used to design
hypoxia-responsive, polymeric drug and gene delivery systems.

(i) Azo-derivatives. Azo groups are easily reduced to amine derivatives under hypoxic cell
conditions. This has been exploited in the development of bioreductive linkers, forming the majority
of the drug releasing nanoparticles. A PAPD nanocarrier was developed using PEG, azobenzene, and
polyethyleneimine, as well as 1,2-dioleyl-sn-glycero-3-phosphoethanolamine (DOPE), to deliver siRNA.
This hypoxia-responsive nanoformulation showed effective silencing of green fluorescent protein
(GFP) by the removal of PEG from the system [162]. In a different study, an azo derivative (AzP1) of
an irinotecan analogue, SN-38, an FDA approved drug, was evaluated on various cancer cell lines.
The tumor suppression potential of AzP1 was validated using a xenograft mouse model. The drug
was not only shown to be capable of tumor specific activation and targeting, but was also extremely
easy to synthesize [163]. Another group synthesized hypoxia-sensitive carboxymethyl dextran and an
azo-bond-containing, black hole quencher 3 (BHQ3), self-assembling polymer conjugate to release
DOX in a sustained fashion under physiological conditions. It was observed that the DOX release
increased remarkably under hypoxic conditions because of the breakage of the azo bond. Both in vitro
and in vivo studies revealed preferential tumor accumulation of the drug [164].

(ii) Nitro-aromatic derivatives. Nitroaromatic derivatives are able to undergo single electron
reduction to form amines by a series of reactions with nitro reductase that is coupled with naturally
reducing agents that are intrinsically present in the tissues. Under normal oxygen conditions,
these reactions are easily reversible, but for hypoxic cells, the nitro group of nitroimidazole
is reduced to a free radical. In one study, a hypoxia-responsive, polymeric nanocarrier was
synthesized; methoxypoly(ethylene glycol)-b- poly(glutamic acid) grafted with an imidazole derivative,
6-(2-nitroimidazole)hexyl amine along with pendent carboxylic group of mPEG-b-PLG. DOX was
encapsulated into the micellar core of the formulation, and was tested on MCF-7 cell lines. It was
observed that the DOX release was increased in hypoxic cells [29]. In another study, 2-nitroimidazole
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was linked to alkylated polyethyleneimine to form nanomicelle-like aggregations under aqueous
conditions. This system was used to deliver surviving targeting siRNA to achieve tumor targeting [165].

Temperature-responsive. In developing thermo-responsive, polymeric systems, it is important
to take the note of critical solution temperature of the polymers. CST is the temperature at which
polymers undergo a phase separation, moving from an isotropic state to anisotropic one [166].
Temperature-responsive, polymeric systems may be divided into two categories: Systems with
negative temperature sensitivity, where the polymers swell due to the formation of hydrogen bonds at
temperatures lower than lower critical state temperature (LCST) and collapse at temperatures above
LCST [167]; and positive temperature-sensitive polymers which swell at temperatures above the upper
critical state temperature (UCST) and collapse at temperatures below it [168]. Temperature-responsive
polymers display a transition from a sol-gel form with varying temperature change; many hydrogels
are capable of in situ gelation at body temperature [166]. Many chitosan thermo-responsive, polymeric
systems have been developed. An in situ gelling, thermo-reversible, PEG-grafted chitosan hydrogel was
fabricated to achieve the sustained release of drug [169]. Apart from chitosan, another animal-derived
polymer, gelatin, has also been explored as a DDS. For example, an adjustable thermo-responsive
hydrogel made from gelatin demonstrated a successful volume transition at physiological temperatures,
and was reported as a promising vehicle for the delivery of many drugs [170]. Another study involved
the development of an in situ gelling thermoresponsive hydrogel of chitosan/gelatin/beta-glycerol
phosphate (C/G/GP) disodium salt which was utilized in nucleus pulposus regeneration. NP cells were
cultured in the formulated hydrogels, and it was seen that the gene expression was modified in this
system [171]. A copolymerized system of N,N-dimethylaminoethyl methacrylate (DMAEMA) and
NIPAAM was synthesized to deliver genes. The complex was seen to be stable at body temperature, and
demonstrated an enhanced transfection in OVCAR-3 cell lines [172]. In another study, a transdermal
thermo-responsive, polymeric gel was developed from poly(N-vinylcaprolactam), PNVCL, which
could transition to gel at 35 ◦C. Transdermal gel is extremely patient friendly, as it may be applied
by the patients themselves. Acetamidophenol and etoricoxib were loaded into these gels to test their
efficacy [173]. Pluronic, a famous PEO-PPO-PEO thermosensitive, polymeric system, is also capable of
undergoing sol-gel transitions at body temperature [174]. Poly(N-isopoprylacrilamide) or pNIPAAm
is a synthetic thermoresponsive polymer which is capable of forming gel at or near human body
temperature [175]. The in situ gelling thermo-responsive hydrogel system was made from pNIPAAm
and PAA that was used for drug delivery. Thermoresponsive ketoprofen-loaded nanofibers were
synthesized using poly(N-isopropylacrylamide) (PNIPAAm) alone, ethyl cellulose (EC) alone, and a
combination hybrid of both polymers [176].

Glucose-responsive. Glucose-responsive, polymeric systems are promising candidates for
regulating insulin delivery to the body in response to altered blood glucose levels, and thereby,
in helping to maintain homeostasis. Many glucose-responsive, polymeric systems have been fabricated;
they typically rely on the oxidation of glucose to gluconic acid via glucose oxidase (GOx). Nanocapsules
incorporating chitosan, insulin, and the GOx enzyme were formulated as monodispersed microgels
which could swell in a hypoglycemic environment by the protonation of chitosan, thereby releasing
insulin for the treatment of diabetes [177]. Acryloyl crosslinked dextran dialdehyde (ACDD)
nanoparticles with GOx functionalization were synthesized as novel glucose-responsive, as well
as in vitro pH-responsive, delivery systems [41]. A GOx-containing hydrogel of poly(methacrylic
acid-g-ethylene glycol) was developed that was capable of swelling at physiological pHs. When the
system was exposed to glucose, there was an observed pH decrease, which led to the collapse of the
hydrogel [178]. In a recent work, glucose-responsive polymersomes (Pep-PMS) were synthesized
that could effectively bind to the ganglioside-monosialic acid receptors which are present in the
epithelium of the intestine. These nanosystems were able to release the encapsulated insulin in
hyperglycemic conditions based on GOx-induced H2O2. These orally-delivered, liver targeting systems
were successful in regulating insulin delivery in rat models, and could be translated favorably into
clinical praxis [179]. Lectin is a group of naturally glucose- and mannose-binding protein moieties.
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The most widely exploited molecule in this respect is Concanavalin A (Con A), a lectin family member
which is capable of binding reversibly and specifically to glucose [180]. For example, Con A, grafted
on glucosyloxyethyl methacrylate along with N,N′-methylene-bis-acrylamide (MBAAm), was used to
fabricate glucose-responsive hydrogel [181]. In another study, Con A and dextran were polymerized
by UV to create novel DDSs that could be utilized to deliver insulin in a closed-loop form [182].
Amylopectin and Con A were utilized to create a bio-responsive, self-assembling nanoparticle system
to deliver insulin [183].

2.3.2. External Stimulus

Magnetic field-responsive. Magnetic field stimuli-responsive nanocarriers are composed of
paramagnetic or super-paramagnetic substances enclosed in a polymeric scaffold. These systems
are used extensively to develop therapeutics, diagnostics, as well as biomimetic actuators. Poly(ethylene
imine) or Pluronic® shells were cross-linked with magnetite to locally deliver siRNA [184]. A magnetic
nanoparticle-embedded, chitosan microbead system was used to load vancomycin. The drug release
was stimulated by alternating magnetic fields [185]. In a different study, ZnFe2O4 nanoparticles were
coated with chitosan to cargo lidocaine, a local anesthetic [186]. A novel copolymeric system of
poly[(2-succinyloxyethylmethacrylate)-b-(N-isopropylacrylamide)-b dimethyl aminoethylmetha- crylate)
was fabricated by RAFT polymerization. Using succinyloxyethylmethacrylate, a triblock copolymeric
system was coated on the surface of Fe3O4 nanoparticles to aid in the delivery of anticancer drugs [187].
A dual pH- and magnetic field-responsive magnetite coated with Eudragit® S100 was fabricated and
loaded with amoxicillin. In vitro studies demonstrated its usefulness as an antibacterial agent [188].

Light-responsive. Light-responsive drug and gene delivery systems are designed by incorporating
a linker that can be cleaved by light irradiation, or by using light-responsive molecular scaffolds like
azobenzenes and spiropyrans [189].

(i) Photo-responsive, polymeric systems derived from cleavable linkers.The introduction of a
photocleavable linker into the polymeric backbone has helped in the design of photo-responsive,
polymeric drug/gene delivery systems. One such linker is the nitrobenzyl ester linker. For example, a
copolymeric polymerosome system was made from PAA attached to poly(methylcaprolactone) by a
nitrobenzyl linker. The linker was extremely light-sensitive, and released fluorescein upon irradiation by
an external light source [190]. Another study involved the attachment of bis-(3-aminopropyl)methylamine
(AMPA) to pentaethylenehexamine (PEHA) via a nitrobenzyl linker that helped in gene- delivery after
being irradiated at 350 nm [191]. In a recent study, PMMA-based photo-responsive microspheres and
nanospheres were prepared using acrylate cross linkers that were made with two o-nitrobenzylester
moieties. The formulation showed photo response at 366 nm, suggesting its wide range of application
in constructing drug delivery and imaging formulations [192]. Another widely used linker to
design photo-responsive systems is coumarin. A novel coumarin-functionalized copolymeric block of
poly(ethylene oxide)-b-poly(n-butylmethacrylate-co-4-methyl-[7- (methacryloyl)oxyethyloxy] coumarin)
(PEO-b-P(BMA-co-CMA) was used to deliver the anticancer drug 5-florouracil. Drug release was
achieved at 254 nm [193].

(ii) Spiropyrans based photo-responsive, polymeric systems. Spiropyrans, when irradiated with
ultraviolet radiation, reversibly transforms from a nonionic state (hydrophobic) to an ionic polar
hydrophilic isomer (merocyanine). A novel transdermal delivery system was synthesized by grafting
poly(hydroxylethylmethacrylate) onto porous polymeric membranes and then modifying it with
spiropyran [194]. In another study, polyglycerol micelles were modified with spiropyrans to aid
in drug delivery upon exposure to UV irradiation [195]. In a recent study, a PDMAEMA and
poly(methylmethacrylate) copolymeric system was functionalized with spiropyran to develop a photo-,
thermo-, pH-, as well as CO2-responsive, polymeric system [196].

(iii) Azo based photo-responsive, polymeric delivery systems. The azo group can transform
reversibly into a stable as well a polar cis state from a trans state upon UV irradiation. An azobenzene
incorporating PEG-b-PAA copolymeric vesicle like system was designed. Upon irradiation with light,
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the azobenzene group aided in controlled dug release [197]. Another photo-responsive hydrogel system
was developed by attaching azobenzene to cyclodextrin-decorated dextran. Upon irradiation, the
system released the enclosed drug due to the transition of azo group from the trans to the cis phase [198].

Ultrasound-responsive. Ultrasound-responsive, polymeric systems have been used extensively
to help in site-specific controlled drug delivery. Many novel nanodroplets, nanobubbles, nanomicelles,
and nanogels have been developed as ultrasound-responsive, polymeric systems.

(i) Nanogel. To enhance the thromobolyis of clots, a urokinase type plasminogen activator was
loaded in a copolymeric nanocapsule of chitosan and poly(ethyleneglycol). The drug release from the
system was enhanced using a 2 MHz ultrasound [199]. In another study, a novel adriamycin gelatin
nanogel delivery system was constructed by modification with a fluoride anion. At a frequency of
20kHz, the ultrasound triggered drug release [200].

(ii) Micelles. Pluronic micelles loaded with DOX were used as ultrasonically-responsive,
polymeric DDSs. At a frequency of 20 kHz, maximum drug release was obtained [201]. In another
study, a curcumin-encapsulating polymeric micelle was constructed from pluronic P123/F127.
The site-specific release of curcumin was modified by ultrasound sonication, as confirmed by
in vitro studies [202]. In another study, a PTX-incorporating, ultrasound-responsive, micellar system
of PEG–PLLA, poly(ethylene oxide)-co-poly(L-lactide), or PEC-microbubble PCL (poly(ethylene
oxide-co-polycaprolactone)) (PEO-co-PCL) was able to deliver PTX to ovarian as well as breast cancer
cell lines upon exposure to a 1 MHz ultrasound [203].

(iii) Nanobubbles. An ultrasound-responsive chitosan DOX nanobubble system was synthesized
to deliver DOX following ultrasound exposure. It was observed that almost twice the amount of
DOX was released, compared to the nonultrasound-responsive system [204]. Ultrasound-responsive,
polymeric nanobubbles were constructed to deliver both siRNA and PTX to treat hepatocellular
carcinoma [205]. In another, similar study, a new codelivery system, i.e., DOX- and shRNA-loaded
PLGA and PEI nanobubbles, were designed to address DOX resistance in breast cancer [206].

(iv) Nanodroplets. A stable nanodroplet encapsulating simvastatin was developed that
could release the drug upon exposure to high intensity, focused ultrasound [207]. Nanodroplets
are widely used to load 10-hydroxycamptotheci, a lipophilic anticancer drug [208]. In 2018,
an ultrasound-responsive nanodroplet system was developed with four parts: Fe3O4 (for imaging), Folic
acid, HCPT (for cancer therapy), and PFC as the core. Upon sonification, PFC vaporized, causing HCPT
to be released [209]. In another study, DOX- and perfloropentane-incorporating, phase-changeable,
lipid-PLGA, hybrid nanodroplets were constructed that released the drug upon exposure to low
intensity, focused ultrasound (LIFU) [210]. Recently, an ultrasound-responsive nanodroplet was made
from PFP/C9F17-PAsp(DET)/CAD/PGA-g-mPEG by incorporating an ultrasound-responsive contrast
agent, fluorinated polymer, and a DOX prodrug that was successful in anticancer therapy [211].

Electrical energy-responsive. Nanoparticles that are made of conducting polymers have been
extensively used to deliver drugs. In situ polymerization and thermally-induced phase separation
techniques were used to design nanofibrous scaffolds of polylactide with polyaniline to aid in
osteogenesis [212]. Ibuprofen was loaded in MSN, which was then incorporated into a chitosan
hydrogel system that was developed on titanium plate. It was seen that the release of ibuprofen increased
with pH and electrical stimuli [213]. A phenytoin sodium-containing, electro-responsive hydrogel was
developed to treat epilepsy. Stimulation from an electric field led to an increase in the ionization degree
because of the poly(sodium-4-vinylbenzene sulfonate) that was present in the hydrogel [214]. A plethora
of other electro-responsive, polymeric drug and gene delivery system have been investigated as well.
Although these systems are not used in clinical practice, they do possess a lot of potential.

3. Stimuli-Responsive, Polymeric Nanocarriers for Bioimaging

Polymer nanocarriers have outstanding advantages in terms of biocompatibility, tailoring
capabilities, stability, biodegradability, and low cost of preparation, compared to inorganic
nanomaterials [215]. Stimulus-responsive polymers (smart polymers) are highly efficient polymers
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which adjust to their environment. Responsive polymers can be sensitive to humidity, chemical
compounds, temperature, pH, light intensity and wavelength, and electrical and magnetic fields.
These materials may respond in various ways, e.g., altering transparency or color, becoming water
conductive, and changing shape. Minor changes in the environment are usually enough to induce
changes in the polymer’s characteristics. [216] Bioimaging is a noninvasive method of observing
biological behavior over a given period of time which does not hinder the various life cycles, such
as movement, respiration, etc., and helps to record the specimen’s 3D structure with minimal
inconvenience. It is useful in linking subcellular structure observations and all tissues in multicellular
organisms [217]. Many imaging techniques, such as optical imaging [218], magnetic resonance imaging
(MRI) [219], nuclear imaging [220], ultrasound (US) [221], photoacoustic imaging (PA), single-photon
computed tomography (SPECT), positron emission tomography (PET), etc., have been widely used in
clinical applications. This section reports on the most recent developments in this area by analyzing in
detail examples of nanoparticles that can be imaged using one or more imaging techniques.

3.1. Optical Imaging

Optical imaging is among the most commonly used methods in imaging [222]. Near-infrared
(NIR) is a strategy that used by optical imaging systems because of the extremely low absorption
of tissues in the wavelength of 700–1000 nm [223]. Small organic molecules with superior optical
properties (high molar absorption, good photostability, and high fluorescent emissions in the NIR
area) are fluorescent NIR probes such as cyanine compounds [224]. Such molecules, indeed, can
be quickly degraded in aqueous media and in physiological environments are distinguished by
a limited circulation time. In order to mollify these limitations, a wide variety of cyanines were
incorporated into different polymer formulations with the goal of enhancing its bioavailability and
durability. There are several studies of NIR fluorescent probes insertion in lipooligosaccharides [225],
water-soluble carboxylated N-acylated poly(amino ester)-based comb polymers [226], supramolecular
nanodiscs self-assembled [227], polymer micelle [228] and mitochondrion- and nucleus-acting
polymeric nanoagents [229]. For instance, Yang et al. (2020) constructed a multi- and cascaded
switchable polymer nanocarrier that self-assembled from nano polymers for imaging and anticancer
treatment. Their nanocarrier is made up from PEG that transplanted an amphiphilic copolymer
including hydrophobic poly (ortho ester) and a hydrophilic ethylenediamine-modified poly (glycidyl
methacrylate) (PEG-g-p(GEDA-co-DMDEA)) [230]. In other research, J-aggregates of self-assembled
amphiphilic cyanine dye FD-1080 and 1,2-dimyristoyl-Sn-glycerol-3-phosphocholine (1360 nm
absorption and 1370 nm emission) were reported by Wang et al. (2019) [231]. Marinez et al.
(2020) prepared a core@multishell nanoparticles (UCNPs) for phototherapy at 808 nm. First, they
synthesized multicore of NaYF4:Yb18%Er2%@NaYF4:Yb10%@NaNdF4:Yb10%@NaYF4:Yb10% and coated
with amphiphilic DBCO-modified polymer PMA. After the polymer-coating of the UCNPs, they
functionalized with two photosensitizers, Rose Bengal (RB) and Chlorin e6 (Ce6), Production of PDT
nanoprobes with spatiotemporal resolution for 808 nm-gated intracellular reactive oxidative species
(ROS) generation (Figure 1) [232].

3.2. Ultrasound Imaging

Ultrasound (US) Imaging is a low-cost, un-invasive, effective and real-time imaging method
in which sound waves are transmitted to the patient’s body at 2 MHz or more [233]. The different
tissues reflect these sound waves and are processed by a converter that converts these details into
pictures. The most widely discussed cancer theranostic approach that incorporates cancer treatment
With US imaging suggests the use of active oriented biodegradable polymers. Multifunctional PLGA
Nanobubbles described by Hong et al. (2015) as theranostic agents. They integrated doxorubicin and
P-gp siRNA into MCF-7 cancer cells and used this platform to conduct cellular ultrasound imaging [206].
In another research, Prabhakar et al. (2019) documented the production of nanobubble-paclitaxel
liposome (NB-PTXLp) particles with size of 528 nm in cancer cells for ultrasound sensitive drug
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delivery and ultrasound imaging (Figure 2) [234]. Shang et al. (2019) also reported the preparation
of ST68/PLA-PEG nanobubbles (NBs) for theragnosis and tumor imaging. These nanoparticles
contain perfluoro propane gas, Span 60 and Tween 80 (ST68) surfactants and a block copolymer
(PLA-PEG-NH2). These NBs showed a contrast strength of 3 dB with low loss of contrast signal after
10 min [235]. Also, some other methods for ultrasonic imaging tested such as high intensity-focused
ultrasound (HIFU) [236], Passively targeted structures of natural polymers, such as alginate [236] or
human serum albumin (HSA) [237] and Chemical development of gasses in the body in reply to tumor
microenvironmental hallmarks.
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3.3. Magnetic Resonance Imaging (MRI)

In MRI, a sufficient magnetic field is applied to arrange the magnetic moments of hydrogen
atoms in tissues and disturbed by an external radiofrequency. After relaxation to their ground state, a
radio frequency signal generated that is identified and converted into a picture [238]. The use of this
strategy for cancer diagnosis is, however, limited due to low sensitivity or poor contrast [239]. The use
of the MRI contrast agents (CAs) which are capable of altering the relaxation times of protons in
different organs through their involvement with the external magnetic field is, therefore, necessary [240].
Low molecular weight complexes of these CAs cannot provide precise MRI imaging of the tumor.
In addition, the need for large doses to have stronger tumor images dramatically raises the risk of
systemic toxicity. Therefore the encapsulation or chelation of these CAs by polymeric nanoparticles
(particularly smart polymers that react to tumor-specific stimuli such as acidic pH, overexpressed
ROS, etc.) has shown great potential to address these disadvantages [238,241]. Experiments focused
nowadays on the development of nanogels, polymersomes, micelles and so on in MRI imaging.
Munkhbat et al. (2019) developed a system for covalently trapping nanoscopic states with an optimal
degree of 19F substitutions. Major improvements in T2 relaxation times is achieved due to increased
segmental mobility of side-chain substituents of stimulus-responsive polymer nanogel (Figure 3) [242].
In another paper, Bain et al. (2019) documented a combination of 2 diblock co-polymers made up from
PEG and carboxylic acid terminated poly (2-methacryloxyethyl phosphorylcholine) (PMPC) (called
polymersome). PMM28 magneto-polymersomes (PMM28Fe) showed a 6 ◦ C increase in temperature
during magnetic hyperthermia in vitro, resulting in an intrinsic loss power (ILP) of 3.7 nHm2 kg−1

that offers the added potential for further tuning and functionalization for imaging and drug delivery
purposes [243]. Aouidat et al. (2019) reported a new Gd(III)–biopolymer—Au(III) complex synthesis
that acts as a key component of Gold core-shell nanoparticles (Gd(@AuNPs). They proved that
Gd@AuNPs had some benefits to showing hepatocytes in the liver. In particular, these nanoconjugates
provided a strong cellular absorption of several quantities of Gd@NPs into cells, while maintaining a
T1 contrast within cells that provides robust in vivo detection using T1-weighted MR images [244].
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Figure 3. Design and synthesis of fluorinated probe. (a) Structure of polymer and nanogel. (i) Nanogel
formation via crosslinking of PDS groups with DTT (ii) Cleavage of THP group in the presence of
HCl and formation of negatively charged moiety with NaOH addition. (b) Schematic representation
of preparation of fluorinated nanogel with decreased interior density. Reproduced from [242] with
permission from American Chemical Society, 2019.
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3.4. Photoacoustic Imaging (PAI)

PAI or photoacoustic imaging is a most recently discovered and developed technique for
visualization and applicable in cancer therapy. Photoacoustic effect is the basis of this method
that generating localized heat and thermoelastic stress waves when tissues absorb a few nanoseconds
of the optical pulse. It is a noninvasive method that provide better tissue penetration, higher contrast
to ultrasound and improved spatial resolution than optical imaging [245]. Authors have so far mostly
represented inorganic nanomaterials for PTT /PAI methods. Indeed, their photostability, lack of
degradability and bio-toxicity, are increasingly troubling. Polymer-based systems tend to be the best
option for solving biocompatibility and biodegradability challenges, and hence the recent publications
focused on them [246,247]. Zhang et al. (2017) described a semiconducting donor-acceptor electron
conjugated polymer nanoparticles (PPor-PEG NPs) with a light harvesting device that was designed for
highly efficient photoacoustic imaging and phototherapy [247]. In another research, Lyu et al. (2016)
designed an intraparticle molecular orbital engineering strategy to simultaneously boost the efficacy of
polymeric nanoparticles in phototherapy and photoacoustic brightness for cancer therapy and in vivo
imaging. They demonstrated the use of the strengthened SPN as the theranostic nanoagents allow for
better photoacoustic imaging [248].

3.5. X-ray Computed Tomography

X-ray computed tomography (CT) is amongst the most widely used approaches of noninvasive
clinical imaging in modern medicine due to the high X-ray penetration potential. This technique
utilizes ionizing X-rays to produce images by spinning an X-ray tube and a detector over a
patient’s sides. The most frequently employed contrast agents for CT are iodinated small molecules,
essentially 1,3,5-triiodobenzene derivatives [249]. Such molecules, however, have limited blood
circulation, suffering from rapid clearance by the mononuclear phagocyte system. In this context,
polymeric nanoparticles are an excellent means for preventing such inconveniences, increasing the
pharmacokinetic effects of iodine molecules and reducing their renal removal [250]. In particular,
research has focused on the production of AuNP polymeric nano-vehicles to enhance their tumor
aggregation, their contrast of CT imaging, and also function as a radiosensitizer [251]. Jang et al.
(2019) explored different self-assembled configurations of gold nanoparticle (AuNP)-block copolymer
complexes generated in aqueous solution from a combination of Pluronic F127 and PE6200. AuNPs
embedded in polymeric uni-lamellar vesicles may be used as imageable drug carriers, catalyst
carriers, distributors of drugs or enzymes, and as nanoreactors [252]. Also, Shapoval et al. (2019)
prepared nanoparticles of GdF3-structured, biocompatible, poly (4-styrene sulfonic acid-co-maleic acid):
Eu3+(Tb3+). Their nanoparticles were very tiny (3 nm), with a narrow size range, and were observable
by X-ray contrast imaging, making them potential useful for the simultaneous and comprehensive
identification of diseased tissues [253].

3.6. Radionuclide Imaging

Radionuclide imaging (RT) generally involves computed tomography imaging (PET) for positron
emission and computed tomography imaging for single-photon emission (SPECT). High energy from
the positron annihilation of γ rays increases penetration efficiency compared to CT [254]; 18F is one
of the best RT substances products, but it has a low half-life. To overcome this limitation, various
research has focused on the development of specific polymeric nanovehicles [255]. For simultaneous
PET imaging and combination therapy, Sun et al. (2018) reported a multifunctional polymeric carrier.
They produced a farnesylthiosalicylate-based, triblock copolymer POEG-b-PVBA-b-PFTS (POVF), i.e.,
a nano polymer made from a poly(FTS) hydrophobic block, a hydrophilic block of poly (oligo(ethylene
glycol) (POEG), and a middle block of poly(4- vinylbenzyl azide) (PVBA). PET imaging in the
4T1.2 tumor-bearing mice indicated rapid absorption and slow clearance of radiolabeled PTX/POVF
nanomicelles in tumor tissues [256]. Interestingly, owing to its sensitivity at nanomolar and even
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picomolar rates, SPECT performed over 80% of all radio diagnostic scans. Thanks to their ideal nuclear
decay properties, availability, and fair price, the most widely used gamma-emitting radionuclides are
123I, 111In, and 99mTc. Sun et al. (2019) developed PEI-labeled gold nanoparticles (Au PENPs) with
iodine-131 (131I) for radionuclide therapy and CT/SPECT imaging (PEI coated with PEG and then
conjugated to it). Their method has proven to be effective for radionuclide therapy and CT/SPECT
imaging of tumor cells in vivo and in vitro [257]. In another study, Goas et al. (2019) formulated gold
nanoparticles grafted with hybrid poly(methacrylic acid) to improve the performance of systemic
131I-mediated RT on tumor-bearing mice [258]. This work was the first study of a simple and effective
method focused on nanomedicine to reduce the dose of radioiodine required to achieve curability and
RT imaging.

3.7. Multimodal Imaging

Multimodal imaging describes the application of two or more imaging techniques in
a single platform. Yang et al. (2019) developed indocyanine green (ICG)-conjugated and
radionuclide iodine-125-labeled polymeric micelles (PEG-PTyr(125I)-ICG) by the self-assembly
of an amphiphilic diblock polymer (ethylene glycol)–poly(l-tyrosine-125I)–(indocyanine black).
This device showed a successful multifunctional nanoplatform with simple constituents for
multimodality imaging of FL/SPECT/PA [259]. Song et al. (2019) presented a multimodality
imaging technique composed of MRI, magnetic particle imaging (MPI), and PA by MMPF NPs
(a long-chain, semiconducting polymer (PCPDTBT) composed of (poly[2,6-(4,4-bis(2-ethylhexyl)-
4H-cyclopenta[2,1-b;3,4-b′]-dithiophene)-alt-4,7(2,1,3−benzothiadiazole)]) and Fe3O4 nanoparticles)
for imaging in vivo [260]. Hu et al. (2019) developed a platform of a gadolinium-conjugated responsive
polymer (PFTQ-PEG-Gd NPs) for MR/PA/NIR-II tri-mod imaging and in vivo tumor phototherapy [261].
Au nanoparticles coated with PEG and conjugated with fluorescence polymers (PFBT and PFTBT) for
bioimaging and in vivo X-ray-computed tomography were reported by Zhang et al. (2019) [262].

4. Stimuli-Responsive, Polymeric Nanocarriers for Theranosis (Physicochemical Properties)

A wide range of nanostructured materials such as carbon nanotubes, iron oxide nanoparticles, gold
nanoparticles, and quantum dots can be applied for theranostic applications. However, theranostic
materials such as iron oxide nanoparticles and carbon nanotubes in their pristine forms may induce
oxidative stress and membrane destabilization, leading to cell death by apoptosis [263]; the integration
of polymeric materials to theranostic probes is a potential remedy to overcome the these problems.
Polymer-based theranostic modalities have garnered increasing research interest in the field of
theranostic and nanomedicine. Polymers offer numerous advantages for theranostics, including
nontoxicity, water solubility, biocompatibility, and the possession of multiple functional entities for the
effective attachment of the theranostic agents to achieve target-oriented delivery of payloads [264–266].
The incorporation of polymeric nanostructures with targeting ligands like peptide, aptamer, antibody
fragment, folic acid, saccharide, and polysaccharide for theranostic purposes has received broad
attention recently [267]. These active ligands lead to the enhanced uptake, buildup, and internalization
of the nanocarriers in cancer cells. Generally, polymer-based, multifunctional theranostic constructs
comprise three main components: (i) the polymer backbone as a carrier; (ii) an imaging agent constituent
such as iron oxide nanoparticles, quantum dots, and dyes for tumors imaging; and (iii) a targeting
component such as aptamers, transferrin, and antibodies for targeted delivery [238]. This section
provides a comprehensive overview of various classes of polymeric nanostructures such as liposomes,
micelles, nanogels, and dendrimers that are widely employed to constitute theranostic probes.

4.1. Polymer Micelles

Polymeric micelles (PMs) are self-assembled structures of amphiphilic polymers that contain
both connected hydrophobic and hydrophilic moieties. The self-aggregation of amphiphilic polymers
beyond a critical concentration of micelles assembles into a structure with a hydrophobic interior
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compartment and hydrophilic side chains extended outside [268,269]. A hydrophilic nanocarrier
cannot effectively encapsulate most anticancer drugs due to their hydrophobic nature. Nevertheless,
hydrophobic anticancer drug formulations can be efficiently loaded in micelles owing to the presence
of a hydrophobic interior core. On the other hand, the hydrophilic shell of micelles substantially
extends the stability of drugs in the blood by reducing phagocytosis and clearance through the kidney
(Nguyen et al. 2016). PMs with an average diameter between 5–100 nm, and comprising a hydrophobic
core and poly (ethylene glycol) shell, exhibit improved permeability and retention properties for the
augmented cellular uptake of anticancer drugs in malignant tissues (Figure 4) [270–272].Polymers 2019, 11, x FOR PEER REVIEW 21 of 44 
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in tumor tissues through the EPR effect for cancer diagnosis and therapy. EPR: Enhanced permeability
and retention. Reproduced from [273] with permission from Elsevier, 2019.

Furthermore, the stimuli-responsive coordination of micelles facilitates the controlled release
of drugs from micelle-based nanoplatforms. Therefore, intelligent PMs with stimuli-responsive
behavior or tumor-targeted ligands have gained considerable research attention as novel carriers for
drug delivery [274–277]. As a result, a wide variety of micelle-based, stimuli-responsive, theranostic
modalities has been reported to target and eradicate cancer-causing cells [278].

Recently, Pourjavadi et al. (2020) used functionalized chitosan with poly(L-lactide) as an
amphiphilic entity to prepare micelle in aqueous solution. The temperature-responsive, polymeric chain
consisting of poly(acrylamide) and poly(N-isopropyl acrylamide) was subsequently embedded onto a
chitosan- poly(L-lactide) composite to bestow these functionalities upon the micelles. The integration
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of gold nanorods onto micelles via gold-thiolate complexation induces photo-responsiveness feature to
the nanocarrier. The in vitro drug release profile showed a 38% release of hydrophilic anticancer drug
paclitaxel following exposure to NIR light at a determined time [279]. Zhu et al. (2019) developed
novel, pH-responsive, retinal/indocyanine green (ICG) micelles as an all-in-one theranostic candidate
for the treatment of cancer [280].

The synthesized homogenous micelle conjugates with spherical shape showed effective
anticancer potentiality both in vivo and in vitro, with adequate biosafety. The loading efficiency
of retinal/indocyanine green was recorded to be 9.23%, indicating its outstanding loading capacity.
Amphiphilic hyaluronan-SS-poly(ε-caprolactone) diblock copolymers (HA-SS-PCL) were developed
and employed as multifunctional nanocarriers for the diagnosis and management of tumor
nanocarriers [281]. On one hand, HA shells containing theranostic nanoparticles possessed a higher
affinity to CD44 expressed on the surface of malignant cells, leading to the accumulation of elevated
levels of drugs. On the other hand, disulfide bonds connected HA-SS-PCL nanocarriers exhibited a
reduction of the agent-triggered release of doxorubicin under a given level of glutathione. Furthermore,
the encapsulation of superparamagnetic iron oxide and doxorubicin into the core of the micelles
facilitated the diagnosis and treatment of targeted cancer cells. Notably, 100% release of DOX was
achieved from HA-SS-PCL micelles within a period of 12 h under the reductive environment of
glutathione (10 mM), while DOX release was shown to be about 40% within 24 h in the nonreductive
conditions. Characterization analysis confirmed that the DOX-encapsulated HA-SS-PCL micelles
were internalized in HepG2 cells through a receptor-assisted mechanism between CD44 receptor and
hyaluronan. Cell apoptosis and MTT assay revealed prominent anticancer activity of the DOX-bearing
HA-SS-PCL micelles against HepG2 cells compared to the reduction-insensitive HA-PCL micelles under
identical conditions. Thus, the newly developed HA-SS-PCL block copolymers presented promise as
versatile, tumor-targeting theranostic nanocarriers [281]. Shao et al. (2019) utilized polymer-based
micelles to control indocyanine green (ICG) J-aggregation in a highly effective and rapid way. Besides a
simple entrapment, the fabricated polymer micelles functioned as a promising host prototype to induce
ICG J-aggregation by a combination of hydrophobic electrostatic interactions. The ICG J-aggregate
remained intact in the polymer supramolecular assembly intracellularly due to efficient host–guest
interactions. These features make this hierarchical assembly between ICG J-aggregate and the micelle
polymer promising biomedicines for cancer phototheranostics. Moreover, these polymer micelles
were modified by introducing doxorubicin for better therapeutic effect and covalent coupling of DNA
aptamer for tumor targeting. In this way, this multifunctional, micellar-based nanomedicine revealed
superior therapeutic potential for tumors, which were shown to be fully eradicated with no toxicity
effects or reemergence up to 24 days following the treatment [228].

4.2. Polymeric Liposomes

Liposomes are spherical vesicles that consist of phospholipids forming a bilayer structure
upon dispersion in water. Liposomes are one of the oldest, nonimmunogenic, and most successful
biologically-inert, nanosized platforms for the delivery of drug molecules [282]. Liposome-based
theranostics offer many benefits such as easy preparation, biocompatibility, and the ability to encapsulate
hydrophobic as well as hydrophilic agents [283].

Hydrophobic drugs are incorporated into the liposomal bilayer membranes, whereas hydrophilic
drugs can be encapsulated into the aqueous interior core. Nevertheless, the rapid removal of these
liposomes by the phagocytic system is a major problem, decreasing their ability to reach target
tissues. Therefore, surface modifications of liposomes are necessary to capitalize upon their efficient
functioning. Modifications to the liposome surface using molecules such as polyethylene glycol
and glycolipid considerably increase the circulation span of liposomes [284]. They also circumvent
liposomal opsonization, and thus rescue from the mononuclear phagocytic system. Consequently,
the longer circulation lifespan profoundly extends the theranostic potential of liposome-driven drug
preparations in the body [285].
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The FDA approved doxorubicin-loaded PEGylated liposome as the first nanomedicine in 1995 to
treat AIDS-related Kaposi’s sarcoma. Since then, liposomal theranostic has been widely advocated
for the diagnostic and therapeutic needs of numerous disorders including hepatitis, leukemia,
breast cancer, macular degeneration, and fungal diseases [286–288]. In addition, many clinical
trials are currently in progress [289]. Zhao et al. (2016) demonstrated that a pH-sensitive peptide
(H7K(R2)2)-modified tumor-targeted liposome efficiently (over 80%) released the encapsulated DOX
at a pH of 6.5. The pH-responsive DOX-containing liposomes also showed better tumor-controlling
capacity than DOX-loaded liposomes without modification of the pH-responsive peptides [290].
In a recent study, Mansoori and coworkers (2020) tested the ability of hyaluronic acid-modified
5-fluorouracil (5-FU) -loaded, nanosized liposomes against colorectal cell lines (CD44-expressing) and
a hepatoma cell line (non-CD44 expressing) [291]. An MTT assay revealed target-oriented tumor
cell death in a time-dependent manner based on the expression of CD44. Cells treated with the
newly-developed, liposomal-based, theranostic system exhibited significantly reduced oncogenic
microRNA, mRNA, and colony formation, while tumor suppression was meaningfully increased
in the treated group. Similarly, a new type of Arginine8-Glycine-Aspartic acid-modified, specific
liposomal system was engineered for the separate encapsulation of emodin and daunorubicin [292].
The two-targeted liposomes were then combined to prevent tumor metastasis and disrupt vasculogenic
mimicry channels. The results indicated potent toxicity and effective inhibitory activity of the combined
liposomal system against the MDA-MB-435S cell lines (a highly intrusive type of breast cancer cells)
and the metastasis of tumor cells, as well as the formation of vasculogenic mimicry channels. Insight
into the mechanism suggests the downregulation of some metastasis-associated proteins, including
VE-cad, HIF-1α, TGF-β1, and MMP-2 by the action of Arginine8-Glycine-Aspartic acid-modified
daunorubicin and emodin liposomes. The specifically modified liposomes also facilitated the selective
accumulation of chemotherapeutic drugs at the tumor site to exhibit direct antitumor activities,
consequently providing a promising theranostic system for breast cancer [292].

4.3. Polymeric Dendrimers

Dendrimers are three-dimensional, hyper-branched polymeric structures that are increasingly
being used in a range of drug and gene delivery applications [293]. In contrast to traditional polymer
nanovectors, these polymeric, nanosized macromolecules exhibit low poly-dispersity, well-defined
chemical structure, and diverse surface functionalities. Dendrimers can be formed by two different
techniques, i.e., the explicitly divergent and convergent synthetic methods [294]. In the divergent
technique, the dendrimers are assembled from the core and propagate outward into different generations
or branches. The branches of the dendrimer originate in the convergent method and congregate towards
the center, producing the core of the dendrimer [295]. As an intriguing class of drug nanocarriers,
dendrimers polymers offer many beneficial features such as stimuli-responsiveness, high drug loading
capacity, and target-specific drug delivery. The loading of drugs is achieved by attachment to the
terminal branches or by conjugating the drug into the central core of the dendrimer polymer [296].
The presence of abundant functional moieties at the terminal ends promotes its conjugation with targeting
ligands and imaging modalities to constitute multipurpose therapeutic/theranostic dendrimers.

Owing to their unique properties such as nanoscopic size, monodispersity, biocompatibility,
tunable size, reproducibility, and multiple functional groups at the periphery, dendrimers hold excellent
potential as drug nanocarriers for theranostic applications. The cytocompatibility of dendrimers could
be further augmented by amino acid, glycosylation, acetylation, and PEGylation functionalization
to overcome their cationic toxicity to normal cell lines [297]. A DNA-assisted theranostic dendrimer
displayed several fascinating characteristics, such as cytocompatibility, robust stability, satisfactory
drug loading, and improved cellular internalization efficacy. Moreover, the engineered dendrimer
structure also revealed an antitumor effect against acute lymphoblastic leukemia cells [298]. pH- and
redox potential-responsive PEGylated dendrimers exhibited high cellular internalization and anticancer
activities towards A549 cell lines. The antitumor efficiency of the as-designed theranostic dendrimers
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demonstrated platinum distribution, NIR tumor imaging, and good pharmacokinetics in A549 xenograft
tumor-harboring mice [299]. Jędrzak et al. (2019) integrated polydopamine (PDA)-coated magnetite
nanoparticles and PAMAM dendrimers to synthesize novel and multifunctional nanoplatforms.
The designed PAMAM dendrimer G 5.0 functionalized nanocarriers exhibited a high drug-encapsulating
capacity for doxorubicin hydrochloride, and were successful applieded in the photo- and chemothermal
treatment of the human hepatoma HepG2 cell line (liver cancer cells), even at lower nanoparticle
concentrations (Figure 5) [300].Polymers 2019, 11, x FOR PEER REVIEW 24 of 44 
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Fe3O4@PDA@G 4.0–6.0 nanoparticles and its application in combined CT-PTT therapy on HepG2 cells.
Reproduced from [300] with permission from Elsevier, 2019.

The coordinated use of dendrimers with magnetic nanoparticles resulted in a versatile hybrid
nanosystem-based drug delivery nanosystem for cancer treatment. Substituted silicon naphthalocyanine
(SiNc) was transformed into a biocompatible nanoplatform (SiNc-NP) by encapsulating SiNc
into the hydrophobic core of the polyethylene glycol-modified polypropylene imine dendrimer
G5 surface. Experimental results showed that SiNc-mediated phototherapy effectively destroyed
chemotherapeutic-resistant ovarian cancer cell lines. Additionally, the solid tumors were completely
eradicated by treatment with SiNc-NP in combination with NIR radiation exposure without cancer
reappearance [301]. Fan et al. (2019) developed a powerful theranostic, nanostructured platform based
on copper(II)-complexed poly(amidoamine) dendrimers G5 for the treatment of tumor metastasis.
It was found that the copper(II) complexes were capable of inhibiting the propagation of various
tumor cells, accompanied by the induction of substantial cancer cell apoptosis, and thus, hold strong
potential for suppressing the proliferation of different types of cancer cells. An engineered polyvalent
nanosystem comprising iron oxide nanoparticles modified with folic acid-polyamidoamine dendrimers
also exhibited a high accumulation of 3,4-difluorobenzylidene-curcumin (a potent anticancer agent),
along with a promising anticancer effect [270].

4.4. Polymeric Nanocomposite Nanogels

Nanogels are physically or chemically cross-linked polymeric networks exhibiting attributes such
as biocompatibility, mechanical strength, high water absorption capacity, good dispersion stability,
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structural permeability, and fast response to external stimuli [302]. These properties along, with high
drug loading capability, make nanogels highly alluring nano-vehicles for drug and gene delivery
applications. The high drug loading capacities of nanogels may be ascribed to the occurrence of
high-water contents that constitute large cargo spaces inside the nanogel network [303]. This water
content also contributes to their good biocompatibility compared with other polymer nanovectors
including liposomes, dendrimers, and micelles. Drugs can be loaded onto nanogels by various
approaches, such as self-assembly, covalent coupling, and physical entrapment. Likewise, the
encapsulated drug can be unloaded via degradation, diffusion, and alterations in ionic strength,
pH, and temperature [304]. Among the various theranostic nanoplatforms, polymeric nanogels are
regarded as the most imperative owing to their exceptional features such as water content, good
cytocompatibility, drug-encapsulating capacity, stimuli sensitivity, and the presence of multipurpose
functional groups that ensure the conjugation of ligands.

A vast number of reports have supported the role of polymeric nanogels as promising theranostic
carriers for the treatment of cancer with high specificity and efficiency. Recently, Cho et al. (2020) [305]
developed a new, fucoidan, polysaccharide-based, nanogel theranostic platform (CFN-gel) containing a
fucoidan backbone, photosensitizer, and redox-sensitive linking agent to achieve complete eradication
of cancer cell proliferation (Figure 6).
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The as-synthesized theranostic nanogel system exhibited a nanomolar affinity to P-selectin that
was overexpressed on the surface of a variety of tumor cells, including neovascular endothelial cancer
cells. Upon systemic administration, the CFN-gel displayed no phototoxicity because of the singlet
oxygen generation and aggregation-triggered self-quenching in its fluorescence. Due to its nanomolar
affinity towards endothelial growth factors, CFN-gel also ensured substantial anticancer activity
without light irradiation, revealing fucoidan-based nanogels as novel and specific theranostic materials
for cancer treatment. Polyethylenimine (PEI)-based versatile nanogels (NGs) were fabricated, for
the first time, by adopting an inverse miniemulsion polymerization, subjected to modification with
ultra-small iron oxide nanoparticles, and used to load doxorubicin, an anticancer drug (Figure 7).
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The fabricated nanoplatform possessed better colloidal stabilization, good water dispersibility,
exceptional drug accommodating efficacy, and pH-responsive doxorubicin release with enhanced
release in an acidic environment. With regard to drug-free nanogels exhibiting good biocompatibility,
the doxorubicin-incorporated hybrid nanovehicles showed remarkable therapeutic potential with an
efficient uptake rate by cancer cells. Given these desired features, the growth of a tumor was completely
suppressed by the newly-designed hybrid polymeric nanogels system [306]. Gao et al. (2020) reported
the development of a novel class of decomposable magnetic redox- and temperature-responsive
polymer/iron oxide nanocomposite nanogels (NCGs) by the inverse emulsion method, and applied
as nanovehicles for targeted drug delivery. Apart from high superparamagnetism, the resultant
polymeric nanogel system also presented a noticeable redox- and rescindable thermo-responsiveness,
and the release 5-fluorouracil antitumor drug was easily tuned by the redox environment, the
external temperature of the media, or both. Additionally, the negligible cytotoxicity of the
synthesized nanocomposite nanogels underlined its considerable potential to serve as a multifunctional
nanoplatform for drug delivery [307].

5. Applications in Tissue Engineering and Regenerative Medicine

The fields of tissue engineering and regenerative medicines are parts of the broad field of life
sciences, and usually make use of both biological and engineering aspects in the reconstruction of
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injured or diseased cells, tissues, and organs [308]. These field have shown significant relevance for
biomedical applications [309]. Biopolymers and their combinations have played crucial roles and
are amongst the most favorable potential constituents for the development of tissue engineering
materials [310]. Also, stimuli-responsive biopolymer-mediated systems have found significant success
in the development of biocompatible and biodegradable materials used for tissue/bone engineering
and regenerative medicine applications.

Moreover, the physical and mechanical characteristics of the materials can be modified by
mixing and establishing porous assemblies and films with desired architectures [311,312]. Biopolymers
including chitosan, collagen, alginate, and others have been extensively used for the production of
stimuli-sensitive scaffolds and associated constructs [313–316]. Tissue engineering mediated materials
are highly dependent upon cell-associated constructs that provide cellular linkage, progression,
propagation, disparity, and relocation [317,318].

Apart from polymer conjugated systems, lipid-based systems have also shown significant
potential in the production of regenerative medicines for cancer therapy [319] and other disorders or
diseases [320]. In a study, researchers developed stimuli-responsive and chitosan-based by-functional
polymerized nanocarriers to act as a potential material for drug delivery and tissue engineering
applications. The polymeric nanoparticles (PNPs) were tested for various altered environmental pH
and redox conditions, i.e., similar to those of the environmental conditions within the cancer cells.
The PNPs were found to be biodegradable and biocompatible; however, the PNPs got deassembled in
the presence of both stimuli. Nonetheless, with such characteristics, these PNPs could potentially be
used as nanocarriers for the targeted delivery of chemotherapeutics [321].

Some researchers developed a triple stimuli-responsive carrier system, i.e., with pH, GSH,
and enzyme sensitivity, for the efficient delivery of K-DOX-NPs. The K-DOX-NPs exhibited high
drug loading efficiency and were found to be stable in an aqueous medium. It was observed
that the overexpression of trypsin led to the creation of peptide bonds inside the K-DOX-NPs,
and simultaneously enhanced the drug release at targeted sites in an A549 microenvironment.
A cytotoxicity assay revealed that the K-DOX-NPs effectively inhibited the propagation of tumor
cells. The K-DOX-NPs exhibited excellent biocompatibility and antitumor effects with minimal or
no adverse effects, as well as sustaining blood circulation, making them a potential approach in
cancer therapy [322]. Liu et al. evaluated the therapeutic efficacy of calcium alendronate-coated
scaffolds. The coated scaffold composites exhibited superior cyto-compatibility, cell linkage aspects,
upregulated osteogenic associated gene expression, protein levels, alkaline phosphatase (ALP) activity,
and calcium deposition of an Adipose-derived mesenchymal stem cell (ADSC). It was concluded
that the coated scaffolds exhibited osteogenic differentiation against ADSC due to improved integrin
conjugation and FAK/ERK activation. Thus, the coated scaffolds could act efficiently in bone tissue
engineering applications [323]. Biopolymer-mediated, stimuli-sensitive, switchable conditions were
reported to play a shape-memory role as an output in the presence of two significant input signals,
i.e., salt concentration and environmental temperature. These studies were meant to be functional in
the presence of gelatin-conjugated hydrogel systems. The hydrogels displayed similar mechanical
activities to those of soft tissues, with greater swelling abilities. The presence of gelatin significantly
affected the hydrogel, and was responsible for the formation or deformation of a helical shape. Also,
the study showed the potential activity of various chaotropic and kosmotropic salts which regulated
the gelatin helicalization or conformational alterations [324].

Patel et al. modified the surface of biopolymer-mediated nanofibers with carbon nanotubes
(CNTs), improved the topography of the CNTs, and evaluated their angiogenic, inflammatory, and bone
rejuvenation activities. The CNTs-coated nanofibers, when administered subcutaneously to rat models,
potentially downregulated cytokine levels and accumulations of macrophage, thereby decreasing
inflammation. Also, the modified nanofibers supported angiogenesis and exhibited significant
bone/tissue restorative activity against calvarium bone deficient models. Moreover, the in vivo
results showed that the modified nanofibers exhibited greater bone mineralization and upregulation



Polymers 2020, 12, 1397 28 of 45

of osteogenic symptoms. Regenerative medicine-based approaches for the effective and targeted
delivery of biomaterials by means of stimuli-responsive biopolymers have significantly increased
in number in recent years [325]. In this context, Li et al. developed dual stimulus (redox and pH)
-responsive, polymeric (keratin) nanoparticles for the targeted delivery of doxorubicin (DOX). Initially,
the keratin-coated DOX nanoparticles (K-DOX-NPs) were fabricated using a desolvation method
followed by chemical cross-linking with the drug entity. The K-DOX-NPs demonstrated both pH- and
glutathione- (GSH) responsive aspects. The K-DOX-NPs accumulated in the tumor microenvironment
due to the enhanced permeability and retention (EPR) effect, and executed a negative-to-positive
conversion of surface charge. The K-DOX-NPs were found to be compatible, exhibiting potential
activity against A549 human lung carcinogenic cells and promoting nitric oxide (NO) release, and thus,
could serve as a potential chemotherapeutic tool for regenerative medicine [326].

In another study, Rebelo et al. developed and optimized a glycan-conjugated, collagen-mediated
hydrogel that contacted with and controlled the disparity of neuronal cultures. To evaluate the activity
of the conjugated materials, collagen polymers underwent amine-based reactions with maltose and
lactose to eradicate the pyranosidic assembly of both. The glycan-conjugated, collagen-mediated,
hydrogel inhibited astrocytic propagation (for up to two weeks) and brought about an upsurge of
sialylation while decreasing fucosylation. Thus, the results indicated that modified hydrogels could
serve as regenerative medicines for central nervous system-associated disorders [327].

6. Conclusions and Future Perspectives

Nanomedicine and theranostics are emerging research fields that incorporate the benefits of
diagnosis and therapeutic agents into a single nanocarrier commodity. The fabrication of multifunctional
nanostructured materials facilitates the target-oriented delivery of therapeutic or imaging agents
for simultaneous diagnosis and theranostic applications. These newly developed nanocarriers not
only contribute to effective treatments, but also ensure the instantaneous real-time monitoring of
therapeutic responses. The rapidly developing field of stimuli-responsive, polymeric nanocarrier
systems has already shown their efficiency in drug or gene delivery to the desired cells or tissues.
Additionally, with better understanding of biological variances between diseased and healthy cells or
tissues, and developments in nanomaterial approaches, there is potential to progress in the field of
stimuli-responsive nanocarrier systems to achieve the improved targetability and biodistribution of
drugs and genes. Also, stimuli-responsive, polymeric nanocarriers might show synergistic activitiy
because of the simultaneous presence of an active polymer matrix and a stimulus component. Although
various drug-/gene-incorporated, stimuli-responsive, polymeric nanocarriers have been established
for different biomedical applications, there are some limitations that should be addressed in the
future; these include the safety of the applied material or its modified compounds, the toxicity
profile, alterations of moieties in various disease conditions, and variations in the in vitro and in vivo
efficacy in the presence of different stimuli. This review also outlined several stimulus-responsive
nanopolymers for developing imaging techniques. The classification of parts was based on the imaging
method and nanopolymer kind. Objectively-constructed nanocarriers can be designed to deliver more
effective therapy while reducing toxicity with a combination of stimulation sensitivities for bio imaging.
There has been substantial progress in the development of nanocarrier systems for imaging, and further
research will continue to broaden their abilities. The integration of polymers to nanoscale materials such
as carbon nanotubes, iron oxide nanoparticles, gold nanoparticles, and quantum dots has significantly
contributed to the field of theranostics and nanomedicine. Polymer-based nanomaterials, namely
liposomes, micelles, nanogels, and dendrimers, offer numerous advantages for theranostics, including
nontoxicity, water solubility, biocompatibility, and the possession of multiple functional entities for the
effective attachment of theranostic agents to achieve the target-oriented delivery of payloads. However,
it is equally important that these nanocarriers reach the specific site, perform their therapeutic function,
and are then metabolized or excreted from the body. Therefore, several parameters, i.e., the charge, size,
and surface functionalization of the polymeric nanostructures, should be optimized to ensure durable
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blood circulation and prevent renal clearance, as well as to evade capture by the reticuloendothelial
system. In conclusion, significant efforts are needed for the successful and broad use of polymeric
nanomaterials in drug delivery, imaging, and cancer theragnosis.
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253. Shapoval, O.; Kaman, O.; Hromádková, J.; Vavřík, D.; Jirák, D.; Machová, D.; Parnica, J.; Horák, D.
Multimodal PSSMA-Functionalized GdF3: Eu3+ (Tb3+) Nanoparticles for Luminescence Imaging, MRI, and
X-Ray Computed Tomography. ChemPlusChem 2019, 84, 1135–1139. [CrossRef]
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