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Abstract: In this review, we describe recent relevant advances in the fabrication of polymeric
nanofibers to address challenges in conventional approaches such as electrospinning, namely low
throughput and productivity with low size uniformity, assembly with a regulated structure and
even architecture, and location with desired alignments and orientations. The efforts discussed have
mainly been devoted to realize novel apparatus designed to resolve individual issues that have
arisen, i.e., eliminating ejection tips of spinnerets in a simple electrospinning system by effective
control of an applied electric field and by using mechanical force, introducing a uniquely designed
spinning apparatus including a solution ejection system and a collection system, and employing
particular processes using a ferroelectric material and reactive precursors for atomic layer deposition.
The impact of these advances to ultimately attain a fabrication technique to solve all the issues
simultaneously is highlighted with regard to manufacturing high-quality nanofibers with high-
throughput and eventually, practically implementing the nanofibers in cutting-edge applications on
an industrial scale.

Keywords: nanofiber; electrospinning; needleless spinning; mass production; structural regulation

1. Introduction

Nanofibers belong to a group of most interesting and promising materials due to their unique
physicochemical properties, i.e., extraordinary porosity with interconnectivity between pores in mats,
mechanical flexibility and strength, high surface area, and high applicability to fabricate composites with
other materials [1–3]. These characteristics enabling its use for a variety of applications have attracted
tremendous scientific and technological interests [4–8]. Among various nanofiber fabrication techniques,
such as melt spinning [9], wet spinning [10], dry spinning [11] and others, an electrospinning utilizing
electrical force to form polymeric fibers with a diameter ranging from nanometer to sub-micrometer
has been considered as an important workhorse academically as well as industrially. In the early days,
Lord Rayleigh′s studies showed that an electrical force can overcome the surface tension of a small drop
of solution [12]. While the studies have been an important background for developing electrospinning,
Formhals registered a crucial patent related to electrospinning technique for the first time in 1934 [13].
In 1969, Taylor observed the formation of cone type jets from viscose fluids with an electrical field,
the-so-called “Taylor cone” [14]. Since the 1980s up to now, the electrospinning technique has widely
been utilized due to the accessibility and applicability to nanotechnology. More importantly, it has
been rapidly evolved in its practical use on the basis of fundamental studies on significant aspects of
the electrospinning process [15].
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In general, electrospinning is regarded as an easily accessible, highly effective and efficient
nanofiber fabrication method. One of its significant benefits is the versatility to use a number of types
of materials, e.g., organic materials ranging from small molecules to macromolecules, inorganic species
and particles, and organic/inorganic hybrids. A typical electrospinning apparatus consists of a high
voltage power supply, a spinneret connected to the power supply, and a collector having the opposite
charge to the ejection spinneret charge [16]. The fiber source is typically a homogeneous polymer
solution which is injected into the spinneret. A polymer solution droplet at the end of a spinneret is
exposed to an applied electric field, and the electric field induces charges on the droplet surface [17].
When the voltage is sufficiently high to overcome the droplet surface tension, the repulsive electrical
force stretches out the droplet. The stretched-out jet is rapidly accelerated to form the structure of the
nanofiber [2]. The morphology of the resulting nanofibers is effectively controlled by many specific
processing parameters, i.e., solution viscosity, applied voltage, solution injection rate, distance between
spinneret tip and collector, solvent conductivity, temperature, and humidity [18].

Despite the outstanding characteristics of electrospinning, improvement to address important
issues is in progress by partially modifying the spinning process or even developing new types of
spinning process and apparatus. Most notably, the throughput of conventional electrospinning has
been a serious bottleneck in its practical applications. Furthermore, it is still challenging to achieve
the fabrication of nanofibers with (i) a highly regulated structure, (ii) the desired fiber alignment and
orientation, and (iii) three-dimensional complexity in the current electrospinning process. (Figure 1) In
the perspective of the materials, there has been a significant limitation on the range of materials used
in the fabrication; for example, some polymers, such as polyolefins, with poor solubility in a range
of solvents, or with high electrical resistivity, cannot be utilized as a homogeneous polymer solution
where reasonable electrical conductivity is required [19]. Considering these issues, much research
effort has been devoted to achieve advanced spinning systems. To date, researches have focused on
the invention of new spinneret systems with unique designs, e.g., blow-jet spinning [20], centrifugal
spinning [21], microfluidic spinning [22], bubble electrospinning [23], core-shell electrospinning [24,25],
and the combination of several current techniques. In this review, we explore several notable recent
nanofiber fabrication techniques, and highlight novel and remarkable approaches which potentially
offer more efficient and effective pathways towards high quality nanofiber structures in a rapid manner
with regard to regulated structure and architecture with high complexity. We envision that strategies
covered in the current review should have the potential to stimulate the development of other new
techniques as well as to facilitate beneficial applications that have impact on our daily lives.
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2. Needleless Spinning for Large Scale Production

In typical electrospinning to fabricate nanofiber mats, a single spinneret is employed because it
provides a convenient and cost-effective process. However, it does not offer high throughput which is
one of the important requirements for practical and industrial applications. The typical production
rate of the single spinneret electrospinning falls in the range of 0.01–0.1 g·h−1 [26], which highly limits
its applicability in practice. One of the simplest and easiest approaches to increase the throughput
and enhance the productivity is the use of multiple nozzles [27,28]. However, there have still been
challenges in multi-tip electrospinning; for example, undesirable interaction between formed jets which
is caused by the interference of the electric fields, and difficulties in the cleaning process for a number
of tips eventually degrades the quality of the fabricated nanofibers. In addition, clogging of the needle
tip frequently occurs due to its small diameter, preventing continuous spinning. The multi-tip system
also requires huge space for the equipment, leading to increase of cost of the production process.

To overcome this issue, needleless electrospinning has been considered as an effective method
to maximize the continuity of the fabrication process and therefore, the productivity. Contrary
to conventional electrospinning, in the needleless electrospinning technique, an electrical force is
applied on the liquid surface directly without using a needle nozzle [23,29]. To date, many needleless
electrospinning techniques have been reported with systematic variation in the spinneret geometry,
e.g., spiral coil [30,31], rotary cone [32], sprocket wheel disk [33], rotating disk [34], self-cleaning
threaded rod [35], twisted wire [36,37], conical wire coil [38], metal dish [39], double-ring [40], curved
slot [41,42], bowl [43], and tube [44]. The open spinneret in the needleless electrospinning suppresses
the clogging of the tip, facilitating multiple jet operations. Consequently, far higher fabrication
productivity is feasible: the quantitative range is from 0.5 g·h−1 to 600 g·h−1 which is much higher than
that of conventional electrospinning with a single needle [45–47]. Representative improvements are
summarized in Table 1. In this section, we describe the recently developed new techniques related to
needleless electrospinning that can achieve an outstanding throughput.

Table 1. Summary of productivity of different spinning techniques.

Type Spinneret Polymer Voltage
(kV)

Productivity
(g·h−1)

Ref

Needleless
electrospinning

Secondary coil (T-coil) PVA 85 ~9.72 [31]

Double-ring slit PVA 30 ~2.25 [40]

Twisted wire PVP 20 ~1.023 [37]

Rotating-disk PCL 25 ~10.611 [34]

Threaded rod PEO 60 ~5.2 [35]

Rotating spiral wire coil PVA 60 ~9.42 [30]

Curved convex slot PVA 70 ~2 [41]

Foam Nafion 25 ~9.73 [45]

Bowl edge PEO 16 ~0.684 [43]

Rotating cone PVP 30 ~600 [32]

Umbrella nozzle PLLA 30 ~180 [46]

Curved slot with
temperature elevation PVA 60 ~1.98 [42]

Needle Roller PVA 40 12.8 [47]

Nozzle
electrospinning

Multi-nozzle (19 nozzle) PEO 15 ~0.712 [27]

Coaxial with air-blowing PAN(Core)/TPU(Shell) 38 ~3.6 [25]

Porous hollow tube (13
cm long, 20 holes) PVP 40–60 0.3–0.5 [28]
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2.1. Double-Ring Slit as Electrospinning Spinneret

Contrary to conventional electrospinning which is a closed system, in a needleless spinneret,
a polymer solution is exposed to air, inducing solvent vaporization during electrospinning and
hence, resulting in inconsistency in the quality of fabricated fibers due to the changes in polymer
solution concentration [23]. Recently, Wei et al. introduced a double-ring slit as a spinneret for
electrospinning to address this challenge and to improve fabrication productivity by simultaneous
formation of multiple jets during electrospinning [40]. The schematic diagrams for the double-ring
slit needleless spinneret (DRSNS) setup are presented in Figure 2A,C, and the photographs from
front and top views also are shown in Figure 2D,E. The double-ring based electrospinning setup is
quite similar to conventional single needle spinneret (SNS) electrospinning; spinneret, syringe pump,
high-voltage generator, and metal collector (Figure 2B); however, the key component for DRSNS based
electrospinning is the use of a double-ring slit as spinneret. As shown in Figure 2C, the double-ring slit
consists of four parts, i.e., outer ring, inner ring, inner core, and shell. The inner core and shell are
made from polytetrafluoroethylene to insulate the current, but the outer and inner rings are composed
of copper to effectively apply an electrical field to the polymer solution. The width of the inner
and outer slit was 0.5 mm, and the diameter and height of the spinneret was 35 mm and 40 mm,
respectively. The DRSNS was mounted on a pedestal, and the polymer solution was injected into the
inner core of a double-ring spinneret, and the solution transported into the double-ring slit. The ejected
polymer solution from the inner and outer circle slit is highly charged owing to the copper rings
imparting an electrostatic repulsion force that counteracts the effect of surface tension. As a result,
the polymer solution is allowed to be stretched out to form nanofibers. In this process, the loss of
polymer solution is limited effectively, and the multiple formation of a Taylor cone of the polymer
solution occurs and therefore, enhancing the mass production of nanofiber. The productivity of this
technique was compared to the SNS, with experiments to fabricate poly(lactic acid) (PLLA) nanofibers.
Noticeably, the productivity of the DRSNS-based electrospinning process was improved about 22 times,
from 0.10 ± 0.03 g·h−1 to 2.25 ± 0.25 g·h−1 (Figure 2F), under the same spinning conditions including
feed rate, voltage, and rotating speed. Two aspects made this improvement feasible: (i) precise control
of the exposed area of the polymer solution to the atmosphere using a control pump which reduced the
loss of polymer solution during the spinning process, and (ii) concurrent formation of multiple jets with
the circular narrow slit. DRSNS was applicable to other types of polymers such as polyacrylonitrile,
poly(vinyl alcohol), poly(methyl methacrylate), poly(DL-lactic acid), and polycaprolactone, to achieve
a multilayered nanofiber structure which may be implemented further for bio-related applications
such as drug loading systems.
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2.2. Two-Level Coil Edge Electrospinning

Among a variety of possible spinneret structures, a curved geometry has attracted attention due
to its high electrospinning process efficiency. Yan et al. investigated the effect of a slot line shape on
electrospinning productivity and the quality of resulting nanofiber by comparing four convex slot
spinnerets with different line shapes, i.e., straight, rectangular, triangular, and curved shapes [41]. In the
curved slot, higher electric field with more uniform distribution could be applied along the slot length
direction, resulting in structural uniformity as well as improved throughput. The profile of the formed
electric field was critical; Wang et al. utilized a finite element method (FEM) to analyze the electric field
intensity profiles of a cylinder, disc, and coil spinnerets [30]. They found that larger curvature leads to
higher electric field on a coil surface. Maximizing this effect for needleless electrospinning was feasible
with coil-based electrospinning. It typically uses a smooth wire coil as a spinneret [48]. However,
there are also challenges such as corona discharge and breakdown of the electric field to make a curved
structure with the spinneret [49]. Particularly, the electric field is often unevenly formed at a certain
position in the curvature, inducing corona discharge which leads to unnecessary energy consumption
and therefore, process efficiency becomes lower than expected. The additional use of energy also
can result in unexpected equipment damage. Therefore, it is important to design a curvature shape
of the spinneret to realize an efficient electrospinning system for ensuring the mass production of
high-quality nanofibers with the desirable size uniformity.

Niu et al. recently presented a new type of coil-based electrospinning, which uses a secondary
coil structure on the coil spinneret, to overcome the aforementioned challenges [31]. The two-level
coil (T-Coil) electrospinning apparatus was built with a high voltage power supply, metal collector,
helical coil, and plastic solution container, as shown in Figure 3a. The helical coil is partially immersed
in the polymer solution bath, and it rotates along the axis during the spinning. The T-Coil spinneret
is made by winding the second coil onto a normal coil (N-coil) with a spacer template to keep a
consistent coil pitch. The electrical power is supplied by immersing an electrode into the plastic
solution bath. With this setup, the effect of the secondary coil using FEM analysis was investigated,
as shown in Figure 3b. Interestingly, the electric field in the T-Coil is predominantly centralized on the
secondary coil rather than the primary coil, whereas that in the N-Coil is centralized on the primary
coil. The secondary coil enhances the electric field on its surface, inducing a reduction of threshold
voltage for jet initiation. In addition, the secondary coil provides an additional area for jet formation
on its surface, resulting in the electrospinning productivity increasing up to 170% compared to the
N-coil (N-coil productivity: 2.94 g·h−1, T-coil productivity: 8.1 g·h−1). These results highlight the
importance of the design of a novel electrospinning spinneret with regard to mass production with
high throughput.
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2.3. Rotary Cone as Electrospinning Spinneret

Lu et al. demonstrated a super-high-throughput electrospinning technique employing an
electriferous rotary cone as a spinneret [32]. This technique improved the productivity of nanofiber
fabrication up to 600 g·h−1. This achievement is remarkable as the typical productivity of single
nozzle electrospinning is in the range of 0.01–0.1 g·h−1 [26]. This electrospinning system has similar
components to a typical electrospinning apparatus except for the cone-type spinneret. Upon the injection
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of polymer solution into the cone, a droplet is formed and charged immediately. The charged polymer
droplet flows along the rotating surface of the cone under the coaction of gravity, the moment of inertia,
and the electric force. Once the liquid droplet reaches the edge of the cone, it starts to deform and stretch
out to the fiber structure. A number of jets are formed around the edge of the rotating cone as feeding
of the polymer solution continues, resulting in an increase of production rate. The spinning rate is high
enough to be applied to an industrial production process. It is notable that though this technique was
reported in 2010, the productivity is the highest gain among nanofiber production techniques so far.

2.4. Foam Based Needleless Electrospinning

Solution blow spinning which uses concentric nozzles and compressed gas also has attracted
attention in nanofiber fields [50–55]. The high pressure gas such as air, nitrogen, and argon is released
from the outer nozzle, and the polymer solution is ejected through the inner nozzle. This technique
has also been considered as an effective way to achieve a higher production rate than that of typical
electrospinning [55]. This process is kindred to the melt-blown technique. The polymer solution is
stretched by the co-flowing gas jet from the outer jet, leading to formation of a polymer nanofiber
structure. Similar to blow spinning, bubble spinning (which is named foam electrospinning) also uses
a gas. However, the gas is injected with the submerged nozzles in solution making bubbles, leading to
the possibility of fibers initiating from the bubble surface. This type of spinning using single or several
bubbles in a vast bath of solution has been presented in various reports [56–58].

An interesting approach, by Hwang et al., to exploit the foam of polymer solution has recently
exhibited improved productivity in Nafion nanofiber fabrication [45]. Nafion is a widely utilized
polymer in the field of electrolyte membranes owing to its high water-saturated proton conductivity
(0.1 S·cm−1), as well as its thermal, mechanical, and chemical stability [59]. Nafion has been engineered
in many different physical forms, e.g., bulk such as pellet, film, and dispersion in a mixed solution of
alcohol and water. Its nanofibrous structure has attracted much attention because it could improve
proton conductivity and subsequently, the performance in certain applications [60,61]. In most studies,
electrospun Nafion/polymer composite nanofibers formed by a single nozzle electrospinning have
been demonstrated [62]. However, the fabricated Nafion typically exhibited low purity and as a result,
low proton conductivity in its composite structure. Foam electrospinning addresses these issues by
using compressed gas, e.g., CO2, to form polymeric foams where multiple polymer jets are ejected from
the surface of the foam toward the collector. In the setup, a copper electrode is connected to a funnel to
supply electrical power to the polymer solution (Figure 4a). The applied electric field disturbs the
polymer solution foam formed by injected gas and as a consequence, multiple polymer jets are ejected
toward the collection plate directly, as shown in Figure 4b. The multiple jets led to a high production
rate of approximately 9 g·h−1

·m−2 which is far higher than that of single nozzle electrospinning for
Nafion nanofiber fabrication (typically 0.0014 g·h−1

·m−2). In addition, the purity of Nafion nanofiber
was about 98%, which has not been achieved with traditional electrospinning. The method was capable
of resolving both productivity and purity issues in Nafion nanofiber fabrication.
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3. The Use of Mechanical Force for Nanofiber Fabrication

Despite the simplicity and versatility of electrospinning, it has intrinsic limitations for making
nanofibers owing to the electrostatic repulsion force that counteracts the surface tension of the droplet.
It has recently been demonstrated that the electrical force can be replaced with a mechanical force to
fabricate nanofibers. The use of mechanical force overcomes the conventionally accepted limitations of
electrospinning, e.g., requirement for high electrical potential and electrically conductive targets to
drive the stretching-out of the droplets in the fiber elongation process. In contrast with electrospinning,
the use of mechanical force does not limit the type of polymers and solvents because their electrical
properties are no longer relevant. Furthermore, it avoids the excessive use of energy in production
contributing to high cost. In this section, the efforts on using another type of force than electrical force
to make high-quality nanofiber are discussed.

3.1. Handspinning

As an alternative to electrical force, Lee et al. developed the-so-called handspinning method [63].
It only relies on simple mechanical stretching forces instead of high electrical voltage during the
fabrication process of nanofiber, which is advantageous in reducing the high cost as well as excessive
energy use for fiber production. Figure 5 shows the setup of the handspinning apparatus. Nanofibers
are formed by simple attachment–detachment of two plates where polymer solution is sandwiched by
the plates, resulting in well-oriented nanofiber along a single axis. The nanofiber formation can be
controlled by varying the process parameters of pulling-away speed, pulling-away distance, and plate
area. The unique approach using the uniaxial stretching-out force offers a handle to control the internal
structure of nanofiber composites: carbon nanotube (CNT) was evenly distributed in a polymer fibrous
matrix minimizing its agglomeration, which is commonly observed in electrospinning. Furthermore,
CNTs are aligned along the direction of the pulling-out motion, which is quite challenging to achieve
with electrical force. Consequently, a controlled structure was integrated for the enhancement of
mechanical and thermal properties of the nanofiber composites. These observations highlight the
potential of mechanical force to fabricate a nanofibrous structure with controlled complexities which
can be directly related to the functional materials platform.
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Nature Publishing Group].
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3.2. Needle Spinning

Although handspinning offers many advantages, unevenly supplied polymer solution on pulling
plates leads to low size uniformity in the resulting nanofibers. This issue was addressed by changing
the plate to needle as a tool for drawing the polymer solution, the-so-called needle spinning [64].
Needle spinning is capable of achieving highly uniform nanofibers by supplying a certain amount of
polymer solution by generating a uniform meniscus on the needle tips. The process is illustrated with a
photograph of a home-built apparatus in Figure 6. By simply dipping a needle in the polymer solution
and drawing out the solution, a single nanofiber is readily fabricated. On multiple needles, a highly
regular shape of the meniscus at the tips of the different needles is realized. Processing parameters,
i.e., the pulling-away speed, pulling-away distance, needle size, and polymer concentration were
effective in controlling the size of the resulting nanofiber. Clear correlation between the nanofiber
diameter and processing parameters was observed: the nanofiber becomes thicker as both polymer
concentration and needle size increase, and it becomes thinner as both pulling-away speed and
pulling-away distance increase. The needle-spun nanofibers exhibited a smooth surface and uniformly
controlled diameter as shown in Figure 6. The length of nanofiber can be controlled up to the meter scale,
which is also a remarkable improvement of mechanical force-based spinning techniques. These studies
elucidate the fundamental principles for a mechanically driven nanofiber formation process, and show
an effective way to produce well-defined nanofiber with the desired dimension.
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Figure 6. The needle spinning apparatus, and SEM images of nanofibers fabricated from needles at
different locations in the same batch (scale bar = 2 µm). [Adapted with permission from 64. Copyright
(2018) MDPI].

3.3. Track Spinning

The drawing-based technique has been further improved towards a continuous fabrication process
using an automated single-step drawing system [65]. The process, called track spinning, is based on a
simple drawing method using two oppositely angled rotating tracks. The equipment consists of two
rotating tracks touching each other at the top, a solution dispenser located above the tracks, and a
collection rack located below the tracks (Figure 7a). Similar to handspinning and needle spinning,
the driving force to form nanofibers is a mechanical force, which allows a range of options for the
selection of polymer and solvent. Upon feeding the polymer solution by dispenser at the top of the
apparatus, fibers are continuously spun by mechanical drawing with the increase of the distance
between the tracks due to the geometry of the apparatus. The polymer solution is coated uniformly
over the surface of two tracks at the initial stage, and it is steadily stretched out across the gap between
the tracks around the third–fourth stage. Pulled-out fibers are subsequently solidified by solvent
evaporation as the fibers move down along the track. As this process is repeated by continuous rotation
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of the tracks, a large amount of fibers can be fabricated. The fabricated nanofibers are collected onto the
collection frame at the bottom. The size of the nanofibers is effectively controlled in a nanometer scale
with the processing parameters of the angle of the track, the vertical collection distance, and the track
speed. This approach maximizes the use of mechanical force capable of highly aligning nanofibers with
high throughput owing to its continuity. Furthermore, the setup can be easily modified: for example,
the size and texture of tracks improve the production rate and the feasibility to control the location of
drawing and therefore, the location of fibers (Figure 7d). As a proof of concept, poly(vinyl acetate)
and polyurethane nanofibers were fabricated with a diameter of about 500 nm and the length of
255 mm. Therefore, spinning with a mechanical force clearly proves the feasibility of mass production
of well-defined nanofibers, which have an impact in the field of nanofiber applications.
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Figure 7. (a) The setup for track spinning, (b) schematic illustration of continuous fiber formation,
(c) photographs of track spinning process with 8 cm wide tracks and of resulting aligned fibers, and (d)
photograph of a 3D spinning system with a patterned array of bristles on one track towards precise
location of fibers. [Adapted with permission from 65. Copyright (2019) American Chemical Society].

4. Structural and Architectural Regulations

Most researches conducted with typical electrospinning have demonstrated randomly oriented
nanofibers exhibiting a circular cross-section and smooth surface. To expand the applicability of
nanofibers, however, constructing particular architectures in two and even three dimensions with
structurally well-defined nanofibers is critical. For example, nanofiber patterns with controlled
alignment on a two- or three-dimensional substrate were demonstrated for certain purposes [66–69].
Specific surface morphologies with highly regulated fiber structures are often desirable [68,70–74].
In this section, recent unique demonstrations on controlling nanofiber morphology, alignment, pattern
formation, and constructing a three-dimensional structure with electrospinning are introduced.

4.1. Bipolar Pyroelectrospinning for the Formation of Nanofiber Arrays

As aforementioned, electrospun nanofiber is generally collected as a nonwoven type due to the
uncontrollable nature of jet formation, which limits its applicability. Enormous interest in controlling
the nanofiber deposition process has arisen to improve the performance in specific applications.
A number of studies dealt with patterning techniques with electrospun nanofiber, including precise
positioning, stacking, and orientation [75,76], selective deposition [77], and templated patterning [78].
These techniques provide significant impacts especially in the field of biomedical engineering, such as
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tissue engineering [79] and regenerative medicine [80]. These efforts have evolved to find an easy and
efficient method to achieve the desired pattern formation using electrospun nanofibers in high precision.

Recently, Grilli et al. invented bipolar pyroelectrospinning, which is capable of generating ordered
arrays of nanofibers by exploiting periodically poled lithium niobate (PPLN) as a substrate [81]. First,
PPLN crystal was patterned in a hexagonal shape, where ferroelectric domains are formed with
reversed polarization, achieved by a standard electric field poling onto a template sample defined
with photolithography. The optical microscopic image of hexagonal PPLN crystal pattern is shown in
Figure 8a. Heat is an important stimulus for this pattern: charges are homogeneously distributed on the
surface having the PPLN crystal patterns when the heating is off. In this state, only the crystal surface
exposed to the c ends has a spontaneous polarization state. On the opposite side from the PPLN crystal
side, a drop of polymer solution is formed on the metallic tip, similar to the typical electrospinning
process. When the heat is switched on to render the plate at a temperature of approximately 60 ◦C,
the charge state of the PPLN crystal pattern becomes different, resulting in a heat-induced pyroelectric
effect. As a result, the regions near the hexagons experience reversed polarization to exhibit an excess
of negative charges, and the hexagons exhibit an excess of positive charge. This bipolar electric
field patterns guide the location of the deposited nanofibers during electrospinning. If the ejected
nanofibers are positively charged, they effectively interact with the negatively charged area outside of
the hexagons and therefore, patterned nanofiber mat is formed. (Figure 8d). The resulting patterns
prove the validity of this technique to realize periodically aligned arrays.
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Figure 8. Schematic illustration of the bipolar pyroelectrospinning process. (a) Optical microscope
image of the periodically poled lithium niobate (PPLN) crystal plate, (b) the pyroelectrospinning
with heat-off and (c) with heat-on where the PPLN plate becomes charged. The polymer droplets
exhibit positive charges to deform into Taylor cone. (d) The ejected nanofibers collected on the region
surrounding the hexagons, and the SEM image of the resulting pattern array in the nanofiber mat.
[Adapted with permission from 81. Copyright (2019) American Chemical Society].

4.2. Near-Field Electrospinning to Construct Nanoarchitecture

The electrospun jet is highly uncontrollable due to the chaotic whipping jet formation, which makes
a randomly orientated nonwoven type nanofiber mat. To suppress the chaotic whipping jet formation
and to deposit nanofibers on a substrate with a desired pattern, the near-field electrospinning (NFES)
technique has been developed in recent years. NFES provides a straightforward and versatile means
to precisely control the location of nanofiber and therefore, to fabricate nanofiber patterns. It features a
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short tip-to-collector distance less than 3 mm, which leads to a reduction of bending instability of the
electrospun jet, and a lower voltage of several hundreds of volts is required. The first proof-of-concept
was demonstrated by Lin et al. in 2006 [82]. The NFES technique requires a relatively low voltage for
processing, and enables the fabrication of pattern arrays with excellent position control, while excessive
consumption of polymer solution can be minimized. Initially, it was employed to attain only 2D
structures; however, recently building a 3D structure has been extensively undertaken. The most use
of this method is for the layer-by-layer additive printing method [83]. Hutmacher et al. showed highly
ordered scaffold architecture using multilayer additive printing by spinning similar to NFES with
highly viscous polymer solution [84]. As a result, fibers with several micrometer dimension were
stacked to form the scaffold. Three dimensional architecture in nanometer dimension was presented
by Lee et al. in 2014 [85]. In this work, a pre-defined pattern on the conducting electrode guides the
location of spun nanofibers, which could however limit the expansion of its applicability. Another 3D
architecture, a hollow pottery shape, was fabricated by Kim et al. using the spontaneous coiling of
electrospun nanofiber, demonstrating a hollow cylindrical structure [86]. The a layer-by-layer additive
printing method with the NFES was successful in achieving the desired shapes, though a pre-defined
structure or specifically a pre-designed collector is required.

Recently, Cho et al. successfully fabricated nanofiber stacks built with high-resolution control
using the NFES technique [87] (Figure 9a). In their method, a high aspect ratio in a variety of
architectures such as curved nanowall, grid pattern, and nanobridge, was achieved without any pre-
designed collector because of the self-alignment behavior of the nanofibers. The self-alignment feature
was possible by the simple addition of salt, i.e., poly(ethylene oxide) (PEO)/sodium chloride (NaCl)
aqueous solution. When pure PEO solution is electrospun, the charge does not fully dissipate, leaving a
weak positive charge on nanofiber surface. The weak positive charge induces the repulsive interaction
in jet streams and as a consequence, stacking of nanofibers becomes challenging. On the other hand,
additional salt enhances the conductivity of the polymer solution, and the surface of the resultant
deposited nanofibers becomes negatively charged. The increase of the interaction between polymer
solution jet and deposited fibers leads to effective stacking of the nanofibers (Figure 9b). This approach
facilitated the fabrication of various nanoarchitectures including nanowalls, curved nanowalls, grids,
and nanobridges at the desired locations with pre-programmed X-Y stage motion of the spinneret,
and subsequent metal coating to enhance mechanical stability (Figure 9c).

4.3. Sequential Metal Deposition for Multilayered Nanofiber

Cross-section morphology control of nanofibers, e.g., fabrication of core-shell type or multilayered
nanofiber which can be utilized for a variety of applications, has been an attractive but challenging
issue [88–90]. Recently, an interesting facile fabrication approach for multilayered nanofiber was
demonstrated by Aydin et al. [91]. They fabricated strong, flexible, and centimeter- long nanowires
through multiple metal depositions on a polymeric nanofiber, as shown in Figure 10. Unlike a
conventional core-shell fiber formation method which is enabled by ejecting two polymer solutions
into one spinning tip, this method involves a physical vapor deposition (PVD), chemical vapor
deposition (CVD), and atomic layer deposition (ALD). First, electrospun nanofibers of poly(m-phenylene
isophthalamide) (PMIA) were collected on a spoked-drum collector for fabricating the aligned and
free-standing nanofibers. (Figure 10a) Then, the fibers were transferred onto a rectangular frame to
suspend them. Subsequently, the fixed nanofibers were coated with various functional metals or oxides
using CVD, ALD, and PVD. Fabricated nanofibers exhibited various cross-section images, i.e., round-,
oval-, and ribbon-shaped, controlled by the chamber humidity. (Figure 10b) This is due to the poor
solubility of PMIA in water inducing a phase separation in the jet when water molecules from the
atmosphere diffuse into the spinning jet. The number of layers were controlled by the number of
deposition cycles, which is clearly assured in Figure 10b. This method opens up the possibility to
finely control the internal structure of nanofibers, and therefore, eventually to achieve high structural
complexities in nanofibers.
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SEM images of of poly(m-phenylene isophthalamide (PMIA) nanofibers with various cross-sectional
structure by humidity control, and (c) layer-by-layer metal deposited PMIA nanofibers via atomic
layer deposition (ALD) and chemical vapor deposition (CVD). [Adapted with permission from 91.
Copyright (2019) American Chemical Society].
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4.4. Transformation of 2D Nanofiber Mat to 3D Object

Nanofiber-based 3D scaffolds have been considered as a material platform in tissue engineering as
they can be implemented to mimic the extracellular matrix (ECM) in native tissues. However, despite
the development of various useful fabrication techniques, building a three-dimensional structure with
nanofibers still remains a tough challenge. Widely utilized methods for transforming a 2D structure
into a 3D object are the folding, rolling, bending, cutting, and buckling of 2D objects [92–94]. Recently,
Jiang et al. reported the establishment of a 3D structure from 2D nanofiber mats of poly(ε-caprolactone)
using a gas flow to expand electrospun nanofiber along the fiber deposition direction [95–97]. With this
technique, the thickness and porosity in the highly ordered scaffold architecture were controlled.
These nanofiber-based 3D architectures consist of multilayers of aligned nanofibers where the layers
have gaps ranging from several micrometers to millimeters. Fabricated scaffolds have shown the
feasibility for utilization in tissue engineering [96]. More recently, the gas flow technique was further
developed to achieve a hierarchical assembly of nanofibers with pre-designed shapes having high
complexity [98]. The key process of the gas-assisted expansion technique is to fix one side of the 2D
nanofiber mat during the process, as presented in Figure 11a. Both processes include thermal treatment
at 85 ◦C for 1 s before the expansion step to selectively harden one side of the nanofiber mat. Depending
on the cutting shape of the 2D nanofiber mat, i.e., rectangle, triangle, half circle, and arch, and on the
position of thermal treatment, the 2D nanofiber mat was transformed into a cylinder, cone, sphere,
and hollow sphere, respectively, as shown in Figure 11b. Furthermore, changing the axis for rotation
during the process allowed the fiber alignment direction in the resulting 3D object to be controlled.
In the resulting materials, shape recovery upon compression was possible, and its porous and layered
structure effectively guided the organization of seeded cells, enabling a highly ordered artificial tissue.
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4.5. Yarn-Spinning

Although electrospun nanofibers have various unique and valuable properties, they are typically
known not to be sufficiently mechanically robust to replace common textiles. A few reports have
shown that individual electrospun nanofibers can exhibit a reasonable mechanical strength despite
their size in nanoscale [1,99,100], however, the final strength of the nanofiber mat is not enough to be
utilized practically. For actual applications, nanofiber mats need to be supported by nonwovens or
other substrates. Recently, Kim et al. demonstrated a yarn spinning technique to fabricate a nanofiber
based single-stand yarn by employing a dual-spinneret electrospinning process on a support wire
(Figure 12a) [101]. They used a funnel as a collector to wind the electrospun nanofiber onto the support
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wire, and the dual spinning nozzle for electrospinning. Simultaneously, the electrospun nanofibers
were collected as a yarn on the winder like a thread. The fabricated nanofiber yarn has a core-shell type
structure where the core is a conventional thread yarn, and the shell consists of electrospun nanofibers
with high density. In this technique, it is important to control the surface charge on the polymer
droplets formed by electrospinning, as positively and negatively charged electrospun nanofibers are
intermixed on the thread which is located in the funnel. This flexible yarn platform was further
implemented for hydrogen sensing by coating the yarn with sequential sputter depositions of Pd
and Pt. The fabricated metal-polymer composite single-strand yarn showed a wide detection range
from 4 to 0.0001% with long-term stability toward repeated exposure of high-concentration H2 (4%).
It also exhibited dramatically rapid sensing speed and strong mechanical bending strength, ensuring
the potential as a usable sensor platform. This approach is not complicated for fabricating a flexible
and free-standing single-stand yarn scaffold with high-density polymer nanofibers, but it provides
different functional core-shell (thread-nanofiber yarn) type fabrics with high flexibility, high surface
area, and open porosity.
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5. Closing Remarks and Outlook

Nanofibers have attracted tremendous technological interest, and related researches are rapidly
moving forward to exploit significant characteristics of nanofibers such as high porosity with excellent
pore interconnectivity between pores in mats, flexibility with reasonable strength, high surface-to-mass
ratio, and the ability to incorporate other materials into actual applications. However, their use in
industries have been still challenging due to the poor throughput and productivity of the current
fabrication processes, and the difficulties in regulating the structure, alignment, and orientation.
In the productivity perspective, electrospinning, one of the popular fabrication techniques, exhibits
productivity in the range of 0.01–0.1 g·h−1, and the principle for fiber formation does not allow the
realization of complex nanofiber structures or patterns. However, other approaches to resolve these
issues have recently been proposed. The most important issue is the increase of productivity. The use
of multiple nozzles can be the easiest way to do so; however, it brings several issues for processing,
and requires an increase of apparatus size, which also increases the cost of equipment as well as of the
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space. As an alternative, the use of an open spinneret system such as needleless spinning has been
shown. This system allows direct application of an electrical force to the liquid surface, generating
multiple jets and eventually, achieving an impact on productivity with up to 600 g·h−1. However,
it is typically conducted in an open system with a complicated setup requiring the control of many
different processing parameters. Consequently, the consistency of the nanofiber morphologies is
largely affected, and the complexity in the system negates its applicability in industry. Another issue
to have arisen in the spinning technique is the regulation of structure regulation with the control of
alignment and orientation. Uniquely designed, but complicated processes and specially outfitted
apparatus for patterning or constructing specific structure of nanofibers have been proposed; however,
they still suffer from low throughput. Finding an innovative and creative fabrication technique is still
ongoing in order to solve all the issues simultaneously to realize high-throughput and easy operation
and eventually, to bring the use of nanofibers to the real world. We anticipate that the currently
devoted efforts by a number of researchers will eventually bring advanced technologies into this field,
with regard to practical implementation in industrial applications.
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