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Abstract: In this work, hybrid filler systems consisting of multi-walled carbon nanotubes (MWCNTs)
and nano carbon black (nCB) were incorporated by melt mixing in low-density polyethylene (LDPE).
To hybrid systems a mixture of MWCNTs and nCB a mass ratio of 1:1 and 3:1 were used. The purpose
was to study if the synergistic effects can be achieved on tensile strength and electrical and thermal
conductivity. The dispersion state of carbon nanofillers in the LDPE matrix has been evaluated with
scanning electron microscopy. The melting and crystallization behavior of all nanocomposites was not
significantly influenced by the nanofillers. It was found that the embedding of both types of carbon
nanofillers into the LDPE matrix caused an increase in the value of Young’s modulus. The results of
electrical and thermal conductivity were compared to LDPE nanocomposites containing only nCB
or only MWCNTs presented in earlier work LDPE/MWCNTs. It was no synergistic effects of nCB
in multi-walled CNTs and nCB hybrid nanocomposites regarding mechanical properties, electrical
and thermal conductivity, and MWCNTs dispersion. Since LDPE/MWCNTs nanocomposites exhibit
higher electrical conductivity than LDPE/MWCNTs + nCB or LDPE/nCB nanocomposites at the same
nanofiller loading (wt.%), it confirms our earlier study that MWCNTs are a more efficient conductive
nanofiller. The presence of MWCNTs and their concentration in hybrid nanocomposites was mainly
responsible for the improvement of their thermal conductivity.

Keywords: low-density polyethylene nanocomposites; hybrid carbon nanofillers; carbon nanotubes;
nano carbon black; electrical conductivity; thermal conductivity

1. Introduction

It is well known that most of the polymeric materials exhibit electrically insulating properties.
Notwithstanding, electrostatic dissipative or conductive behavior is required for many applications,
i.e., antistatic housing applications, wire, and cable sheathing, or shielding against electromagnetic
interference [1]. Electrically conductive polymers, like polypyrrole (PPy) or polyaniline (PANI),
are found to be very expensive and relatively hard to process compared to that of other conventional
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polymers. Thus, a fairly common way in improving the electrical conductivity of the polymer
composites is the introduction of conductive fillers or nanofiller into the polymer matrix. Nevertheless,
the final properties of these (nano)composites are dependent on the content of (nano)filler. It is very
important to improve the electrical and thermal conductivity of the polymer matrix while maintaining
the balanced mechanical and processing properties. Wherein, a sharp transition from the insulating to
the conducting behavior of composites occurs when the filler or nanofiller content reaches a critical
value (so-called percolation threshold (ΦC) [2]), with only a slight increase in electrical conductivity at
the further increase in filler content, the improvement of mechanical properties is a function of not
only the share of nanoparticles, their proper distribution but also the effect on the morphology of the
polymer matrix [3,4].

For several dozen years, carbon black (CB) has been applied as a convenient and inexpensive
additive for thermoplastics and rubber materials in electrically conductive applications [5]. However,
the amount that is required to observe the formation of conductive pathways through the insulating
polymer matrices is much higher as compared to conductive fibrous fillers, like carbon nanotubes
(CNTs) [5], etc. Nevertheless, the high content of these fillers or nanofillers (ca. 10 wt.% [6]) might cause
the reduction of the other material properties like processability, gloss, and mechanical properties [1].
For this reason, CNTs are found to be very effective nanofillers in polymer matrices to obtain conductive
materials at very low loadings [7], which is due to their superior electrical properties combined
with the very high aspect ratio (AR), as high as 1000 for multi-walled carbon nanotubes (MWCNTs),
which enables percolation at much lower concentrations if compared to CB [1]. Recently, CNTs were
found to be excellent nanofillers for polymer-based (nano)composites not only to obtain antistatic
or electrically conductive polymers but also to prepare (nano)composites with enhanced mechanical
or other functional properties [4,8–13]. However, the price of CNTs, especially those which are not
defected, with high specific area and AR, is still too high for many industrial applications. The other
fillers, such as CB, carbon fibers (CFs) or carbon nanofibers (CNFs), and expanded graphite (EG),
have generally much lower price, but their percolation threshold in polymers is usually much higher
than that of the former ones. Therefore, the usage of the hybrid system of nanofillers in order to achieve
the greatest improvement at the lowest concentration, thus the lowest price, are of economic interest.
In such nanocomposites, the synergistic effects are desired, which means that the effect originating
from the usage of the hybrid system of nanofillers is greater than the summarized effects of individual
fillers [14,15] based on the percolation threshold of single fillers by adapting the excluded volume
approach can be applied to discern the synergy. It was observed that the significant improvement of
mechanical properties, electrical and thermal conductivity in polymer nanocomposites was dependent
on the interfacial interactions of both nanofillers (interfacial adhesion) and also their compositions,
i.e., the mass ratio of CNTs to CB and that higher ratios generally give rise to higher electrical
conductivity in polymer nanocomposites [16–22].

In this work, the results of our continuous research are presented related to the development of
new electrically conductive material based on hybrid carbon nanofillers, which can be used in cables
as semiconductive screens. Resistivity of such nanocomposite shall not exceed 1000 Ω·m. Our earlier
work was focused on low-density polyethylene (LDPE) nanocomposites containing MWCNTs and on
the hybrid system being a mixture of MWCNT and graphene nanoplatelets (GNPs) as a conducive
filler [16]. Therefore, in the present work one mixed nanofillers’ system consisting of MWCNTs and nCB,
thus combining a nanofiller with a fiber-like shape (1D) with a spherical shape filler (3D). A potential
synergistic effect of improving the functional properties of the hybrid LDPE nanocomposites resulting
from a combined network between both carbon nanofillers was expected. Therefore, the physical,
electrical, and thermal properties, the Stress-Strain behavior, and carbon nanofillers distribution in the
LDPE matrix were investigated.
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2. Materials and Methods

2.1. Materials

Low-density polyethylene (LDPE) (Malen E FGAN 23-D003, LyondellBasell, Germany) with a
density of 0.922 g/cm3 and melt flow rate (MFR 190 ◦C/2.16 kg) of 0.31 g/10 min has been used as
a polymer matrix in the obtained hybrid nanocomposites. The industrial thin multi-walled carbon
nanotubes (MWCNTs, Nanocyl® NC7000™) with a purity of 90% were delivered by Nanocyl SA
(Sambreville, Belgium). The catalytic Chemical Vapor Deposition (CCVD) process was used for their
synthesis. Multi-walled CNTs have an average diameter of 9.5 nm and length of 1.5 µm, density
1.75 g/cm3 [23], the surface area of 250–300 m2/g; electrical resistivity of 10−6 Ω·m. Carbon black
nanopowder (nCB) with the purity of >95% was purchased from US Research Nanomaterials, Inc.
(Houston, TX, USA). nCB have average particle size of 150 nm, specific surface area >700 m2/g, content
of ash: <3.2%, pH: 9.80, true density: 0.38 g/cm3 and resistivity of 30 × 10−3 Ω·m.

2.2. Sample Preparation

The processing conditions for the materials used in this study were established by the evaluation
of electrical resistivity measurements supported by scanning electron microscopy (SEM) analysis of
LDPE/MWCNTs nanocomposites [16]. Besides, the parameters used in this study have been discussed
in detail in the previous paper [16]. However, shortly: nanocomposites based on LDPE containing
nCB, or the hybrid system of MWCNTs/nCB has been melt blended using twin-screw extruder (LSM30,
Leistritz Laboextruder, Nuremberg, Germany) with closely occurring scrolls and interchangeable
mixing sections, (diameter: D = 34 mm, L/D ratio = 23) equipped with two gravimetric feeders,
a cooling bath, and a granulator. Three series of LDPE-based nanocomposites have been prepared:
(i) nanocomposites containing nCB with concentrations of 3, 5, 7, 10, and 20 wt.%; (ii) nanocomposites
containing hybrid system H1:1 being a mixture of MWCNTs and nCB in mass ratio 50:50, with the
total concentration of 3, 5, 7, 10, and 20 wt.%; and (iii) nanocomposites containing hybrid system
H3:1 being a mixture of MWCNTs and nCB in mass ratio 70:25 of MWCNTs and nCB, with the total
concentration of 3, 5, 7, 10, and 20 wt.%. Similarly, as previously [16], in the beginning, the masterbatch
(with the concentration of 20 wt.% of nanofiller/nanofillers) has been prepared which was then diluted
to lower concentrations of nanofillers in the LDPE matrix. The following parameters were determined
for extruding the masterbatch: feed zone: 20 ◦C, zone 1: 100 ◦C, zone 2: 170 ◦C, zone 3: 180 ◦C, zone 4:
190 ◦C, zone 5: 200 ◦C, zone 6: 210 ◦C, zone 7: 220 ◦C, and zone 8: 20 ◦C (nozzle). The rotational speed
of screws of 40 rpm for masterbatches and nanocomposites containing 5–10 wt.% of carbon nanofillers
and of 120 rpm for nanocomposites containing 1.5, 3 wt.% of MWCNT was used. Yield: 1.5 kg/h.

Subsequently, for mechanical, density, and thermal conductivity measurements the dumbbell
shape samples (type A3, PN-ISO 37) were obtained by injection molding using Boy 15 (Dr BOY GmbH
& Co., Neustadt-Fernthal, Germany) injection molding machine. The parameters of injection molding
were determined following the guidelines of PN-EN ISO 294-1: 2017 standard, and the melting points
of the materials determined from differential scanning calorimetry (DSC). The cut-out sections of the
samples were used for thermal analyses.

The nanocomposite samples for SEM analysis were cryofractured in liquid nitrogen and
subsequently coated in a vacuum with a thin gold film using thermal evaporation physical deposition
method to provide electric conductivity.

Samples for electrical conductivity measurements were formed at the temperature of 190 ◦C and
under pressure 5 bar (for 1 min) and 10 bar (for 1 min) by compression molding (Colin P200E, Dr COLLIN
GmbH, Ebersberg, Germany) to the form of polymer foils with the thickness of ~250 µm. The thickness
of thin foils was measured with a Micrometer Model No. 293–521 from Mitutoyo. Five measurements
were taken for each sample, with an experimental error of±0.001 mm. The thickness is an average value.
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2.3. Characterization Methods

The density of the nanocomposites was measured by using the Archimedes principle on a high
accuracy scale type AS made by Radwag (WPE 600C, Radom, Poland) at 23 ◦C, according to ISO 1183
standard. Before measurements, the hydrostatic balance was calibrated using standards of known
density. Measurements were repeated five times for each sample.

The melt flow index values (MFI) was used to study the influence of carbon nanofillers on the
melt viscosity of LDPE. The measurements were performed on a CEAST Melt Flow Indexer (Pianezza
TO, Italy) having a capillary with a diameter of 2.095 mm and a length of 8 mm. Tests were carried out
according to ISO 1133 standard at 190 ◦C and under a load of 5.0 kg.

Analysis of the Stress-Strain behavior of the samples was performed using Autograph AG-X plus
(Shimadzu, Duisburg, Germany) tensile testing machine equipped with a 1 kN Shimadzu load cell,
an optical extensometer, and the TRAPEZIUM X computer software. Tests were carried out at room
temperature with a grip distance of 20 m and using a constant crosshead speed of 5 mm/min. The values
of the tensile modulus, tensile strength, and elongation at break of the nanocomposites were determined
according to PN-EN ISO 527 standard. For each sample, five measurements were performed.

Scanning electron microscopy (SEM Hitachi SU-70, Tokyo, Japan) was used to analyze the
dispersion of nCB and the hybrid system of MWCNTs/nCB in the LDPE matrix.

The electrical conductivity of the prepared nanocomposites was estimated based on the volume
resistivity measurements which were performed according to the PN-EN ISO 3915 and PN-88/E-04405
standards [16]. Keithley Electrometer 6517A (Keithley Instruments, Inc., Cleveland, OH, USA) together
with a set of Keithley 8009 was used for conducting the measurements of the volume resistivity of the
1 mm thick nanocomposite films.

The thermal properties of the nanocomposites have been analyzed as follows:

- differential scanning calorimetry (DSC) measurements were carried out using a DSC 204 F1
Phoenix (Netzsch, Germany) instrument. Measurements were proceeded under heating-cooling
-the heating procedure in a temperature range from −25 ◦C to 200 ◦C under a nitrogen atmosphere
at a flow-rate of 50 mL/min. Both heating and cooling rates were 10 ◦C/min. The temperatures
and enthalpies of crystallization and melting were determined from first cooling and second
heating scans, respectively. The heat fusion has been estimated by the integration of the area
under normalized melting peak. The degree of crystallinity of the sample (Xc) was calculated
using the following equation:

Xc = ∆Hm/ ∆H0
m(1−ϕn) (1)

where ∆Hm is the melting enthalpy determined by DSC and ∆Ho
m (=293 J/g [24]) is the enthalpy of

melting of fully crystalline PE, and ϕn is a weight content of nanofiller.
- thermo-oxidative stability of the pure LDPE and its nanocomposites was tested on the

thermogravimetric analyzer (TGA 92-16.18 Setaram, Caluire-et-Cuire, France) in the temperature
range from in the temperature range of 20–700 ◦C at the heating rate of 10 ◦C/min and under
20 L/min of synthetic air (N2:O2 = 80:20 vol. %).

- the thermal conductivity of the neat LDPE and nanocomposites was determined using the
transient plane source (TPS) technique (Hot Disk TPS 2500, Uppsala, Sweden), and the Hot
Disk thermal constants analyzer. The measurements were performed according to ISO 22007-2.
Three tests were conducted, and the mean values were reported for each sample.

3. Results and Discussion

3.1. Physical Properties and Stress–Strain Behavior of the LDPE Nanocomposites

The influences of carbon nanofiller type and loading on density, melt flow index and tensile
properties of the fabricated nanocomposites are shown in Table 1. The experimental density of
nanocomposites was found to be slightly higher than the theoretical ones calculated by using the
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mixing rule. The addition of carbon nanofillers to the LDPE matrix affected the melt flow index
(MFI). In our earlier study, we have observed a significant influence of MWCNTs on the rheological
properties of LDPE/MWCNTs nanocomposites [16]. Their addition resulted in a significant increase
in melt viscosity with the increase of CNTs loading. This increase of melt viscosity is a result of the
existence of interconnected or network structures formed as a result of CNT-CNT and CNT polymer
interactions [25]. As the content of MWCNTs increases, the LDPE-based hybrid nanocomposites
showed lower values of the MFI because of the increase of their melt viscosity. In the case of LDPE/nCB
nanocomposites with a lower nCB content (≤7 wt.%), a slight increase in the values of MFI was
observed. The nanocomposites containing 20 wt.% of carbon nanofiller do not flow at 190 ◦C and MFI
values were not able to evaluate.

Table 1. Physical properties of the neat low-density polyethylene (LDPE) and LDPE-based nanocomposites.

Sample
Carbon Nanofiller

Content dt d
MFI

(190 ◦C/5 kg) E σm εb
MWCT nCB

wt.% wt.% g/cm3 g/cm3 g/10 min MPa MPa %

LDPE - - 0.924 0.925 1.44 182.17 ± 10.12 22.93 ± 0.54 58.54 ± 2.74
LDPE/3H 1:1 1.5 1.5 0.937 0.931 1.41 256.90 ± 17.87 20.71 ± 0.16 64.23 ± 10.74
LDPE/5H 1:1 2.5 2.5 0.947 0.955 1.39 244.32 ± 20.98 19.39 ± 0.38 54.90 ± 9.93
LDPE/7H 1:1 3.5 3.5 0.956 0.961 1.06 279.75 ± 23.06 18.63 ± 0.17 56.59 ± 4.77
LDPE/10H 1:1 5 5 0.969 0.976 0.71 297.99 ± 21.17 17.60 ± 0.64 49.97 ± 4.04
LDPE/20H 1:1 10 10 1.014 0.998 NF 595.22 ± 47.43 17.89 ± 0.07 43.09 ± 1.66
LDPE/3H 3:1 2.25 0.75 0.938 0.932 0.781 298.42 ± 26.60 20.63 ± 0.14 61.33 ± 6.41
LDPE/5H 3:1 3.75 1.25 0.948 0.955 0.55 267.10 ± 16.21 18.94 ± 0.51 54.39 ± 5.60
LDPE/7H 3:1 5.25 1.75 0.959 0.965 0.29 266.23 ± 35.47 18.34 ± 0.15 60.63 ± 10.24
LDPE/10H 3:1 7.5 2.5 0.972 0.979 0.45 301.32 ± 28.71 16.88 ± 0.47 48.56 ± 7.48
LDPE/20H 3:1 15 5 1.021 1.007 NF 576.62 ± 58.23 19.75 ± 0.11 20.12 ± 4.19
LDPE/3nCB - 3 0.907 0.942 1.48 191.48 ± 12.32 19.58 ± 0.50 64.74 ± 4.08
LDPE/5nCB - 5 0.897 0.950 1.53 192.32 ± 19.68 19.33 ± 0.50 61.12 ± 9.10
LDPE/7nCB - 7 0.886 0.956 1.50 197.31 ± 16.68 19.25 ± 0.56 55.87 ± 5.52

LDPE/10nCB - 10 0.870 0.966 1.37 230.78 ± 13.98 21.85 ± 0.85 58.74 ± 8.41
LDPE/20nCB - 20 0.825 0.876 NF 412.52 ± 14.21 19.92 ± 0.51 44.92 ± 3.81

dt, d—density calculated theoretically and measured at 23 ◦C respectively; MFI—melt flow index; NF—sample did
not flow in these conditions; E—Young’s modulus; σm—tensile strength; εb—strain at break.

Figure 1 shows the representative stress-strain curves for neat LDPE and its nanocomposites.
In Table 1 are presented the values of the Young’s modulus, tensile strength, and strain at break
with their error bars (at 95 % confidence). It was found that the embedding of both types of carbon
nanofillers into the LDPE matrix caused an increase in the value of Young’s modulus. Especially in the
case of nanocomposites with the highest concentration of nanofillers (20 wt.%), a high stiffness can be
observed. In the case of hybrid nanocomposites with 20 wt.% of carbon nanofillers, the Young’s modulus
increased about threefold in comparison to the neat LDPE. Similarly, in the case of nanocomposites
with nCB, an increase in Young’s modulus values was visible. However, comparing the results for
nanocomposites with the same mass loading of nanoparticles, higher values of Young’s modulus were
obtained for hybrid nanocomposites. Along with the increase of carbon nanoparticles’ concentration,
the decrease in tensile strength for all nanocomposites was observed. Nanocomposites containing only
nCB nanoparticles have slightly lower values of tensile strength and strain at break in comparison to
the neat LDPE. The values of tensile strength at the same loading for hybrid LDPE nanocomposites
are comparable in the error bars. At the same time, the values of strain at break for LDPE/H1:1 and
LDPE/H3:1 nanocomposites with loading below 10 wt.% are within error bars, close to the value for
neat LDPE, but at higher loading decreases. As shown in Table 1, a significant decrease of stress at
break was observed for nanocomposites at the highest loading of carbon nanofillers. These results
confirms our previous study of LDPE/MWCNTs [16]. The tensile strength of nanocomposites depends
on many factors, among which the interphase adhesion between the reinforcements and the matrix,
as well as the dispersion state, predominate.
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Figure 1. Representative stress-strain curves for hybrid nanocomposites LDPE/H1:1 (a), LDPE/H3:1 (b),
and for LDPE/nCB (c) nanocomposites.

The SEM analysis (Figures 2 and 3) indicated that both of the used carbon nanofillers are rather
homogeneously dispersed in the LDPE matrix but also at higher concentrations the agglomerates of
MWCNTS and nCB are incidentally present. Experimental and theoretical studies of the mechanical and
electrical percolation in CNTs/polymer nanocomposites have shown that their tensile strength weakens
at high filler loading, due to the aggregation of nanofillers and stress concentration, while the tensile
modulus and electrical conductivity improve upon increasing of CNTs loading [26–28]. The investigated
here LDPE nanocomposites shows such behaviour. The tensile strength and strain at break of the hybrid
nanocomposites weakness with the increasing of hybrid nanofiller wt.% loading in LDPE, probably
due to the increase of the CNT + nCB network density or to the aggregation of nanoparticles and stress
concentration. Whereas the tensile modulus and electrical conductivity (see Figure 4) increase with the
hybrid CNTs/nCB system or nCB loading. Besides, if in the nanocomposite, the high interfacial area
and the strong interfacial interaction between nanofillers and polymer matrix occur, the third phase as
interphase is formed [28,29]. This interphase significantly affects the mechanical properties of polymer
nanocomposites. In investigated hybrid and nCB nanocomposites, we do not use functionalized carbon
nanofillers, which could be responsible for enhancement of interaction between them and matrix
molecules. A week interaction and poor wettability of used carbon nanostructures (MWCNTs, nCB)
systems in LDPE may play an important role in reducing polymer-wrapping around multi-walled
CNTs and nCB influencing on their tensile properties and electrical and thermal conductivity. The used
thin and short MWCNTs have aspect ratio (L/D) of ~157, and nCB particles spherical in shape (average
diameter 150 nm) have aspect ratio ≈ 1. Except week interaction/adhesion of CNTs (nCB) and LDPE
matrix, the aspect ratio of the used carbon nanostructures can be responsible for observed difference
in tensile strength of the resulting nanocomposites with increasing of their loading, especially at the
loading of 10 wt.%. Usually, the high aspect ratio of CNTs provide the nanofillers network in polymer
nanocomposites at very low loading [26].
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Figure 4. The electrical conductivity vs. nanofiller content (wt.%) of LDPE/multi-walled carbon
nanotubes (MWCNTs) [23], LDPE/nCB, LDPE/H1:1 (MWCNTs:nCB), and LDPE/H3:1 (MWCNTs:nCB)
nanocomposites.

3.2. Morphological Study

The degree of dispersion of the two MWCNT/nCB hybrid systems, which differ in a mass ratio
(1:1 and 3:1), in the LDPE matrix was evaluated by SEM analysis. The representative SEM images
of LDPE nanocomposites are presented in Figures 2 and 3. In general, the MWCNTs and carbon
black often tend to bundle together and form some agglomeration due to their high van der Waals
attraction between the individual tubes/particles. It can be seen from Figure 2a,b, that at lower loading
level (5 wt.%, above electrical percolation threshold—Figure 4) for both hybrid systems (H1:1 and
H3:1) the MWCNTs and nCB nanoparticles are randomly dispersed into LDPE matrix. In hybrid
nanocomposites, small agglomerates of entangled CNTs dispersed between individual nanotubes
and CB nanoparticles are visible. At higher loading of the CNTs + nCB hybrid system, CNTs forms
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interconnected conductive network-like structures responsible for electrical conductivity (Figure 4)
of these nanocomposites. At lower and higher loading levels, few bigger agglomerates of MWCNTs
in the LDPE matrix were also observed (Figures 2b and 3c). These agglomerates have a bigger size
for hybrid nanocomposites containing MWCNTs and nCB in a mass ratio of 3:1. Figure 2e,f and
Figure 3e,f show the effects of nCB particles content on the microstructure and morphology of the
LDPE nanocomposites. Nearly spherical in shape nCB particles are uniformly embedded into the
LDPE matrix. Most of them are separated without creating visible connecting chain-like networking
structures, which are characteristic for conductive composites filled with CB. Besides, small inclusions
with sizes bigger than 150 nm nCB are visible at higher magnification, this can indicate that some of
them are agglomerated.

3.3. Electrical Properties

Figure 4 presents the electrical conductivity data for all prepared nanocomposites as a function
of wt.% concentration of carbon nanofillers. The electrical conductivity of the nanocomposites
containing the hybrid nanofillers’ system (MWCNTs + nCB) dispersed in the LDPE was compared
with the electrical conductivity of LDPE nanocomposites containing only nCB or only MWCNTs [16].
Several key factors that can affect the electrical conductivity can be found, i.e., the appropriate degree
of nanofillers’ distribution (dispersion), which due to the small size and high aspect ratio (AR), tend to
form agglomerates or aggregates [30]. As previously described [16], MWCNTs cause a significant
increase in electrical conductivity for about thirteen orders of magnitude with only 1.5 wt.% (percolation
threshold Φc) (Figure 4), which is a much lower value than those presented by other groups in PE [31,32].
Only, Du et al. [33] obtained for nanocomposites based on HDPE containing MWCNTs, the percolation
threshold of about 0.15 vol. % (0.32 wt.%). However, they prepared HDPE/MWCNTs composites with
a segregated network structure by alcohol-assisted dispersion and hot-pressing. Whereas, above the
percolation threshold, only a slight increase in the value of electrical conductivity was observed along
with a further increase of MWCNTs content. On the other hand, the incorporation of nCB did not
significantly improve the electrical conductivity. Only the incorporation of 20 wt.% of nCB into LDPE
enabled to observe the increase in the value of electrical conductivity for about six orders of magnitude.
In general, to achieve percolation threshold, conventional conductive fillers such as CB, exfoliated
graphite, and carbon fibers that are usually micro-meter scale materials, need to be added in content
as high as 10–50 wt.%, resulting in a composite with poor mechanical properties and a high density.
Therefore, herein, authors decided to apply carbon black nanopowder, which in intension would avoid
the above-mentioned perturbances. However, nCB didn’t provide such a sharp increase in electrical
conductivity at a lower concentration, probably due to the insufficiently large surface area or its surface
properties. Such observations are in the agreement with the study of Lee et al. [34], who observed that
when the CB content was less than 15 wt.%, the composites remained insulators, whereas increasing CB
content resulted in decreasing resistivity. Besides, Wang et al. [35], obtained the percolation threshold at
ca. 22 wt.% of CB in HDPE/CB nanocomposites prepared by melt mixing, although the final resistivity
after the formation of a percolative path was about 102 Ω·m. Referring to the percolation theory [36–38],
the electrical conductivity of the final composite material strongly depends on the filler concentration.
Moreover, the percolation threshold of composites/nanocomposites is greatly affected by the geometry
of conductive fillers. Fillers with elongated geometry, (1D-type, such as fibers, tubes, etc.) can be
used to achieve a relatively low value of percolation threshold due to their higher aspect ratio if
compared to conductive particles with the sphere, ellipsoid, or other irregular shapes. For samples,
containing a hybrid system of MWCNTs and nCB, the sharp increase in conductivity was observed at
ca. 2.5 wt.% of the total nanofillers’ content. Since LDPE/MWCNTs nanocomposites exhibit higher
electrical conductivity than LDPE/nCB or LDPE/MWCNTs + nCB nanocomposites with the same
total nanofiller concentration, it implies that MWCNTs are a more efficient conductive nanofiller.
This is in the agreement with our previous observations made for LDPE/MWCNTs + GNPs hybrid
nanocomposites [16]. Similarly, as in the case of LDPE/MWCNTs + GNPs hybrid nanocomposites,



Polymers 2020, 12, 1356 10 of 17

the subsequent dilutions of the masterbatch (20 wt.%) to 10, 7, 5, and finally to 3 wt.%, (MWCNTs
+ nCB) show that the hybrids with the ratio of 3:1 MWCNTs:nCB demonstrated higher values of
electrical conductivities in comparison to the one with the ratio of 1:1. Moreover, both series of hybrids
exhibited values of electrical conductivity in between the values obtained for LDPE/MWCNTs and
LDPE/nCB. For example, nanocomposites filled with 10 wt.% of the hybrid of MWCNTs and nCB
with the mass ratio 3:1 and 1:1 have a mean electrical conductivity of 2.43 and 0.20 S/m, respectively.
While the nanocomposites filled with 10 wt.% of MWCNTs and nCB have a mean electrical conductivity
of 385 S/m and 10−14 S/m. Therefore, one can explain such behavior following the rule of mixtures.
Unfortunately, one cannot observe the synergistic improvement in electrical conductivity in the case
of the prepared hybrid. One can only make a conclusion, that according to the applicative character
of CB in cable industry, the incorporation of MWCNTs, thus creating the hybrid of MWCNTs/nCB,
might provide greater enhancement in electrical conductivity that CB itself, thus lowering the total
content of nanofillers, final price of composites material without deterioration of processing and
mechanical properties.

3.4. Thermal Properties

The thermal properties, by means of non-isothermal crystallization behavior, thermo-oxidative
stability, and thermal conductivity of neat LDPE, “single” nanocomposites of LDPE/nCB, and hybrid
nanocomposites of LDPE/MWCNT + nCB were studied. The DSC thermograms recorded during
second heating and cooling in the temperature range of −25 to 200 ◦C are presented in Figure 5.
Additionally, Table 2 summarizes phase transition temperatures and corresponding enthalpies of
melting and crystallization, degree of crystallinity, and temperatures corresponding to 5 and 10 %
of mass loss of LDPE-based nanocomposites during heating in an oxidizing atmosphere. From the
second heating curves (Figure 5a,c,e) can be found that neat LDPE undergoes crystal melting at
112 ◦C, while the values of melting points (Tm) within all three series of nanocomposites, i.e., hybrids
at the mass ratios of 1:1 and 3:1 and nCB, did not change much (changes within 2 ◦C). Similarly,
the cooling curves show that neat LDPE crystallized at 92 ◦C and the incorporation of nanofillers did
not significantly affect the crystallization temperatures (Tc) (Figure 5b,d,f). Moreover, the incorporation
of carbon nanofillers caused almost no changes in the values of the degree of crystallinity (Xc, Table 2).
The observed changes in Xc were within the limit of measurement error.

The CNTs and CB usually paly a role of nucleating agents in accelerating crystallization in
various CNTs (CB)/polymer systems [25,39,40]. However, CNTs exhibits different effects on chain
mobility in different polymers. It was also reported that CNTs can generate also anti-nucleation effects,
and super-nucleation effects on polymer matrices [41–43].

For the LDPE nanocomposites system investigated here, the used MWCNTs and/or nCB did not
induce nucleation and increase crystallization rate of LDPE as nucleating agent did. Probably, due to
the low value of surface energy and a poor wettability of CNTs and nCB, it is difficult for them to
induce aggregation of polymer chains on their surfaces [44]. On the other hand, their presence in the
molten LDPE can also hinder rearrangement of polymeric chains during crystallization.

Polymer materials are generally used in an air environment. Therefore, from a practical application
view, it is much more important to evaluate the thermal properties of materials in the air than in
an inert atmosphere [38]. The thermal degradation behavior of LDPE-based nanocomposites in an
oxidizing atmosphere is present in Figure 6, and the detailed data are summarized in Table 2. In general,
the incorporation of carbon nanofillers, like CB or CNTs can improve thermal and thermo-oxidative
stability of different polymer matrices [5,10,18,25,45–48]. As can be seen in Figure 6, the neat LDPE
and nanocomposites in air atmosphere decompose in multistep process. It is well known that the
oxidation of PE is a free radical-initiated autocatalytic chain reaction [48,49]. This reaction is slow
at the beginning and accelerates with increasing concentration of the hydroperoxides. A process of
oxidative degradation of LDPE and nanocomposites begins at temperature above 200 ◦C, when at first
slightly increase of mass due to the oxygen absorption followed by the hydroperoxides formation
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was observed. Then at higher temperatures the clearly visible higher mass loss of the LDPE and
nanocomposites attributed to decomposition of the accumulated hydroperoxides. Hydroperoxides
decompose fast to reactive oxy and hydroxyl radicals, which are more reactive than peroxy radicals,
and lead to the branching of the reaction chain, i.e., auto-acceleration of the degradation process [48].
β-scission of oxy macro-radicals yields carbonyl groups and other free alkyl radicals [48–51].
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Table 2. The DSC and thermogravimetric analysis (TGA) data for the LDPE based nanocomposites.

Sample Tm
◦C

∆Hm
J/g

Tc
◦C

∆Hc
J/g

Xc
%

T10%
◦C

T50%
◦C

LDPE 112 131.1 92 130.5 45.4 351 418
LDPE/3H 1:1 112 128.5 94 127.3 45.8 436 461
LDPE/5H 1:1 111 121.4 95 120.4 44.2 429 463
LDPE/7H 1:1 111 120.4 95 120.5 44.8 432 469

LDPE/10H 1:1 110 112.5 94 112.9 43.2 428 471
LDPE/20H 1:1 110 100.2 94 101.0 43.4 419 472
LDPE/3H 3:1 111 126.4 95 127.1 45.1 434 462
LDPE/5H 3:1 112 118.8 93 117.8 44.2 424 469
LDPE/7H 3:1 111 114.8 93 114.0 44.1 415 456

LDPE/10H 3:1 110 99.6 93 98.9 43.0 426 472
LDPE/20H 3:1 112 129.8 94 128.9 44.9 441 476
LDPE/3nCB 111 120.7 94 120.5 41.7 370 430
LDPE/5nCB 111 122.4 94 122.0 42.3 368 422
LDPE/7nCB 111 121.7 93 120.5 42.1 382 445
LDPE/10nCB 110 101.5 90 99.8 43.9 409 436
LDPE/20nCB 112 131.1 92 130.5 45.4 - -

Tm—melting temperature; Tc—crystallization temperature; ∆Hm and ∆Hc—enthalpies of melting and crystallization,
respectively; Xc—degree of crystallinity, T10%—the temperature of 10 % mass loss, T50%—temperature of 50 %
mass loss.
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Mass loss and derivative of mass loss curves (Figure 6) of nanocomposites showed that the first steps
of multiple decomposition of LDPE are strongly influenced by the presence of nCB and CNTs. Notably,
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thermal characteristic parameters (T10% and T50%) shifted significantly to the higher temperatures by
incorporation of nCB, and they increase along with the increase of nCB content. Similar behavior
was previously observed by Wen et al. [52] in polypropylene (PP)/CB nanocomposites. For which
it was found that the peroxy radicals could be efficiency trapped by CB at elevated temperatures to
form a gelled-ball crosslinked network, which was responsible for the improvement thermal stability
and flame retardancy of PP [52]. However, even more, the pronounced effect was observed when
MWCNTs were incorporated into the system. Among all of the obtained series of nanocomposites,
system 3:1 of MWCNTs: CB exhibited the highest values of T10% and T50%. These results indicate that
the incorporation of a hybrid system of carbon nanofillers is beneficiary from the point of view of the
thermo-oxidative stability enhancement, which is in the agreement with our observations made for
LDPE/MWCNT + GNP hybrid nanocomposites [16] and other polymer nanocomposites reinforced
with the addition of CNTs [25]. The antioxidative activity of CNTs is a result of their radical scavenging
ability [53]. The obtained here results confirm the antioxidant activity of the MWCNTs in preventing
the oxidation of the polyethylene, which is beneficial for nanocomposites’ final properties.

The observations made for the electrical conductivity enhancement are in good agreement with
the thermal conductivity results. The thermal conductivity results of the prepared nanocomposites
based on LDPE, measured by the hot disc method, are depicted in Figure 7. The thermal conductivity
of all nanocomposites was found to increase with the addition of conductive particles thanks to the
large thermal conductivity of the fillers [12,54,55]. Similarly, as in the case of hybrid nanocomposites
based on LDPE containing MWCNT and GNPs [16], the incorporation of MWCNTs in the polymer
matrix generated greater improvement in thermal conductivity in comparison to nCB. The lowest
values of thermal conductivities were reported when nCB were mixed with the matrix, while the
hybrid consisted of MWCNTs and nCB exhibited the values of thermal conductivity in between those
obtained for “single” nanocomposite. Moreover, in the hybrid systems, it was observed, that the
more MWCNTs were incorporated (hybrid 3:1), the higher values of thermal conductivity (Figure 7).
One can, therefore, conclude, that this results from the rule of mixture, and unfortunately, no synergistic
effect was observed. There are only a few studies that deal with the usage of a hybrid system of CNTs
and CB to improve the thermal conductivity of the final materials [38,56], but none of those deals with
LDPE-based nanocomposites. For instance, Song et al. [56] in the natural rubber nanocomposites filled
with hybrid fillers of modified MWCNTs and CB, observed that the thermal conductivity of hybrid
composites was improved by an average of 5.8% with 1.5 phr (phr—parts per hundred rubber) of
modified MWCNTs and 40 phr of CB filled. A three-dimensional heat conduction network composed
of hydroxyl CNTs and CB contributed to the good properties. The thermal conductivity of the hybrid
composites increased as the temperature has risen. In turn, Hong et al. [45] observed that the thermal
conductivities of the poly(dimethylsiloxane) (PDMS) based composites containing nano-sized carbon
black (nCB) and carbon nanotubes (CNTs), linearly increased with filler concentration. The results
present in this study are in the agreement with our previous paper [16] and with the observations made
by Hong et al. [45] and suggest that CNTs are more effective in increasing the thermal conductivity of
the polymer nanocomposites. In other words, the amount of nCB or GNPs [16] to enhance the thermal
conductivity can be significantly reduced by the usage of a small number of CNTs. This result originates
from the fact that the 1D-type nanofillers (MWCNTs) with a high aspect ratio and high electrical
conductivity facilitates the percolation at lower concentrations. Since the thermal conductivity of the
materials is achieved by both mobile electrons for conductors and phonons for insulators, the addition
of highly conductive CNTs can greatly increase the thermal conductivity. This may be particularly
important in the case of the cable industry, where it will allow to reduce the amount of carbon black to
obtain electrical and thermal conductivity with balanced processing and mechanical properties.
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LDPE/H1:1 (MWCNTs:nCB), and LDPE/H3:1 (MWCNTs:nCB) nanocomposites.

4. Conclusions

Mixtures of MWCNTs and nCB in mass ratios of 1:1 or 3:1 were introduced into the LDPE
matrix using a melt compounding method. In all mixtures, good dispersion and distribution of the
carbon nanofillers were observed with SEM. The good dispersion of the carbon nanofillers mainly
contributed to the higher Young modulus, which increased with the increases of carbon nanofillers.
However, the addition of carbon nanofillers into LDPE caused a decrease in the tensile strength
of the resultant nanocomposites with an increase in their concentration. The electrical and thermal
conductivity of the obtained MWCNT + nCB hybrid nanocomposites were compared with results
obtained for nanocomposites containing only nCB or only MWCNTs. No additional improvement of
the nanocomposites mechanical and electrical and thermal properties was observed with addition of
nCB in multiwalled CNTs and nCB hybrid nanocomposites when compared to LDPE/MWNCTs in
terms of tensile strength, electrical and thermal conductivity, indicating no synergistic effect between
nCB and MWCNTs. Nanocomposites with only MWCNTs showed higher electrical conductivity than
nanocomposites containing only nCB or the mixed MWCNTs/nCB hybrid systems at the same total
mass loading. This confirms that MWCNTs are a more efficient conductive nanofiller. Also, the thermal
conductivity of hybrid composites was found to increase with the addition of MWCNTs in the hybrid
ratio. TGA shows that the incorporation of a hybrid system of carbon nanofillers is beneficial from the
point of view of the thermo-oxidative stability improvement of LDPE nanocomposites.
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