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Abstract: Using environmentally friendly materials in the technological process of bottle production
fits perfectly into the idea of sustainable development. The use of natural raw materials as well as
conscious energy consumption are strategic aspects that should be considered in order to improve
the effectiveness of the bottle moulding process. This paper presents a new and structured approach
to the analysis of uncertainty and sensitivity in life cycle assessment, one developed in order to
support the design process of environmentally friendly food packaging materials. With regard to this
“probabilistic” approach to life cycle assessment, results are expressed as ranges of environmental
impacts, and alternative solutions are developed while offering the concept of input uncertainty and
the effect thereof on the final result. This approach includes: (1) the evaluation of the quality of inputs
(represented by the origin matrix); (2) the reliability of results and (3) the uncertainty of results (the
Monte Carlo method). The use of the methodology is illustrated based on an experiment conducted
with real data from the technological process of bottle production. The results provide insight into
the uncertainty of life cycle assessment indicators regarding global warming, acidification and the
use of arable fields and farmland.

Keywords: PLA bottle; bio-based and biodegradable polymers; life cycle assessment; environmental
impact; Monte Carlo

1. Introduction

The point of reference used in the uncertainty assessment of life cycle assessment (LCA) results is
the environmental evaluation of a life cycle, treated as a certain measurement technique based on a given
methodology [1]. Its application leads to the “measurement” of two basic elements: environmental
aspects that occur in the life cycles of products and subsequent environmental impacts [1–4].

Never can a single value without an uncertainty range represent the true value of an environmental
impact because each measurement has uncertainty [5,6]. The process of producing bottles made
of polylactide adopted in this paper focuses on the assessment of six technological operations,
and concerns primarily the consumption of electricity, water and CO2 emissions. The implementation
of biodegradable polymers into the production process is the result of increasing amounts of residual
polymer waste. For years, plastics were produced to obtain durable, environmentally sensitive
products. A change in strategy seeking alternative sources of materials has resulted in the development
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of biodegradable plastics. Therefore, research based on the LCA technique, presenting the potential
size of environmental impacts, should also include the impact of uncertainty and the variability of
results [7]. This approach is proposed by Lloyd and Riesa [8] at the stage of modeling the uncertainty
of characterization test results.

Parameter uncertainty refers to the value of a parameter such as energy or raw material found
in processes or products. In contrast, the uncertainty of the model refers to the specific model used,
such as the model developed by ReCiPe for life cycle impact assessment (LCIA) by converting
emissions and the extraction of resources into a limited number of environmental impact assessments
using so-called characterizing factors [9].

The uncertainty analysis of life cycle inventory (LCI) data sets can be divided into quantitative
and semi-quantitative analysis. The first is based on statistical methods for the quantitative
uncertainty assessment of the LCI database [10–13], and the second on the data quality indicator (DQI)
method [9,14–17].

Among the methods of semi-quantitative uncertainty analysis, it is worth considering the DQI
semi-quantitative approach based on a qualitative assessment of data quality due to its widespread
use in the field of LCA. The DQI approach can be divided into qualitative and semi-quantitative
approaches. A qualitative approach evaluates data quality in terms of qualitative descriptors, such as
good, fair and poor data quality, which depends on a rather subjective assessment. Usually, the method
is subject to a qualitative approach [18,19]. The semi-quantitative approach adopts a numerical rating
system, and the assigned quality rating is processed to obtain a single data quality score based on a
probability distribution [20,21].

Sonnemann et al. [22] conducted a quantitative analysis of data uncertainty based on the Monte
Carlo simulation, indicating its positive cognitive features. Maurice et al. [12] pointed out that
quantitative uncertainty analysis is too time consuming. Lloyd and Ries, however, concluded that
current quantitative uncertainty analysis does not address significant factors contributing to the
uncertainty of LCA results due to the complexity of LCA models [8]. In their research, they also
highlighted the problem associated with the long-term and time-consuming process of collecting
input data from outside the data library, for example, Ecoinvent available in specific software, e.g.,
SimaPro or Gabi, which contributes to frequent references to literature. This is one of the reasons why
semi-quantitative uncertainty analysis has been used in many studies [9,14,17].

The term uncertainty has a number of interpretations, including those that exclude related terms
such as variability and sensitivity [23]. According to the international dictionary of metrological terms,
uncertainty is a parameter associated with a measurement result characterizing the scatter of values
which can reasonably be attributed to the measured quantity [24,25]. Uncertainty is characterized by a
scatter of values (interval size), within which it is possible to place the measured value with a satisfying
probability [26,27]. In the case of LCA, uncertainty is contained in the results of “measurement”
obtained at different research levels, that is, after the analysis of a set of entries and exits related to
environmental aspects (LCI results) and after the environmental impact life cycle assessment (LCIA
results) [28].

Considering the complexity of calculations, it is very difficult to present the uncertainty of
LCA results in the form of a single equation describing the probability distribution of the values
obtained. Therefore, in order to estimate these uncertainties, numeric simulations are conducted.
B. Steen [29] indicates that sensitivity analysis enables one to express uncertainty in the form of
probability, hence the need to estimate the degree of uncertainty and the distribution of probability.
When analysing the LCA method, Kowalski and Kulczycka [30] recommend thorough sensitivity
analysis or, if possible, partial uncertainty analysis of selected results and parameters whose uncertainty
ranges are known, e.g., by means of the Monte Carlo (MC) simulation. He also indicates that some
studies involving the use of LCA are subject to uncertainty, which can result in doubts regarding the
value of final indicators, eco-indicators that determine the potential environmental impact of a product
or process. The uncertainty of model correctness results from the fact that analysed models are never
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real. Every LCA is subject to uncertainty which is due to subjective choices made in order to design
the model [31].

The existing literature on the theoretical foundations of the mathematical computational structure
for performing uncertainty analysis in LCA is still hardly practiced [32]. However, there are various
techniques for uncertainty analysis, such as: the theory of possibilities, e.g., [33], fuzzy theory,
e.g., [34,35], data quality indicators, e.g., [9,14–17] and expert opinions, e.g., [36,37] or a combination
of two or more techniques, e.g., [20,30,31,38]. Despite the wide range of approaches available,
the analysis of uncertainty in LCA in the scientific and business process of bottle production remains
largely unexplored.

Stochastic modeling, mainly in the form of MC simulations, is the most commonly used approach
to analyzing uncertainty among various processes, research areas and industry sectors [39–42].
The usefulness of MC simulation becomes apparent when enough tests have been performed to make
a claim regarding data distribution and uncertainty [30]. However, the combination of two elements of
stochastic modeling and uncertainty analysis can be problematic. It most often lists three main reasons:
(1) there is a need for a larger amount of data to be available than is available [43–45]; (2) there are no
clearly described guidelines as to the size of the data set, and this extends the duration of the analysis
and the complexity of calculations considerably [46]; (3) the choice of combined research methods
seems to be too complex [47]. The most common in the literature are works carried out omitting
accuracy analysis [48], or those using error propagation methods, including sampling techniques [49];
much less research is carried out using MC simulation.

The uncertainty of data can be expressed by means of the probability distribution thereof,
e.g., the standard deviation or variance. This enables one to specify the range of values they can
take. According to R. Heijugns [50], using the MC simulation in iterative LCA is time-consuming,
but this disadvantage can be dealt with by calculating the propagation of uncertainty within the LCA
methodology. H. Imbeault-Tétrault [51], when comparing the uncertainty propagation calculations
with the MC simulation for uncertainty analyses within the LCA methodology, confirmed that the
calculation of uncertainty propagation requires less computation time than the MC simulation and
suggested that the analytical approach should be used instead. Heijugns and Lenzen [49] describe in
detail where uncertainty can be encountered in LCA. MC is time- and cost-efficient, enabling one to
determine the confidence level [52].

Uncertainty in studies involving the use of LCA can result in doubts regarding the value of
final indicators (eco-indicators) that determine the potential environmental impact of a product or
process. There are three types of uncertainty: uncertainty of data, uncertainty related to the correctness
(representativeness) of the model applied and uncertainty caused by incompleteness of the model.

In the analysis of data uncertainty conducted by Lewandowska and Fołtynowicz [31], the basic
assumption is that the quality of input data should increase with its importance. The authors propose
analyzing data quality after having evaluated their environmental impact. As impact assessment is
performed for the whole system within precisely specified boundaries, the final result pertains not
only to the main data input, but also to the data of all the processes it represents.

Using statistical terms, LCA is used to study and compare systems of products in terms of the same
feature, that is, environmental impact [53]. Uncertainty analysis, however, is reduced to determining
the feature diversification level for each of the systems. The more diversified the feature is (scatter) the
higher the uncertainty it represents [26,52,54].

This article aims to supplement the issues and knowledge about the environmental impact of the
bottle shaping process presented in [55] by addressing the quality issues of the required data and the
complexity of stochastic modeling for uncertainty and sensitivity analysis, thereby offering a new life
cycle assessment model not yet practiced by food sector companies in Poland. The purpose of this
paper, therefore, is to propose an evaluation method based on the use of the DQI semi-quantitative
approach, stochastic modeling and sensitivity analysis to (1) analyze the uncertainty of beverage bottle
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production parameters, (2) analyze the uncertainty and accuracy of LCA results for the bottle shaping
process and (3) recognize the effects of input parameters on the final results obtained.

2. Materials and Methods

2.1. The Uncertainty and Accuracy Management Procedure

Accuracy is defined as the similarity of the measured or modeled value to the “real one” [56].
Precision, however, represents the quality of repeatability of the results obtained, e.g., each repetition
of calculation, of the experiment, and modeling provides a similar result [57,58].

Accuracy and precision are provided by methods which are independent of each other; in other
words, a method is imprecise when the results exhibit a large scatter, yet it is accurate, since the mean
value of the results corresponds to the real, model or theoretically predicted value [24]. A method is
precise but not accurate when the scatter of the results is not large, but the mean value is far from the
real, model or theoretically predicted value [59].

In this paper, a procedure for estimating data uncertainty and accuracy based on the known
methods for determining the quality and uncertainty of data is proposed. The method combines three
approaches: the DQI semi-quantitative approach, the stochastic modeling approach and the global
sensitivity analysis. The procedure includes (Figure 1):

• An initial phase, which consists of LCA with contribution analysis,

Step 1: the semi-quantitative DQI approach,
Step 2: the stochastic modeling approach with use the MC simulation,
Step 3: the sensitivity analysis based on the analysis of key issues.

The steps of the procedure are closely related, in such a way that the results of the preceding step
are input data for the following step. In this way, it is possible to determine the sensitive points of the
LCA along with the determination of the relationships and dependencies of the input data uncertainty
with the uncertainty of the results in terms of impact categories and damage areas.

The first initial phase is the LCA allowing the identification of process input data (LCI)
and environmental impacts (LCIA). An indispensable element for the proposed procedure is the
implementation of contribution analysis to determine the unit processes and categories of impacts
with the largest share in the total impact of the PLA bottle shaping production cycle. The LCA of this
process was presented in a previous work [55]. The uncertainty analysis involved input data and only
relevant impact categories in damage areas. The categories with total contribution equal to 90% were
considered relevant. A detailed LCA methodology is provided in Section 2.2.

The first step in assessing data uncertainty is the semi-quantitative DQI approach. It includes
the standard quality assessment proposed by Maurice et al. [12] with the use of five DQIs [25,56]:
measurement precision (reliability), sample representativeness, appropriate age of data, geographic
origin and technological representativeness, and then calculating the aggregated data quality indicator
(ADQI) and determining the deviation of input data. A triangular distribution for pro-ecological
scenarios of a product life cycle assessment was used in the analysis. The information about distribution
obtained in the previous step is used as an input to the second step of the stochastic approach to
estimate the uncertainty of significant impact categories using MC simulations. In this way, the impact
categories with the greatest uncertainty and the input data of the bottle shaping process that are
associated with them, will be identified. As a result of MC simulation, statistical parameters such as
average, standard deviation, variance and coefficient of variation are obtained for the distribution of
results of significant impact categories. Thereby, it is possible to carry out the key issue analysis using
the MC simulation, where the mean and standard deviation will be used as input data for forecasting
the sensitivity of the results of the total impact of the bottle shaping process to changes in the impact
category value, and thus related changes of inventory data. A detailed methodology of individual
stages of the embedded method is presented in Sections 2.1.1–2.1.3.
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2.1.1. Semi-Quantitative DQI Approach

The qualitative data evaluation was carried out using data quality indicators (DQIs). In the
analysis the pedigree matrix (Table 1) was used, which is determining five different DQIs: reliability,
completeness, time range, geographical range and technological range [18]. First, the input data were
assessed in qualitative terms and then in quantitative terms, assigning points on a scale of 1 to 5 for each
DQI [25,56]. Depending on the methodology adopted, grade 1 may mean the highest rating (which
is consistent with the general method of the matrix of origin [18] and appears in many works, e.g.,
Baek et al. [20,38], Maurice et al. [12], Ciroth et al. [52]), or, in line with the approach used, for instance,
by Lewandowska [60], Canter et al. [15], Kennedy et al. [17], data of the highest quality receive a
rating of 5. In this work, we assumed that a score of 1 indicates the lowest quality of data and 5—the
highest. DQA was carried out at the level of the unit process, for which each input parameter had the
same data source. The selected level of data quality assessment DQA is an attempt to apply the DQI
semi-quantitative approach as a practical and simple means to analyze parameter uncertainty.

In the following approach, the so-called aggregated data quality indicator (ADQI), which is the
sum of five weighted DQIs, was used [12]. Initially, the weight of each input parameter was obtained
by assigning 1 to 5 points to each of the five DQIs. To determine the ADQI value, it is necessary to
assume the weight for each DQI. In the simplest terms, it can be assumed that individual DQIs are
equivalent. In many works, however, there are methods for determining the weight of individual
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indicators [12,14,20]. In this work, we adopted weights according to Maurice et al. [12]: 0.25 in relation
to the geographical and technological scope and 0.167 in relation to the other three DQIs. Considering
the input data of the bottle shaping process (mainly—electricity consumption), it is the geographical
and technological scope that will cause the greatest diversity of data, and thus affect the reliability and
credibility of LCA results, so it was decided to take the weights as proposed by Maurice et al. [12]. Next,
the DQI value was multiplied by the weight of each DQI and the resulting values were summed up.

Table 1. Pedigree matrix [56,60].

DQI DQI = 5.0 DQI = 4.0 DQI = 3.0 DQI = 2.0 DQI = 1.0

R Data verified and based
on measurements

Verified data based partly on
assumptions, or unverified

based on measurements

Unverified data based partly
on assumptions Precise estimation Inaccurate estimation

C

Representative data
taken from the

appropriate sample and
time range

Data collected from a smaller
sample, but within a

reasonable period of time

Data taken from an
appropriate sample, but not

in the right time range

Representative data, but
from a very small sample

Data not representative
from a very small

sample or it is unknown

TR Deviation up to 3 years Deviation up to 6 years Deviation up to 10 years Deviation up to 15 years Deviation over 15 years
or data age unknown

GS
Local scope (or other

area envisaged for the
purpose of the study)

National scope Continental range Global scope Data of unknown origin

TS Data on the analyzed
process and enterprise

Data on the analyzed process
and technology, but from a

different source

Data on the analyzed
process, but with different

technology

Data on similar
processes/products with

the same technology

Data on similar
processes/products with

different technology

R—reliability, C—completeness, TR—time range, GS—geographical scope, TS—technological scope.

The next stage of the DQA is to relate the results obtained from origin matrixes to probability
distributions [14,17,60]. In the case of point data or very small data sets, reliable determination of the
average or standard deviation is not possible [60]. Then, it is necessary to use distributions based
on other parameters, e.g., triangular distributions, continuous uniform or beta distributions [17,20].
Triangular and continuous uniform distributions are based on two parameters: minimum and
maximum values [60].

Attempts to link DQA results to the distribution of input data were made by Kennedy [17] and
Wang [14] using the so-called transformation matrix. In this work, we combined the ADQI results
with the levels of deviations of the process input values (Table 2) assuming a triangular distribution.
Therefore, it was assumed that the data whose DQI score is 5 has a permissible standard deviation
of ±10%. As can be seen, a deviation from the most probable value occurs only at the level of ±10%,
which is manifested by a narrow triangular distribution (strong concentration around the central
value) and high (high probability) triangular distribution shape. The idea of triangular distribution is
explained in Figure 2. This means that a person who performs an LCA assumes that the value of a
given inventory (Table 3) (e.g., energy consumption, water consumption, CO2 emissions) does not
necessarily have to be x value (the result of a single measurement, estimation, collection from the
company documentation, etc.), but that it can be a value from the range < x − 10% x; x + 10% x >.

Table 2. Aggregated data quality indicator (ADQI) values and deviation levels [54,60].

ADQI Deviation (%) ADQI Deviation (%) ADQI Deviation (%) ADQI Deviation (%)

5.0 10 4.0 20 3.0 30 2.0 40
4.8 12 3.8 22 2.8 32 1.8 42
4.6 14 3.6 24 2.6 34 1.6 44
4.4 16 3.4 26 2.4 36 1.4 46
4.2 18 3.2 28 2.2 38 1.2 48

1.0 50

Table 3. Sample electricity test results specified for the preform stretching and extending process.

Medium Quantity Distribution Minimum Maximum DQI

Electricity 6.95 kWh Triangular 6.26 7.64 5
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The deviation ranges obtained on the basis of the ADQI values and the selected data distribution
will be the input data in the next step of the stochastic uncertainty analysis approach using MC
simulations, which will be described in detail in Section 2.1.2.

2.1.2. Stochastic Modeling Approach

The approach to stochastic modeling using MC simulation is a common method of quantitative
uncertainty analysis in LCA. In this work, we used the MC simulation, because it allows one to quickly
estimate the probability of results depending on the variability of input data, and thus identify the
results with the highest sensitivity and uncertainty. The first assessment step is to correctly define the
input parameters necessary to conduct the analysis properly. Triangular distributions based on two
values—maximum and minimum—were used to estimate the impact category uncertainty. At this
stage, the influence of the input parameters on the significant impact categories (impact categories
which in total constituted 90% of damage area were considered as significant) was estimated. According
to the adopted procedure, the values of the input parameter deviations depend on the ADQI result
according to Table 2. For each input parameter, a value within the range of data variability was
artificially generated and then values of selected impact categories were calculated. The procedure
was repeated 1000 times to obtain the uncertainty distribution. This simulation was carried out using
Sima Pro software.

2.1.3. Sensitivity Analysis

The correct interpretation of LCA results should assess the reliability of data and the uncertainty
of results. For this purpose, among others, contribution analysis, perturbation analysis or sensitivity
analysis are used [61]. Based on the sensitivity analysis, the usefulness of individual data can be
inferred by indicating key variables that cannot be omitted in the analysis [62]. Performing a sensitivity
analysis is considered to be one of the good practices in LCA [63,64]. There are three main approaches to
sensitivity analysis mentioned in the literature: local, screening and global [62,65,66]. Local sensitivity
analysis includes matrix perturbation and the once-at-a-time method. The method of elementary effects
is a screening method designed by Morris and can be treated as an extension of the once-at-a-time
method [66]. Global sensitivity analysis is mainly based on the analysis of variance of input variables.
Among the methods of global sensitivity analysis, LCA uses the key issue analysis, the method of
standardized regression coefficients, and Sobol sensitivity index [65].

In this work, the global sensitivity analysis method was used, namely the key issue analysis
introduced by Heijungs [67,68]. This method is based on the analysis of the contribution of variables in
variance and allows to determine the share of the input data uncertainty in the result uncertainty [68].
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An analysis of data sensitivity was carried out for data which were in impact categories characterizing
the overall impact of the PLA bottle shaping process in three areas: human health, ecosystem quality
and resource avaliability. The procedure was carried out taking into account the variability of the
analyzed parameters, using the MC simulation and the Crystal Ball (CB) software. The sensitivity
analysis was presented in three formats: the grouped bar chart, the tornado type chart and the
spider chart.

In the MC simulation the results obtained on the basis of LCA were used. The log-normal
distribution, which is commonly used in analyzing data uncertainty, was used to estimate the value of
the impact category in the Monte Carlo method [20,62]. Distribution parameters, i.e., population mean
µ and standard deviation σ were adopted respectively: µ as the mean value of the impact category
obtained as a result of data uncertainty analysis, σ as the standard deviation of the impact category
obtained as a result of data uncertainty analysis. Tornado and spider charts were created based on the
results of MC simulations. Relevant impact categories in LCA were used to generate charts.

2.2. Goal and Scope

The first step in LCA is to specify the objective and scope of the analysis, which can be determined
based on the analysis and understanding of the product lifecycle. The research objective determines
the degree of detail, thoroughness and scope of analyses, as well as the types of data needed to
evaluate the lifecycle. To this end, the technological process of biodegradable polylactic acid (PLA)
bottles shaping was subjected to evaluation. The process was broken down into six-unit operations,
taking into account the demand for services and materials. The scope of the analysis covered the
intake of pre-moulds into the heater, the heating of said moulds in the infrared heater, the stretching,
extending, and pressure shaping of the pre-mould, as well as degassing and cooling the moulded
bottles. The environmental impact of the bottle moulding process was performed using the ReCiPe 2016
method. The analysis covered 17 midpoint impact categories and three endpoint damage categories:
human health, ecosystem quality and resource availability, which strictly correspond with three
areas of protection: human health, ecosystem quality and resource scarcity [69,70]. Characterization
factors from the endpoint level were obtained from the midpoint characterization factor using the
constant midpoint to endpoint conversion factor [70,71]. The human health endpoint category includes
impacts from the following midpoint level categories: particulate matter, trop. ozone formation
(hum), ionizing radiation, ozone depletion, human toxicity (cancer), human toxicity (non-cancer),
global warming, water use. The ecosystem quality endpoint category includes global warming,
water use, freshwater ecotoxicity, freshwater eutrophication, trop. ozone (eco), terrestrial ecotoxicity,
terrestrial acidification, land use/transformation, marine ecotoxicity. Finally, the resource availability
category includes mineral resources and fossil resources. The LCA analysis was performed using the
SimaPro software. Thereafter, relevant midpoint and endpoint categories were chosen. The categories
with total contribution equal to 90% were considered as relevant. The aim of this analysis is to assess
the uncertainty and accuracy of LCA results using the Monte Carlo method. The basis for looking for
key factors was the uncertainty analysis of key results for which statistical and mathematical methods
were used.

2.2.1. Functional Unit

The functional unit accepted for the analyses was determined based on data collected from the
production plant. A 1 L PLA bottle was adopted as the functional unit.

2.2.2. System Boundaries

The analysis covers the entire cycle of the bottle shaping process, meaning that that all steps of this
process are included, from the pre-mould delivery to the manufacturing company, up to the moment
when beverage bottles are correctly shaped in the moulding process (Figure 3). Further processes,
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such as the filling of bottles with beverages, the labelling or storage/distribution thereof were not
included in the system. Furthermore, the transportation of raw material and storage was also omitted.

Polymers 2020, 12, x FOR PEER REVIEW 9 of 27 

 

The analysis covers the entire cycle of the bottle shaping process, meaning that that all steps of 
this process are included, from the pre-mould delivery to the manufacturing company, up to the 
moment when beverage bottles are correctly shaped in the moulding process (Figure 3). Further 
processes, such as the filling of bottles with beverages, the labelling or storage/distribution thereof 
were not included in the system. Furthermore, the transportation of raw material and storage was 
also omitted. 

 
Figure 3. System boundaries for the environmental analysis of the polylactic acid (PLA) bottle 

production process. 

2.2.3. Data Allocation 

The allocation procedure is described in detail in ISO 14044 (clause 4.3.4. Allocation, Section 
4.3.4.2 Allocation procedure) [2]. It is particularly important when considering multifunctional 
processes. For this reason, allocation, understood as the partitioning and attribution of environmental 
pressures to products/functions of the analysed system, is one of the most frequently applied 
multifunctional solutions. In the case of bottle moulding, the technological process was divided into 
smaller technological operations. Such a procedure does not require any partitioning; therefore 
allocation is not required. 

2.3. Life Cycle Inventory 

Designing a model for the analysis of the set of inputs and outputs is the second phase of LCA. 
The model reflects the whole product system, while its smaller elements represent technological 
operations. A technological operation should be understood as the smallest part of the system for 

Figure 3. System boundaries for the environmental analysis of the polylactic acid (PLA) bottle
production process.

2.2.3. Data Allocation

The allocation procedure is described in detail in ISO 14044 (clause 4.3.4. Allocation, Section 4.3.4.2
Allocation procedure) [2]. It is particularly important when considering multifunctional processes.
For this reason, allocation, understood as the partitioning and attribution of environmental pressures
to products/functions of the analysed system, is one of the most frequently applied multifunctional
solutions. In the case of bottle moulding, the technological process was divided into smaller
technological operations. Such a procedure does not require any partitioning; therefore allocation is
not required.

2.3. Life Cycle Inventory

Designing a model for the analysis of the set of inputs and outputs is the second phase of LCA.
The model reflects the whole product system, while its smaller elements represent technological
operations. A technological operation should be understood as the smallest part of the system for
which resource-related information is collected. Data collecting enables one to precisely specify the
source of origin, geographic scope, representativeness and precision, all of these being indispensable
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elements of the uncertainty analysis [56]. The correct aggregation of input data helps to identify
significant environmental points in the system.

Taking into account the confidential character of the LCI results presented in the study and
company trade secrets, the values presented in Table 4 were changed by a coefficient ranging from 0.8
to 1.2. The data describing all of the process stages come from one company in Poland and pertain to
the bottle moulding process taking place there. The figures apply to the year 2019. The modelling was
performed using the Ecoinvent 3.2 database.

Table 4. Results LCI [55].

Technological Operations Ecoinvent Activity Amount

Raw material acquisition
PLA preform mass Polylactide, granulate {GLO} market for/Alloc Def, S 18.24 g
Electrical energy Electricity, medium voltage {PL} market for/Alloc Def, S 0.368 kWh

Preform heating
Electrical energy (infrared lamp 100 kW)

Electricity, medium voltage {PL} market for/Alloc Def, S
3.2 kWh

Electrical energy (infrared lamps 200 kW) 6.4 kWh
Electrical energy (supply chain) 0.16 kWh

Preform stretching and extending
Electrical energy Electricity, medium voltage {PL} market for/Alloc Def, S 6.95 kWh
Compressed air Compressed air, 1000 kPa gauge {RER} compressed air production/Alloc Def U 0.0016 kg/m3

Preform pressure shaping
Electrical energy Electricity, medium voltage {PL} market for/Alloc Def, S 5.66 kWh

Bottle degasifying
Electrical energy Electricity, medium voltage {PL} market for/Alloc Def, S 1.01 kWh

Bottle cooling
Electrical energy Electricity, medium voltage {PL} market for/Alloc Def, S 0.71 kWh

Water in a closed circulation Tap water {Europe without Switzerland} market for/Alloc Def, S 2.4 m3

3. Results

3.1. Contribution Analysis

Before commencing the uncertainty analysis, it is necessary to obtain LCA results. This paper
analyses the quality, uncertainty and sensitivity of data in the LCA of the PLA bottle moulding
process. [55] presents a complete set of the system characterisation results. The uncertainty analyses
were performed using relevant impact categories only (with the summarised share of 90% at least).
In the human health area, relevant impact categories included (Figure 4): fine particulate matter
formation (50.68%), global warming human health (39.82%), water consumption human health (8.64%).
As regards the ecosystem quality area, these were (Figure 5): global warming terrestrial ecosystems
(35.31%), land use (30.77%) and water consumption, terrestrial acidification (15.44%), terrestrial
acidification (13.59%). For the resource availability (Figure 6), the fossil resources scarcity category was
significant (99.23%). The pre-form material and the electric energy consumption in the bottle moulding
process were the most important determinants of the above-listed categories value.

In the damage category, the impact of pre-form material—PLA in this case—prevailed (Figure 7).
In the category of human health, the impact of pre-mould (76.86%) was followed by the pre-form
heating phase (7.72%) and the stretching and extending stages (5.93%), while in the ecosystem quality
category, the role of pre-form heating (5.81) and bottle cooling (4.79%) can be noticed.
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3.2. Semi-Quantitative DQI Aproach

For the first stage of the data quality and uncertainty assessment, the semi-quantitative DQI
approach was adopted. The DQI and ADQI values were determined according to the procedure
described in Section 2.1.1. A summary of results is presented in Table 5. The input data for each DQI
were assigned 5 points, as they were obtained from measurements taken within one company and one
process and were collected over a period of one year. Therefore, with such a high precision, data can
be expected to provide reliable final results of the PLA bottle moulding process analysis. Following the
multiplication of DQI by an appropriate weight coefficient, ADQI = 5 was obtained. Based on the ADQI
value and Table 3, the deviation for each input value was determined. Using triangular distributions,
the value provided in the inventory analysis is treated as the most probable value, and knowing its
ADQI score, it is possible to define the minimum and maximum of input data.

Table 5. Values of the minimum and maximum for inventory elements of the process of polylactide
bottle manufacturing.

Element LCI Value ADQI Deviation (%) Min. Max. Distribution

Raw material acquisition
Electrical energy (three motors of the carousel) 0.368 kWh 5 10 0.33 0.404 Triangular

PLA preform mass 18.24 g 5 10 16.42 20.064
Preform heating

Electrical energy (infrared lamp 100 kW) 3.2 kWh 5 10 2.88 3.52
TriangularElectrical energy (infrared lamps 200 kW) 6.4 kWh 5 10 5.76 7.04

Electrical energy (supply chain) 0.16 kWh 5 10 0.14 0.176
Preform stretching and extending

Electrical energy 6.95 kWh 5 10 6.26 7.64 Triangular
Compressed air 0.0016 kg/m3 5 10 0.00144 0.00176

Preform pressure shaping
Electrical energy 5.66 kWh 5 10 5.09 6.22 Triangular

Bottle degasifying
Electrical energy 1.01 kWh 5 10 0.91 1.11 Triangular

Bottle cooling
Electrical energy 0.71 kWh 5 10 0.64 0.78 Triangular

Water in closed circulation 2.4 m3 5 10 2.16 2.64

The data presented in Table 5 are the results of the estimated minimum and maximum values for
the processes involved in PLA bottle shaping. According to the accepted minimum and maximum
thresholds, it can be said that the value of energy consumption for the first operation ranges from
+0.330 to +0.404.

3.3. Uncertainty Results

Using the function of uncertainty 1000 values of impact category on the basis of the MC analysis
were generated for each entry and exit, according to the information about variability ranges of input
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parameters and their distribution (in this study triangular) presented in Section 3.2. During the
simulation, values of input parameters such as: water, electrical energy use, material consumption
and emissions are randomly selected for calculation of impact assessment. On this basis, distribution
histograms of the selected relevant impact category results (Figures 3–8) were created for the randomly
selected values of the input parameters. The analysis also provides basic parameters from the set of
results obtained, such as standard deviation, mean, median and the coefficient of variation.

The unit point data (input) was used to analyze the relevant impact categories, and the results
obtained are expressed in units corresponding to each endpoint damage category: human health,
ecosystem quality and resources availability. In order to generate the diagrams presented in Figures 8–15,
categories with a 90% share in damages were used.

Fine particle matter formation was the first significant category in the total impact of biodegradable
bottle shaping process on human health. (Figure 8). For data generated in MC simulation, the total level
of emissions was found to be 1.61 × 10−07 DALY. However, the value of the median was = 1.59 × 10−07

DALY, standard deviation = 1.76 × 10−08 DALY and coefficient of variation = 10.96%.
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The average impact of the manufacture of 1 L PLA bottles on the category of global warming
corresponding to human health from 1000 scenarios of input data was 1.27 × 10−07 DALY (Figure 9),
whereas, the remaining distribution parameters were as follows: median = 1.26 × 10-7 DALY,
standard deviation = 9.13 × 10−09 DALY and the coefficient of variation = 7.20%.

The analysis of all the stages involved in the process of PLA bottle shaping clearly shows that
the accumulation of compounds has a high negative impact on the water consumption category
(2.74 × 10−08 DALY), which adversely affects human health (Figure 10). The median for this is =

3.05 × 10−08 DALY, standard deviation = 7.37 × 10−09 DALY = 26.8%.
Analyses of stochastic data for all the stages of PLA bottle shaping also covered the emissions

of compounds that cause damage in the area of ecosystem quality by contributing to global
warming (3.80 × 10−10 DALY) (Figure 11). The value of the median is = 3.81 × 10−10 species
yr, standard deviation= 2.75 × 10−11 species yr and the coefficient of variation = 7.20%.

The value of the median of the category of environmental impacts associated with land use
(average: 3.32 × 10−10) was found to be = 3.17 × 10−10 species yr, standard deviation = 4.48 × 10−11

species yr and coefficient of variation = 25.1% (Figure 12).
Categories showing significant impact in the ecosystem quality area include water consumption,

terrestrial ecosystems, with a mean value of impacts equalling 1.66 × 10−10, median = 1.85 × 10−10

species yr, a standard deviation of 4.62 × 10−11 species yr and a variation of 25.1% (Figure 13).
Figure 14 shows data for accumulated compounds that cause acidification (1.46 × 10−10)and their

impact on the ecosystem quality. The values of the median = 1.46 × 10−10 species yr, standard deviation
= 1.32 × 10−11 species yr and the coefficient of variation = 9.01%.

Based on the data uncertainty analysis, a histogram of results for the fossil resources scarcity
category was drawn up. The mean value of impact in the resource availability area equals 0.0072
USD2013, median = 0.00715 USD2013, standard deviation = 0.00078 USD2013, and variation = 10.8%
(Figure 15).

3.4. Results of Sensitivity Analysis

Sensitivity analysis was performed for data represented by impact categories characterising the
total impact of the biodegradable bottle preparation lifecycle in three damage areas human health,
ecosystem quality and resources availability. Based on the uncertainty distribution of LCA results for
relevant impact categories presented in Section 3.3, it was possible to perform the key issue analysis
in order to assess the sensitivity of results in the given damage area. The procedure was performed
using the MC simulation and the CB software. As Figure 16 and Table 6 show, the category of the
formation of fine solid particles represents the greatest share of the variability of the total impact of
bottle production on human health. Global warming is in second place. The lowest share in variability
is observed in the case of water consumption.

Table 6. Results of the Monte Carlo (MC) simulation performed in Crystal Ball (CB) for the tornado-type
sensitivity analysis of the significant categories of impact on human health.

Human Health, 10−7 DALY Input, 10−7 DALY

Input Data Lower Limit Upper Limit Range Deviation Explained 1 Lower Limit Upper Limit Base Case 2

Fine particulate
matter formation 2.94 3.39 0.45 70.28% 1.39 1.84 1.60

Global warming,
human health 3.03 3.27 0.23 88.46% 1.15 1.38 1.26

Water consumption,
human health 3.07 3.25 0.18 100.00% 0.19 0.37 0.26

1 The explained deviation is cumulative, 2 The basic case for calculations in CB was the median value.
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The greatest deviations of the human health damage value are observed in the end values of
impact categories (Figures 17 and 18). The increase in the fine particulate matter formation has the
largest share in the increase of impacts on human health and at the same time a non-accurate estimation
of this category will lead to the biggest errors in estimating the value of damages in the area of
human health.
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Figure 18. Spider chart of sensitivity for the human health damage category.

For damage category in area ecosystem quality the global water consumption, terrestrial ecosystem
represents the greatest share and the next was land use (Table 7, Figure 19).

Table 7. Results of the MC simulation performed in CB for the tornado-type sensitivity analysis of the
significant categories of impact on ecosystem quality.

Human Health, 10−9 DALY Input, 10−10 DALY

Input Data Lower Limit Upper Limit Range Deviation Explained 1 Lower Limit Upper Limit Base Case 2

Water consumption,
Terrestrial ecosystem 1.02 1.13 0.114 40.69% 1.13 2.27 1.60

Land use 1.01 1.12 0.113 81.06% 2.77 3.90 3.29
Global warming,

Terrestrial ecosystems 1.03 1.10 0.070 96.46 3.46 4.16 3.79

Terrestrial
acidification 1.05 1.08 0.033 100.00% 1.30 1.64 1.46

1 The explained deviation is cumulative, 2 The basic case for calculations in CB was the median value.
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The greatest deviations of the ecosystem quality damage value are observed in the end values of
impact categories (Figures 20 and 21). The increase in the water consumption terrestrial ecosystem
category and land use values has the greatest share in the growth of impacts on the ecosystem quality
and any imprecise estimation of these categories will lead to greatest errors in the estimation of damage
values in the ecosystem quality area.
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Figure 21. Spider chart of sensitivity for the ecosystem quality damage category.

4. Discussion

The focus of this paper is on the evaluation and analysis of LCA results for the bottle moulding
process. The results of contribution analysis presented in Section 3.1 show impact categories and
stages of the bottle moulding process with the greatest effect on and share in damage categories for
LCA results (Figures 4–7). When analysing shares of the process stages in midpoint impact categories,
as well as in total impacts in damage areas, one has to conclude that pre-forms made of PLA take the
first place and are followed by bottle degasifying and pressure shaping as far as negative environmental
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impacts are concerned (Figures 4–7). Stages of the bottle moulding process are closely related to
input (inventory) data (Table 4), hence any solutions designed to improve the environmental impact
of the bottle shaping process should be directed mainly towards reducing the PLA usage in the
production of bottles and reducing the electric energy consumption in the pre-form heating processes
(e.g., by means of replacing infrared lamps by less energy-intensive ones), pre-form stretching or
cooling. The contribution analysis performed as the first step of the procedure enabled us to determine
relevant impact categories to be subjected to the uncertainty and sensitivity analysis.

The procedure proposed in this study required us to perform data quality analysis in order to
determine parameters of input data distribution for an uncertainty analysis to be conducted using the
MC simulation. In this way, the process of stochastic search for the input parameters distribution was
simplified by proposing a triangular distribution as PDF, with deviations from 10% to 50%, depending
on the ADUI result. Determining the level of deviations is one of the elements of this search and affects
the simulated values of expected results. The input data collected by us were characterised by high
quality (ADQI = 5) and precision, as they were obtained directly form a manufacturing company.
In the uncertainty analysis, a deviation of ±10% was used, according to the triangular distribution.
The analysis of the diagrams presented in Figures 8–10 shows that the category associated with the
use of water resources (Figure 10) has the largest variability range (deviation 26.8%), thus being the
most critical input variable affecting human health throughout the life cycle of the product considered.
Yet in the category of harmful impact on the ecosystem, the widest variability interval was found for
the category of land use (deviation 25.1%, Figure 12) and water consumption connected, terrestrial
ecosystems (deviation 25.1%, Figure 13). In the resource availability damage category, the variability of
the prevailing impact category of fossil resources scarcity was 10.8% (Figure 15). The pre-form material
was a key determinant of this category value. Input data deviations for the above-listed categories
in the range of 10% translated into a significant variability of results, therefore the precision and
accuracy of the input data will be of key importance to the values of these categories. With imprecise,
low quality data, the result is least certain in these categories. As far as the final result is concerned,
it is most important to measure the mass of the pre-form to be used in the blowing process and the
consumption of water at the bottle cooling stage with greatest precision.

The results distribution characteristics obtained for significant impact categories as a result of the
uncertainty analysis (i.e., mean, standard value) were used for performing the key issue analysis using
the MC simulation and the CB software. The analysis enabled us to identify the impact categories with
the greatest shares in the uncertainty of the final result in the damage category. The fine particulate
matter formation category had the greatest share (69.5%) in the human health damage category
variance. Depending on changes in this impact category, the total impact in the human health area will
be subject to most serious changes. In the ecosystem quality area, water consumption had the greatest
share as regards terrestrial ecosystem and land use. As regards these impact categories, the greatest
changes should be also expected wherever even a slight decrease in the input parameters value takes
place in order to improve the environmental impact of the PLA bottle shaping process. In the group of
impact categories referred to above, low quality input data would introduce significant uncertainty of
the final impact results in damage categories. The final impact result in the damage category is most
sensitive to changes in the impact categories referred to above.

The method proposed for the evaluation of data quality and uncertainty permits to easily
identify key parameters that affect the final result of LCA (without the need to calculate complex
endpoint coefficients and parameters of the results distribution shape). A single procedure combines
three types of analyses: the quality of data, uncertainty of results and sensitivity with respect to
input (inventory) data and impact categories, thereby enabling one to determine qualitative and
quantitative relationships between input data, impact categories and impact areas, as presented in
Figure 22. Clearly, although some categories show a relatively high uncertainty, they will not have any
significant effect on the final result, e.g., the water consumption category, despite its high uncertainty,
will not have any serious impact on the human health damage category. But then, in the case of
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the ecosystem quality damage category, two impact categories will cause the greatest uncertainty of
results: water consumption and land use, although they do not represent the greatest shares in this
damage category.Polymers 2020, 12, x FOR PEER REVIEW 22 of 27 
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uncertainty with respect to the final result of the impact and damage category.

In practice, data uncertainty assessment procedures come down to one type of analysis, e.g.,
the semi-quantitative DQI approach [20], stochastic modelling with the use of the MC simulation [22,48],
sensitivity analysis [10,65]. Combinations of several methods are not common, due to the significant
input of labour and time required and a great number of data than need to be entered and collected [62,72].
However, the method proposed here, is based on inventory outcomes and each step produces a set
of inputs for the next stage, thereby providing a network of links between input data and impact
categories, as well as damage categories (Figure 22).

The types of variables distribution used in these studies (triangle distribution for input data and
lognormal distribution for impact categories), as well as range endpoints, are not without effect on
the value of results obtained either. Using other distributions might lead to small differences in the
uncertainty results, as shown in [20,38,65,72]. It should be pointed out that the input data distribution
is based on the semi-quantitative DQI approach result and it is largely the quality of data that will
determine results of any further stages.
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5. Conclusions

We have achieved the objective of the paper by proposing a method for the evaluation of
uncertainty and precision of LCA results based on the DQI semi-quantitative approach, stochastic
modelling and sensitivity analysis. The method permits to simply determine dependencies between
the precision of input data and impact and damage categories, by identifying key elements that affect
the LCA result. The strong point of the methodology used is that not much data need to be collected
for the analyses.

The procedure identified input data of the PLA bottle shaping process, as well as sensitive impact
categories. The material used for producing the pre-form (PLA) represents the input which has the
greatest effect on the result of environmental impacts of the PLA bottle shaping process. The fact
that the mass of material is reduced during the bottle shaping process is the greatest contributor to
the reduction of environmental impacts. At the same time, the accuracy and precision of the PLA
mass estimation will be the key element affecting the final result uncertainty, while the accuracy of
water and electric energy consumption estimations will be less important. Impact categories with the
greatest uncertainty include water consumption with respect to human health and land use and water
consumption with respect to ecosystem quality. On the other hand, the uncertainty and development
of the final result value in the human health damage category depend mostly on the fine particulate
matter formation category and in the ecosystem quality damage category—on water consumption and
land use. In the area of resources availability, the impact category of fossil resources scarcity is mainly
responsible for both the uncertainty and value of results, its values being determined by the value of
PLA pre-form material used in the process. In the context of improving the environmental balance
of the bottle shaping process, the consumption of energy in the processes of heating, stretching and
cooling should be brought down and water consumption should be reduced along with the pre-form
material consumption.
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