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Abstract: Improving thermo-mechanical characteristics of polymers can efficiently promote their
applications in heat exchangers and thermal management. However, a feasible way to enhance
the thermo-mechanical property of bulk polymers at low filler content still remains to be explored.
Here, we propose mixing high length-diameter ratio filler such as carbon nanotube (CNT), boron
nitride (BN) nanotube, and copper (Cu) nanowire, in the woven polymer matrix to meet the purpose.
Through molecular dynamics (MD) simulation, the thermal properties of three woven polymers
including woven polyethylene (PE), woven poly (p-phenylene) (PPP), and woven polyacetylene
(PA) are investigated. Besides, using woven PE as a polymer matrix, three polymer nanocomposites,
namely PE-CNT, PE-BN, and PE-Cu, are constructed by mixing CNT, BN nanotube, and Cu nanowire
respectively, whose thermo-mechanical characteristics are compared via MD simulation. Morphology
and phonons spectra analysis are conducted to reveal the underlying mechanisms. Furthermore,
impacts of electron-phonon coupling and electrical field on the thermal conductivity of PE-Cu are
uncovered via two temperature model MD simulation. Classical theoretical models are modified
to predict the effects of filler and matrix on the thermal conductivity of polymer nanocomposites.
This work can provide useful guidelines for designing thermally conductive bulk polymers and
polymer nanocomposites.

Keywords: thermo-mechanical property; polymer morphology; phonons; molecular dynamics
simulation; weaving; mixing; length-diameter ratio

1. Introduction

Polymers have been ubiquitously used in daily life and industry from water cup and plastic tube
to energy storage and conversion devices due to numerous advantages like low mass density, low
cost, chemical inertness, electrically insulated, and easy of processing [1–3]. However, the extremely
low thermal conductivity of polymers (0.1~0.5 W m−1 K−1) owing to the disordered structure, chaotic
polymer chain arrangement, impurities, voids, and chain entanglements limits their applications in
heat exchangers, heat dissipation, and thermal management [4–6]. However, the thermal conductivity
of single PE chain can be up to 350 W m−1 K−1 and even higher [7,8], which stimulates the interest in
studying heat conduction in polymers.

Over the past decades, numerous simulations and experiments have been dedicated to investigating
thermal transport in polymers from one dimensional polymer chain to three dimensional bulk polymers.
Shen et al. fabricated ultra-drawn PE nanofibers with extremely high thermal conductivity [9], and they
later fabricated crystalline PE nanofibers with both high strength and thermal conductivity at low
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temperature via local heating method [10]. Recently, Shrestha et al. fabricated PE nanofibers with room-
temperature thermal conductivity of 50 W m−1 K−1 via two-step drawing method [11]. Zhang et al.
found that hard Cu nanowire is more useful than graphene to improve thermal conductivity of
silicone [12]. Xu et al. fabricated poly(3-hexylthiophene) films with a room-temperature thermal
conductivity of 2.2 W m−1 K−1 by oxidative chemical vapor deposition [13], and they also prepared
PE films with a high thermal conductivity of 62 W m−1 K−1 via flow extruding and drawing [14].
Li et al. prepared different electrospun nanofibers with thermal conductivity ranging from 0.5 to
9.3 W m−1 K−1 [15,16]. Cao et al. prepared thermally conductive PE nanowire arrays via nanoporous
template wetting technique [17]. Through transient grating spectroscopy, Robbins et al. observed the
phonon mean free path of semicrystalline PE can be up to 200 nm [18].

In addition to experiments, numerical simulations emerge as powerful tools to investigate the
mechanisms of thermal transport from a microscopic perspective [19,20]. Through MD simulation,
Tu et al. found that torsion and tension can be combined to enhance the thermal conductivity of PE
strands [21]. Liao et al. found that the thermal conductivity of aligned PE-CNT nanocomposites can
reach 60 W m−1 K−1 [22], and the heavy atoms can impede phonons transport along PE chain [23].
Ma et al. demonstrated that the redundant side chains [24] and chain rotation [25] can reduce phonon
mean free path. They also developed a theoretical model related to bond energy, backbone rotation,
in-plane bond ratio, and atomic amass to predict thermal conductivity of crystalline polymers [26].
Ruscher et al. uncovered the link between elasticity and thermal conductivity of several polymers [27].
An et al. investigated the effects of water content and cross-linking on the thermo-mechanical property
of polyacrylamide hydrogels [28]. Zhou and Volz et al. investigated the impacts of pressure on
thermal conductivity of two small organic materials [29]. Luo et al. demonstrated that strong chain
backbone [30,31] and large spatial extension [32,33] play a pivotal role in thermal transport of polymers.
By first-principles calculation, Shulumba et al. predicted the room-temperature thermal conductivity
of polymer crystals can be over 100 W m−1 K−1 [34,35]. Yang et al. proposed using parallel-linking
method to construct polymers [36] and investigated thermal transport in organic semiconductors [37].
Recently, they recommended using machine learning algorithms to search for materials with desired
properties [38].

However, preparing polymer crystals needs sophisticated techniques, and incorporating excessive
fillers can increase the cost and damage the intrinsic advantages of polymers. Thus, it is necessary to
develop simple and feasible methods to enhance the thermal conductivity of polymer matrix and using
a small quantity of fillers to fabricate thermally conductive polymer nanocomposites. Manipulating
single polymer chain and elucidating structure-property relationships at molecular scale are still very
challenging in experiments. Accurately characterizing experimental samples crucially depends on
expensive instruments like Raman spectroscopy, scanning electron microscope, and transmission
electron microscope. Besides, a high vacuum environment is indispensable for measuring thermal
conductivity of nanomaterials due to the influence of convection and radiation. The experimental
details including heating rate and measurement noise can induce large uncertainty. In contrast, MD
simulation can easily capture the atomic vibrational details, record the atomic trajectory, calculate
desired physical quantity, and provide critical insights into understanding thermal transport of polymers
and polymer nanocomposites at molecular level. Hence MD simulation is adopted to investigate
thermo-mechanical characteristics of polymers and polymer nanocomposites. Previous studies often
focus on thermo-mechanical property of pure polymers and fabricate polymer nanocomposites via
mixing excessive fillers. The crucial elements affecting thermo-mechanical property of polymer
nanocomposites at low filler content and the fundamental understanding at the molecular level remain
to be explored. The goal of this work is 3-fold: (1) to show a feasible method to construct polymer
matrix and pinpoint the crucial factors affecting thermal conductivity of constructed polymer matrix,
(2) to unravel the crucial factors influencing thermo-mechanical property of polymer nanocomposites
at low filler content, (3) to uncover the underlying mechanisms from the atomistic vibration, polymer
morphology, and phonons transport perspectives.
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In this work, we investigate the influential factors to the thermal conductivity of woven PE, woven
PPP, and woven PA via equilibrium molecular dynamics (EMD) simulation. Then, the thermo-mechanical
characteristics of PE-CNT, PE-BN, and PE-Cu are explored via non-equilibrium molecular dynamics
(NEMD) simulation. The impacts of electron–phonon coupling and electrical field on the thermal
conductivity of PE-Cu are investigated via two temperature model molecular dynamics (TTM-MD)
simulation. The underlying mechanisms are unraveled from polymer conformation, mechanical modulus,
and atomic vibration perspectives.

2. Model and Methodology

2.1. Force Field

With respect to woven polymers, the consistent valence force field (CVFF) is used to describe the
interatomic interaction of woven polymers, which can be written as [39,40]

Uall =
∑
b

Kb(r− r0)
2 +

∑
θ

Kθ(θ− θ0)
2 +

∑
∅

K∅(1 + dcos(n∅))

+
∑
i> j

4ε
[(
σ
ri j

)12
−

(
σ
ri j

)6
]
+ 1

2

N∑
i=1

N∑
j=1, j,i

qiq j
ε0ri j

(1)

where Uall denotes the total potential energy of the system; the right terms represent bond, angle,
dihedral, vdW, and Coulomb interaction, respectively. The Lorentz–Berthelot mixing rules are used
to specify the LJ parameters across different atomic species. (i.e., εi j =

√
εiε j, σi j =

(
σi + σ j

)
/2).

The cutoff distance for the nonbonding interaction is set as 10 Å. Tersoff potential is used to describe the
interatomic interaction of CNT and BN, and the embedded atom method (EAM) is used for interatomic
interaction of Cu.

Tersoff potential can accurately capture the atomic vibrational characteristics of CNT and BN,
which can be written as [41]

Ui j = fc
(
ri j

)[
fR

(
ri j

)
+ bi j fA

(
ri j

)]
(2)

where Ui j is the bond energy; fc is a smooth cutoff function; bi j is the bond-order function; fR and fA
stand for the repulsive and attractive potential, respectively. The EAM potential has been successfully
used to describe the thermal transport of copper [42], which can be written as [43]

Ui =
1
2

∑
j,i

φ
(
ri j

)
+ F

(
ρh,i

)
(3)

where Ui is the site potential energy; φ
(
ri j

)
is a pairwise potential between atom i and j separated by

the distance ri j; F
(
ρh,i

)
is the embedding potential, which depends on the electron density ρh,i at atom i.

2.2. Sample Preparation and Simulation Details

All of the simulations are carried out by employing the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) package [44]. The time step is set as 0.25 fs for all of the simulations
except that a smaller time step of 0.1 fs is chosen for simulation at 450 K. Periodic boundary conditions
are applied to all three directions to eliminate size effects. Velocity–Verlet algorithm is used to integrate
the equation of atomic motion. In order to consider the effects of electron–phonon coupling and
electrical field on the thermal conductivity of PE-Cu, the TTM-MD approach is used [42], which depicts
the coupled electronic and phononic thermal transport by two heat diffusion equations

Ce
∂Te

∂t
= ∇ · (κe∇Te) −Gep

(
Te − Tp

)
(4)
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Cp
∂Tp

∂t
= ∇ ·

(
κp∇Tp

)
+ Gep

(
Te − Tp

)
(5)

where Ce, Te, κe, Cp, Tp, κp denote volumetric specific heat, temperature, thermal conductivity for electronic
and phononic subsystem, respectively; Gep is the bulk Cu electron–phonon coupling parameter. The used
electronic parameters for Cu are adopted from Ruan’s work [42], i.e., Ce = 5.26 × 104 J m−3 K−1,
Gep = 5.5 × 1016 W m−3 K−1, and κe = 401 W m−1 K−1. In practice, a Langevin thermostat is used to
couple the electronic and phononic subsystems, which can be written as

mi
.
υi = Fi(t) − γiυi + Fr(t

)
(6)

where mi and υi are the atomic mass and velocity; Fr(t) is the random fluctuating force; γi is the friction
constant related to the electron–phonon interaction

γi = miGep/(3nikB) (7)

where ni is the atomic number density and kB is the Boltzmann constant.
At first, the initial woven polymers are put in the isothermal–isobaric (NPT) ensemble for at least

1 ns to reach an equilibrium state. The target temperature and pressure are controlled at 300 K and
1 atm. During the equilibration process, the radius of gyration, volume, density, and total energy
evolution is recorded and shown in Figure S1 (Supplementary Materials). It can be seen that the
radius of gyration, volume, density, and total energy all reach a steady value after NPT relaxation,
which implies that these three systems all reach the corresponding equilibrium states. The sizes of
the equilibrium states for woven PE, woven PPP, and woven PA are 46 × 46 × 46 Å3, 71 × 41 × 41 Å3,
and 58 × 39 × 43 Å3, respectively. Figure 1 shows the structure of three woven polymers and their
repeat unit. Then these woven polymers are equilibrated in the canonical (NVT) ensemble for 1 ns,
whose temperatures are all controlled at 300 K using Nosé–Hoover thermostats [45]. After that, they
run in the microcanonical (NVE) ensemble for 2 ns and the heat current is recorded at each step.
The microscopic expression of heat current J is

J =
∑

i

υiei +
1
2

∑
i

∑
j,i

(ri j ⊗ Fi j) · υi (8)

where ei denotes the total energy of atom i; ri j and Fi j are the relative position and interatomic force
between atom i and j. Based on the fluctuation–dissipation theorem [46] and linear response theory,
the thermal conductivity κ can be calculated by Green–Kubo formula

κ =
1

3kBVT2

∫ τc

0

〈
J(0) · J(t)

〉
dt (9)

where V is the volume of the system;
〈
J(0) · J(t)

〉
is the heat current autocorrelation function (HCACF);

τc is the upper limit of integration time, and the angular bracket denotes the time average.
In NEMD approach, the heat flux J can be calculated from the energy tally Q recorded on the heat

source and sink, which can be given by

J =
1

2S
(

∣∣∣∣∣dQin

dt

∣∣∣∣∣+ ∣∣∣∣∣dQout

dt

∣∣∣∣∣) (10)

where S is the cross-sectional area. Thermal conductivity can also be calculated according to Fourier’s law,

κ = −J/∇T (11)
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Traditionally, the temperature gradient is often calculated by linear fitting the temperature distribution
away from the thermostats. However, a recent study indicates that the nonlinear parts close to the
thermostats should not be excluded [47]. Hence the later method is also used to compare thermal
conductivity of different systems.
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The preparation process for PE-CNT, PE-BN, and PE-Cu is very similar to woven polymers.
The PE matrix consists of 16 PE chains in z direction and 8 PE chains in x, y direction, respectively.
The total number of atoms for PE is 9216, and the feature sizes for pristine Cu nanowire, CNT, and BN
nanotube are 7.23 × 7.23 × 101.21 Å3, 8.14 × 100 Å2, and 8.14 × 100 Å2. The total number of atoms for
PE-CNT, PE-BN, and PE-Cu are 10176, 10176, and 9929. The initial sizes of PE-CNT, PE-BN, and PE-Cu
are all 40× 40× 210 Å3. Figure 2 displays the pristine structure of PE-CNT, PE-BN nanotube, and PE-Cu
nanowire. The main view and lateral view of three polymer nanocomposites are shown in Figure S2
(Supplementary Materials). These three systems are firstly relaxed in the NPT ensemble for 10 ns and
the target temperature and pressure are maintained at 300 K and 1 atm. The corresponding volume
and total energy evolution are recorded and displayed in Figure S3 (Supplementary Materials). It can
be seen that the volume and total energy converge to a steady value during the NPT relaxation, which
denotes three systems, all reach their equilibrium states. Then the systems run in the NVT ensemble for
1 ns to reach equilibrium state. Later the thin layers (13 Å) at each end of the system are fixed to hinder
the heat transfer across the boundary and translational drift of the system. Then, the systems run in the
NVE ensemble. Meanwhile, the 15 Å thick layers next to the fixed layers are used as the heat source
(307 K) and heat sink (293 K) with temperature controlled by Langevin thermostats. The systems
run 8 ns to fully reach steady state. The final thermal conductivity is averaged over 4 independent
simulations with different initial conditions.
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The stress-strain (σ − ε) simulations are conducted to investigate the mechanical property of
woven PE, PE-CNT, PE-BN, and PE-Cu. The simulations about mechanical characteristics are carried
out in the NPT ensemble along z direction with 1 atm in the lateral directions. The strain rate is all set
as 0.001/ps, and stress is calculated by

σαβ =
1
V

 N∑
i=1

miυ
i
αυ

i
β +

1
2

N−1∑
i=1

N∑
j=i+1

ri j,αFi j,β

 (12)

where N stands for the number of atoms in the system; α and β denote the components of Cartesian
coordinate. The Young’s modulus can be obtained by linear fitting the stress–strain curves, which can
be given by

K =
dσ
dε

∣∣∣∣∣
ε→0

(13)

The spatial extension of PE chains can be evaluated by the radius of gyration (Rg), which is
defined as

R2
g =

1
M

∑
i

mi(ri − rcm)
2 (14)

where M, ri, rcm represent the total mass of the system, the position of atom i, and the center of the
group, respectively. The radial distribution function (RDF) can describe the atomic distribution, which
can be written as

g(r) =
n(r)

4πr2n∆r
(15)

where r is the distance of reference atoms and neighbor atoms; n(r) is the number of atoms in a
spherical shell with width ∆r. Here, the carbon atoms in PE chain are chosen as reference atoms, and ∆r
is set as 0.2 Å. The cutoff distance for RDF calculation is the same as the cutoff distance of nonbonding
interaction. The X-ray diffraction (XRD) pattern is based on a mesh of reciprocal lattice nodes defined
by the entire simulation domain using a simulated radiation of wavelength lambda [48], which can
characterize the degree of crystallinity of the system.

According to the kinetic theory, the thermal conductivity is intimately associated with phonons
characteristics, which can be written as

κ =
1

3V

∫ ωm

0
}ω

∂ fBE

∂T
υg(ω)υg(ω)τ(ω)VDOS(ω)dω (16)

where },ω,ωm, fBE are the reduced Planck’s constant, angular frequency, upper limit of integration
frequency, and Bose–Einstein distribution function; υg(ω), τ(ω), and VDOS(ω) are frequency-dependent
group velocity, phonon relaxation time, and vibrational density of states (VDOS), respectively. In the
classical limit, the volumetric heat capacity cv can be estimated by Dulong–Petit‘s law

cv =
1
V

∫ ωm

0
}ω

∂ fBE

∂T
VDOS(ω)dω ≈

3NkB

V
= 3nkB (17)

The VDOS spectra determines the frequency distribution of phonons and can be calculated by the
Fourier transforming velocity autocorrelation function (VACF), which can be given by [49]

VDOS(ω) =
∫ +∞

−∞

〈
υ(0) · υ(t)

〉〈
υ(0) · υ(0)

〉 cos(ωt)dt (18)

where 〈υ(0)·υ(t)〉
〈υ(0)·υ(0)〉

is the normalized VACF. The mode participation ratios (MPR) are calculated to
characterize the localization of phonons. The smaller MPR indicates that fewer atoms participate in
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the eigenvibration, and thus, phonons are more localized. Regardless of polarization information of
phonons, the MPR can be defined as [20]

MPR(ω) =
1
N

(∑
i VDOSi(ω)

2
)2∑

i VDOSi(ω)
4

(19)

where VDOSi(ω) is the local VDOS of ith atom. The MPR from MD simulation includes all order of
anharmonic information and can reflect phonons behaviors at room temperature. Chen and Li et al.
suggest using averaged MPR to consider the overall phonons localization effect [50], which can be
written as

MPRave(ω) =

∫ ω

0
MPR(ω) ·VDOS(ω)dω/

∫ ω

0
VDOS(ω)dω (20)

3. Results and Discussion

Through EMD simulation, we compare thermal conductivity of three woven polymers and find
that high bond and dihedral energy constants are beneficial to low-frequency phonons. Through
NEMD simulation, we investigate thermo-mechanical characteristics of woven PE, PE-CNT, PE-BN,
and PE-Cu. We find that mixing high length-diameter ratio filler plays a more effective role in
fabricating thermally conductive polymer nanocomposites especially at low filler content, while the
thermal conductivity of filler itself does not matter much. In addition, we investigate the role of
electron–phonon coupling and electrical field intensity in thermal transport characteristic of PE-Cu
nanowire via TTM-MD simulation. We find that the electrical field has a negligible effect on the
thermal conductivity of weak-polar systems and electron–phonon coupling does not play a crucial
role in the thermal conductivity of polymer–metal nanocomposites with a low volume of metal filler,
which is a contrast to thermal transport across metal-dielectric interface [51]. Thermal conductivity
decomposition analysis is conducted to unravel the underlying mechanisms. Classical Behrens and
Lewis models are modified to observe the effects of filler and polymer matrix on thermal transport
characteristic of polymer nanocomposites. The effects of electrical field and electron–phonon coupling
on strong-polar systems with a high volume of metal filler will be explored in our next work.

3.1. Thermal Conductivity Comparasion

The normalized HCACF evolution versus correlation time for woven PE, woven PPP, and woven
PA in EMD simulation is displayed in Figure 3a. The normalized HCACF decays dramatically in the
first 4 ps, then fluctuates around 0 in the later 6 ps. The attenuation of normalized HCACF results from
anharmonic phonon–phonon scatterings, and longer attenuation implies longer phonon lifetime [37].
Hence the phonon lifetime of woven PA is the longest, followed by woven PPP, and the last is woven PE.
The running thermal conductivity in Figure 3b shows that woven PA has the highest thermal conductivity
with 1.71 W m−1 K−1, followed by woven PPP, and the last is woven PE with 0.51 W m−1 K−1.

The steady state heat current and temperature gradient displayed in Figure 3c are calculated
from the energy tally and linear fitting the temperature distribution away from Langevin thermostats.
The steady state energy tally and temperature distribution are shown in Figure S4 (Supplementary
Materials). Figure 3d compares thermal conductivity of PE-CNT, PE-BN, and PE-Cu. Although the
intrinsic thermal conductivity of CNT, BN nanotube, and copper nanowire is significantly different
from each other [42,52,53], the thermal conductivity of their nanocomposites is very similar. Hence, we
conclude that the intrinsic thermal conductivity of filler itself does not play an important role in the
thermal transport characteristic of polymer nanocomposites at low volume content.
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Figure 3. Heat current and thermal conductivity from EMD and NEMD simulation. (a) Normalized
heat current autocorrelation function as a function of correlation time for woven PE, woven PPP,
and woven PA in EMD simulation; (b) running thermal conductivity as a function of correlation time for
woven PE, woven PPP, and woven PA in EMD simulation; (c) steady state heat current and temperature
gradient for PE-CNT, PE-BN, and PE-Cu in NEMD simulation; (d) thermal conductivity of PE-CNT,
PE-BN, and PE-Cu in NEMD simulation.

3.2. Phonons Spectra and Morphology Analysis for Woven Polymers

In order to understand the reasons for different thermal conductivity of three woven polymers
(See Figure 3b), phonons spectra analysis is carried out, and the results are displayed in Figure 4.
As shown in Figure 4a, the volumetric specific heat of three woven polymers calculated by
Dulong–Petit’s law is close to each other, which is not the main factor leading to different thermal
conductivity. Normalized VACF shown in Figure 4b attenuates dramatically in the first 1 ps, then
fluctuates around 0 in the later 1.5 ps. The corresponding VDOS spectra shown in Figure 4c indicates
that the low-frequency phonons in woven PA account for a large proportion, followed by woven
PPP, and the last is woven PE. The accumulated VDOS spectra shown in Figure 4d is calculated by
integrating the VDOS with respect to vibrational frequency, which reflects the same feature as VDOS
spectra. Shenogin et al. [54] found that most phonons are localized and make little contribution to
thermal conductivity of polymers, and only a few low-frequency propagating modes play a crucial role
in thermal transport of polymers. Our atomistic vibration analysis is consistent with Shenogin’s work.
Figure 4e, f compares the MPR and average MPR of three woven polymers. It can be seen that woven
PA has a clearly highest MPR in the range of 0~20 THz, which indicates that more atoms participate in
this eigenvibration and excite more low-frequency phonons. The bond and dihedral energy constant
shown in Figure 5b clearly illustrates that the woven PA has the highest bond and dihedral energy
constant, and thus has the stiffest backbone in three woven polymers. The Rg shown in Figure 5c
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illustrates that woven PA and woven PPP have larger spatial extensions than woven PE. Compared
with woven PE, the RDF shown in Figure 5d demonstrates that woven PA and woven PPP have more
distinct peaks. Hence woven PA and woven PPP have a more ordered structure and a better thermal
transport character. Moreover, the thermal conductivities of three woven polymers are all higher than
their amorphous counterpart. Therefore, weaving polymer chain with high bond and dihedral energy
constant can easily fabricate bulk polymers with improved thermal transport characteristic.Polymers 2020, 12, x FOR PEER REVIEW 11 of 22 
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Figure 4. Phonons spectra analysis for woven PE, woven PPP, and woven PA. (a) Volumetric specific
heat for woven PE, woven PPP, and woven PA; (b) normalized velocity autocorrelation function as a
function of correlation time for woven PE, woven PPP, and woven PA; (c) vibrational density of states
as a function of frequency for woven PE, woven PPP, and woven PA; (d) accumulated vibrational
density of states as a function of frequency for woven PE, woven PPP, and woven PA; (e) mode
participation ratio as a function of frequency for woven PE, woven PPP, and woven PA; (f) average
mode participation ratio as a function of frequency for woven PE, woven PPP, and woven PA.
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Figure 5. Thermal conductivity comparison and morphology analysis for three woven polymers.
(a) Thermal conductivity for woven PE, woven PPP, and woven PA; (b) bond and dihedral energy
constant for woven PE, woven PPP, and woven PA; (c) radius of gyration for woven PE, woven PPP,
and woven PA; (d) the radial distribution function for woven PE, woven PPP, and woven PA.

3.3. Phonons Spectra and Morphology Analysis for PE Nanocomposites

The atomic velocities of PE matrix, CNT, BN nanotube, and Cu nanowire are extracted each step in
the NVE ensemble for 2.5 ps. By applying Fourier transformation to the normalized VACF, the VDOS
spectra is calculated and shown in Figure 6a–c. Zhang et al. recommends using phonons overlap
energy to quantify the atomic vibrational energy transport ability [55]

Eoverlap =

∫ ν

0

hν

exp
(

hν
kBT

)
− 1
· g0(ν)dν (21)

where hν is the energy for per phonon; 1

exp
(

hν
kBT

)
−1

is the Bose–Einstein distribution function and g0(ν)

is the overlap of VDOS. Here the phonons overlap energy is used to quantify the interfacial thermal
transport between PE matrix and CNT, BN, and Cu. As can be seen from Figure 6a, b, there is no VDOS
overlap between PE and CNT, BN in the frequency range from 50 to 100 THz. Thus only low- and
middle-frequency phonons can transport across the interface between PE and CNT, BN. For PE and
Cu, the frequency range of VDOS overlap is from 0 to 20 THz, which denotes that only low-frequency
phonons have the ability transport across the interface between PE and Cu. Although the overlap
frequency range for PE-Cu is narrower than PE-CNT and PE-BN, the proportion of low-frequency
phonons in PE-Cu is larger than PE-CNT and PE-BN. The phonons overlap energy shown in Figure 6d
indicates that PE-Cu and PE-BN have better interfacial thermal transport ability. However, one thing
should be noticed that the order of phonons overlap energy is at the 10−4 eV, which is so weak that the
superior thermal transport ability of filler cannot make a difference to the overall thermal conductivity of
PE nanocomposites. Therefore, we argue that the intrinsic thermal conductivity of filler plays a negligible
role in improving the overall thermal conductivity of polymer nanocomposites at low filler content.
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(c) phonons spectra as a function of frequency for PE-Cu; (d) phonons overlap energy for PE-CNT,
PE-BN, and PE-Cu.

The XRD pattern shown in Figure 7 illustrates the crystallinity of PE-CNT, PE-BN, and PE-Cu. It can
be seen that PE-Cu has the highest peaks at a small diffraction angle, which implies that PE-Cu has a
higher crystallinity than PE-CNT and PE-BN. The similar XRD peak for PE-CNT and PE-BN implies that
the crystallinity of PE-CNT and PE-BN is close. Figure 7b depicts the Rg of PE-CNT, PE-BN, and PE-Cu.
Although the crystallinity of PE-CNT and PE-BN is lower than PE-Cu, their Rg is larger than PE-Cu.
Hence the overall thermal transport performance of PE-CNT, PE-BN, and PE-Cu is similar.Polymers 2020, 12, x FOR PEER REVIEW 14 of 22 
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3.4. Temperature-Dependent Thermal Conductivity of PE-CNT

Through NEMD simulation, the thermal conductivity of PE-CNT is calculated at different
temperature, and the results are shown in Figure 8a. It can be seen that the thermal conductivity of
PE-CNT is clearly deviated from classical T−1 law, while T−0.76 has a better fit.
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Figure 8. Effects of temperature on thermal transport characteristic of PE-CNT. (a) Thermal conductivity
of PE-CNT as a function of temperature; (b) the radial distribution function of PE-CNT versus
temperature; (c) vibrational density of states for PE-CNT versus temperature; (d) mode participation
ratio of PE-CNT versus temperature.

Figure 8b depicts the temperature-dependent RDF, which shows that the ordered degree of
PE-CNT decreases slightly with the increase of temperature. The VDOS spectra shown in Figure 8c
illustrates that more high-frequency phonons are excited at high temperature and thus induce more
phonon–phonon scatterings, which is detrimental to thermal transport of PE-CNT. The MPR spectra
shown in Figure 8d illustrate that the MPR slightly increases with the increase of temperature.

3.5. Electron–Phonon Coupling and Elecrtical Field

Ruan et al. [42,56] found that whether including electron–phonon coupling in MD simulation has
a significant influence on interfacial thermal conductance between metal–dielectric interface. However,
the effects of electron–phonon coupling on the thermal conductivity of metal–polymer nanocomposites
remain to be explored. Here the thermal conductivity of PE-Cu is calculated via TTM-MD simulation,
and the results are compared with general NEMD simulation. Furthermore, an electrical field with
0.5 V Å−1 along temperature gradient direction is applied to PE-Cu, and the thermal conductivity is
also calculated. The effects of nonlinear parts in the temperature distribution close to thermostats on the
thermal conductivity of PE-Cu are investigated, and the results are illustrated in Figure 9a. In contrast
to interfacial thermal transport, the influences of electron–phonon coupling on thermal conductivity
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of PE-Cu can be negligible, which is attributed to the low volume content of Cu. By decomposing
total heat current of PE nanocomposites into PE matrix and filler, the individual contribution to total
thermal conductivity from PE and filler is revealed. As shown in Figure 9b, the thermal conductivity
contribution from PE matrix can account for 90%. Hence the electron–phonon coupling in Cu does
not influence thermal conductivity of PE-Cu. Similarly, the intrinsic thermal conductivities of CNT,
BN, and Cu are trivial to overall thermal conductivity of their polymer nanocomposites. In addition,
the nonlinear temperature distribution close to the thermostats can influence the absolute value of
thermal conductivity but produce negligible influences on final conclusion. The contribution of
electron–phonon coupling to thermal conductivity of polymer–metal nanocomposites at relatively
high filler content will be investigated in our next work.
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Figure 9. (a) Influences of electron–phonon coupling, electrical field, and thermostats on the thermal
conductivity of PE-Cu; (b) thermal conductivity decomposition for PE-CNT, PE-BN, and PE-Cu.

3.6. Mechanical Modulus Comparison

In real application, the mechanical modulus of polymer nanocomposites is an essential parameter.
Hence the stress-strain simulation is performed in the NPT ensemble along z direction. Figure 10 shows
the normal stress versus normal strain for PE-CNT, PE-BN, PE-Cu, and woven PE. By linear fitting
the stress–strain curves, the Young’s modulus of these systems can be obtained, and the results are
shown in Figure 11. It can be seen that the mechanical modulus of PE-CNT and PE-BN are extremely
close, while the mechanical modulus of CNT [57] and BN nanotube [58] is different. It is the similar
morphology of CNT and BN nanotube that results in this phenomenon. In contrast, the mechanical
modulus of PE-Cu is lower than that of PE-CNT and PE-BN. Hence the intrinsic morphology of filler is
more important than the intrinsic mechanical modulus for fabricating stiff polymer nanocomposites.

3.7. Theoretical Model Prediction

Mechanical modulus is directly related to sound speed of material. For low-frequency phonons
close to Γ point, the phonon group velocity can be approximated by sound speed [59]. Classical
theoretical models often concentrate on thermal conductivity of filler and polymer matrix but pay little
attention to mechanical modulus of systems. Here we propose to add a term η related to mechanical
modulus to classical Behrens and Lewis models [60]

η =
KPE−fillers

KPE
+ ζ (22)

κB−C
PE−fillers = ηκPE[(p/η+ 1) + (p/η− 1) f ]/[(p/η+ 1) − (p/η− 1) f ] (23)

κL−C
PE−fillers = ηκPE(1 + A f (p/η− 1)/(p/η+ A))/(1−A fχ) (24)

where KPE−fillers, KPE are Young’s modulus of polymer nanocomposite and PE matrix; ζ is a fitted
constant to consider remanent factors except mechanical modulus; f is the volume content of fillers
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and p = κ f illers/κPE; B = (p− 1)/(p + A), χ = 1 + (1−ψm) f /ψ2
m, A and ψm are empirical constants.

Through NEMD simulation, the thermal conductivity of PE matrix, CNT, and BN nanotube are
0.9 W m−1 K−1, 195.85 W m−1 K−1, and 105.32 W m−1 K−1, respectively. Figure 12 compares the thermal
conductivity of PE-CNT and PE-BN from NEMD simulation and theoretical models. It can be seen
that classical theoretical models underestimate thermal conductivity of PE-CNT and PE-BN due to the
unique structure and morphology. In contrast, the thermal conductivity predicted by the corrected
Berens and Lewis models is consistent with NEMD simulation.
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4. Conclusions

To summarize, we propose constructing thermally conductive polymers and polymer matrix
via weaving polymer chain. Through EMD simulation, we find that polymer chain with high bond
and dihedral energy constant is more suitable to construct polymers with high thermal conductivity.
Phonons spectra analysis indicates that low-frequency phonons in polymer chain with high bond and
dihedral energy constant account for a larger proportion. Radius of gyration and radial distribution
function comparison indicate that weaving method is beneficial to forming ordered structure and thus
reduces phonon scatterings. Using woven PE as a matrix, PE-CNT, PE-BN, and PE-Cu are constructed
via mixing CNT, BN nanotube, and Cu nanowire. Through NEMD simulation, thermal conductivity
of these polymer nanocomposites is calculated. Thermal conductivity analysis demonstrates the
contribution to total thermal conductivity from PE matrix can be up to 90%. Atomistic vibration
and phonons overlap energy analysis confirm that only low-frequency phonons can transport across
the interface and make a contribution to overall thermal transport characteristic. XRD and radius
of gyration analysis demonstrate that it is the morphology of filler, instead of the intrinsic thermal
conductivity, that plays a crucial role in tailoring thermal conductivity of polymer nanocomposites
at low filler content. Besides, we find that the thermal conductivity of PE-CNT variation with
temperature is clearly deviated from classical T−1 law. Radial distribution function and phonons
spectra analysis illustrate that the ordered degree of PE-CNT decreases with the increase of temperature
and more high-frequency phonons are excited, which induces more phonon scatterings. By conducting
stress–strain simulation, we find that PE-CNT and PE-BN have nearly similar mechanical modulus due
to the similar cylindrical structure of CNT and BN nanotube. Mixing filler with high length–diameter
ratio can construct polymer nanocomposites with higher mechanical modulus. Classical Behrens and
Lewis models are modified by considering mechanical modulus change to predict thermal conductivity
of PE-CNT and PE-BN due to the unique nanostructure. Furthermore, through TTM-MD simulation,
we find that electron–phonon coupling and electrical field have negligible influences on thermal
conductivity of PE-Cu system due to the extremely low volume content of Cu nanowire, which is a
sharp contrast to thermal transport across the metal–dielectric interface. The effects of electron–phonon
coupling at high volume content will be investigated in our next work.

Supplementary Materials: The following is available online at http://www.mdpi.com/2073-4360/12/6/1255/s1.
Figure S1: Typical physical property evolution of woven PE, woven PPP, and woven PA in the isothermal−isobaric
(NPT) ensemble. Figure S2: The pristine structure of PE-CNT, PE-BN, and PE-Cu. Figure S3: Typical physical
property evolution of PE-CNT, PE-BN, and PE-Cu in the isothermal−isobaric (NPT) ensemble. Figure S4: Steady
state energy tally and temperature distribution in non-equilibrium molecular dynamics simulation for PE-CNT,
PE-BN, and PE-Cu.
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