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Abstract: Conjugated polymers are promising materials for various cutting-edge technologies,
especially for organic conducting materials and in the energy field. In this work, we have
synthesized a new conjugated polymer and investigated the effect of distance between bond layers,
side-chain functional groups (H, Br, OH, OCH3 and OC2H5) on structural characteristics, phase
transition temperature (T), and electrical structure of C13H8OS using Density Functional Theory
(DFT). The structural characteristics were determined by the shape, network constant (a, b and c),
bond length (C–C, C–H, C–O, C–S, C–Br and O–H), phase transition temperatures, and the total
energy (Etot) on a base cell. Our finding shows that the increase of layer thickness (h) of C13H8OS–H
has a negligible effect on the transition temperature, while the energy bandgap (Eg) increases from
1.646 eV to 1.675 eV. The calculation of bond length with different side chain groups was carried
out for which C13H8OS–H has C–H = 1.09 Å; C13H8OS–Br has C–Br = 1.93 Å; C13H8OS–OH has
C–O = 1.36 Å, O–H = 0.78 Å; C13H8OS–OCH3 has C–O = 1.44 Å, O–H =1.10 Å; C13H8OS–OC2H5 has
C–O = 1.45 Å, C–C = 1.51Å, C–H = 1.10 Å. The transition temperature (T) for C13H8OS–H was 500 K <

T < 562 K; C13H8OS–Br was 442 K < T < 512 K; C13H8OS–OH was 487 K < T < 543 K; C13H8OS–OCH3

was 492 K < T < 558 K; and C13H8OS–OC2H5 was 492 K < T < 572 K. The energy bandgap (Eg) of Br
is of Eg = 1.621 eV, the doping of side chain groups H, OH, OCH3, and OC2H5, leads to an increase of
Eg from 1.621 eV to 1.646, 1.697, 1.920, and 2.04 eV, respectively.
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1. Introduction

In recent years, conjugated polymers have been being widely studied and used in science
and technology as well as in semiconductor devices [1,2], sensors [3–9], batteries [10,11], super-
capacitors [10,12], electromagnetic shielding materials [13,14], and corrosion-resistant materials [15–20].
The properties of these materials may be greatly affected by doping/introduction of various substituents
groups due to a modification of the electronic density of the molecules. Polypyrrole (PPr) is one of
the most popular electrically-conducting polymers [21]. Some experimental studies on the electrical
density showed that a pyrrole cation contains four pyrrole units. Bredas et al. using the Hartree Fock
method and the STO-3G-based kit suggested that pyrrole did not have Na dopant [22]. With the
theoretical method, the use of quantum calculations by the ab initio methods at a simple level cannot
accurately describe the electronic structure of polypyrrole.

Recently, only a few studies have used the Density Functional Theory (DFT) method to study the
electronic structure [23–27]. The electronic structure results show that the influence of the forbidden
bandwidth on the impurity concentration and Eg can be adjusted by doping with different atoms [28–31].
Thereby, if the polymer is doped with an appropriate concentration, it can switch from being a semiconductor
to a metal or back to an insulating material [32–35]. This has attracted particular attention from researchers
to determine the transition between conductors and insulators such as transistors, light-emitting diodes,
and solar cells [36]. For this purpose, it is necessary to control the bandgap doping. Some recent studies
have shown promising results based on calculations through the original principles [37–44].

Rittmeyer et.al successfully used DFT to study the derived C13H8OS in which an H atom was
replaced by functional groups, viz. CH3, NH2, NO2, and Cl. The results showed a significant influence
of the substitutional elements on the bandgap. The absorption spectrum showed that the bandgap and
optical properties are closely related to the shape of the thiophene molecule [45,46]. Most recently,
our research group empirically studied C13H8OS–X monomers (X = H, Br, OH, OCH3 and OC2H5)
that were synthesized from thiophene-3-carbaldehyde [47]. Their structures were confirmed by
FTIR, 1H-NMR, and 13C-NMR spectroscopy. The crystal and molecular structures of C13H8OS–H,
C13H8OS–Br, C13H8OS–OH, C13H8OS–OCH3, and C13H8OS–OC2H5 were characterized by X-ray
diffraction. We showed that the chemical polymerization of monomers C13H8OS–FeCl3 in chloroform
had been performed, as recently reported [48–51]. The obtained results show that the bonding lengths
between atoms 1 and 2 are: C–C with Br (1.33 Å), OH (1.33 Å), OCH3 (1.33 Å), and OC2H5 (1.32 Å);
as well as C–O with Br (1.22 Å), OH (1.23 Å), OCH3 (1.23 Å), and OC2H5 (1.22 Å) [47]. However,
the effect of doping structure on the structural shape, the transition temperature and the electronic
structure of the monomer C13H8OS–X (X are: H, Br, OH, OCH3, OC2H5) is still unknown. The main
goal of this work is to answer to this fundamental and important question by/using DFT method,
which have been successfully used for various materials.

2. Method of Calculation

Scheme 1 presents the synthetic procedure of the poly (C13H8OS–X) where X are H, Br, OH, OCH3

and OC2H5. To study the structural characteristics, transition temperatures and electronic structure
of poly[3-(3-phenyl prop-1-ene-3-one-1-yl)thiophene], DFT [52–55] with the DMol3 module [54]
of the copyrighted Material Studio software, a commercial software package installed at the
Center for a Computational Science of the Hanoi University of Education (Hanoi, Vietnam) was
used. This is a modeling and simulation with the GGA package [56] for which the parameters
of the PW91 exchange-correlation function [57,58] and the K-point grid sampling of the diagram
Monkhorst-Pack [59] were set into a tridimensional cell unit with a defined dimensions a, b, and c as
follows: poly(C13H8OS–H) (a = 20 Å, b = 13 Å, c = 6 Å), C13H8OS–Br (a = 26 Å, b = 13 Å, c = 6 Å),
poly(C13H8OS–OH) (a = 26 Å, b = 13 Å, c = 6 Å), C13H8OS–OCH3 (a = 29 Å, b = 13 Å, c = 6 Å) and
C13H8OS–OC2H5 (a = 32 Å, b = 13 Å, c = 6 Å). The electrons interact with each other through the Density
Function Semi-core Pseudo-Potential [60] and thus the electrons are considered in a homogeneous
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state. The energy was set at 1 × 10−6 eV, the displacement during the geometry optimization is at level
1 × 10−5 Ha/integer, and 5 × 10−3 Å.Polymers 2020, 12, x FOR PEER REVIEW 3 of 12 
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Scheme 1. The synthetic procedure of poly(C13H8OS–X), X is H, Br, OH, CH3, C2H5.

The DFT methods [61,62] have been established based on following approaches: Schrodinger
model [63,64], Hartree-Fock model [65,66], Thomas-Fermi model [63], Hohenberg theorem [63,67,68]
and traditional Kohn-Sham Theory [63,67,69]. To verify the accuracy of results, other methods such as
Linear-Muffin-Tin-Orbital (LMTO) [70] method, Korringa-Kohn-Rostocker (KKR) methods [71] and
General gradient approximation method (GGA) [72] has been reported.

3. Results and Discussion

3.1. Effect of Distance between Layers

Initially, all C13H8OS–X, X = H, Br, OH, CH3 and C2H5 samples were run optimally so that
all samples were returned to equilibrium. The results obtained for poly(C13H8OS–H) are shown in
Figure 1.
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Figure 1. System energy (a), electronic density (b), electronic state (c) of poly(C13H8OS–H) with a
different number of steps.

Figure 1 shows that with C13H8OS–H, when increasing the number of steps, the total energy
of the system (Etot) will decrease from Etot = −1947.7 eV to Etot = −1948.4 eV (Figure 1a). There is a
change in electronic density. The maximum value at the equilibrium position is of 232.5 eV (Figure 1b)
and the electronic state decreases (Figure 1c) with the number of steps. The results show also that if
the number of steps increases, the material will change from the initial state to the equilibrium state.
The structural and electronic characteristics of materials in equilibrium state as a function of step
number is conducted with a thickness of layers (h), h = 6 Å. The obtained results are presented in
Figure 2 and summarized in Table 1.
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Figure 2 shows that the shape of C13H8OS–X after stable running NVE has C13H8OS–H poly-
structures and the atoms C, H, S, O are arranged tightly in a stable triclinic 3D structure. At the same
time, the distance between atoms with the change of values by cell size: a = 24 Å, b = 13 Å, c = 6 Å,
α = β = γ = 90o the distance between atoms with the first round C–C varies from 1.39 Å to 1.41 Å, C–H:
1.09 Å. The interval between round one and round two: C–C: varies from 1.36 Å to 1.50 Å, C–O: 1.25 Å,
C–H: 1.09 Å. The obtained results are completely consistent with the structural determination [47] for
which C–C = 1.33 Å, C–O =1.23 Å. The second round: C–C = 1.36–1.42 Å, C–S = 1.72 Å, C–H: 1.09 Å,
C–H: 1.09 Å. The bond angle of round one: C–C–C: changes from 120.17◦ to 120.8◦, HCC: 120.02◦,
C–C–C connection interval: 119.21◦, C–C–O: 119.7◦ to 121.08◦, C–C–H: 119.26◦ to 121.16◦. The bond
angle of round two: C–C–C changes from 120.17◦ to 120.80◦ and H–C–C: 120.18◦, C–C–C: 93.22◦, C–S–C:
114.17◦, S–C–C: 108.82◦, C–C–H: 122.61◦, S–C–H: 119.25◦ (Figure 2a) and electronic density at different
levels of the conduction band (Table 1, Figure 2d). The transition temperature of poly(C13H8OS–H)
materials is found to be 504 K < T < 558 K (Figure 2b). Here Tc = 504 K is called the crystalline
temperature (the temperature of transferring materials from liquid state to crystalline state), melting
point (Tm = 558 K) is the phase transition temperature (the temperature of transferring materials from
the crystalline state to the liquid state), the width forbidden region is of Eg = 1.646 eV (Figure 2c),
the electronic density in equilibrium has the maximum value of 235 eV (Figure 2d). In particular,
the electronic structure features are shown in Figure 2c with a strip structure in the left table and the
density of electrons in the right table poly(C13H8OS–H) is a semiconductor material with a bandgap
of Eg = 1.646 eV. These results are consistent with the electronic densities of the states on the right of
Table 1.
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Table 1. The electron density for materials poly(C13H8OS–H) at different energies in the valence bands.

Poly(C13H8OS–H) −20 −15 −10 −5 −2.5 0 2.5 5

Electron density 2.334 6.625 9.423 29.462 8.925 4.011 2.629 4.151

The results show that at the E = −5 eV the electron density is 29.462%, which shows that in the
valence band, the electronic density reaches the maximum value, which proves that poly(C13H8OS–H)
is a semiconductor material. To study the effect of thickness between poly atomic layers, the results are
shown in Table 2.

Table 2. Electron density for materials poly(C13H8OS–H) with energies and thickness of layers different
in the valence.

d(Å) 6 9 12 15

T(K) 504 < T < 558 504 < T < 564 504 < T < 564 504 < T < 564
Eg(eV) 1.646 1.675 1.675 1.675

Table 2 shows that, with h = 6 Å, the temperature range of poly(C13H8OS–H) materials is 504 K <

T < 558 K, where Tc = 504 K, Tm = 558 K, and the energy band gap Eg is of 1.646 eV. When the thickness
(h) of the atomic layer increases from h = 6 Å to h = 9 Å, 12 Å and 15 Å, the temperature range of
poly(C13H8OS–H) has a negligible change between 504 and 564 K and Eg increases from Eg = 1.646 eV
to Eg = 1.675 eV. The bandgap has a constant value when h > 9 Å (Table 2) which indicates that the
smaller the atomic distance, the smaller the bandgap.

The increasing distance of the atomic layer leads to Eg increases and reaches to a maximum value
at h = 9 Å. For more details, the total density of the states of the poly C13H8OS–H material with
increasing thickness of the layers at the density of the states at different energies in the valence band
and the conduction band is conducted. The obtained results are shown in Figure 3.

A maximum value of electronic density of poly(C13H8OS–H) material as a function of atomic
layer distance is observed at creating energy band of E = −5 eV, assigned to the electronic density as
follows: with h = 6 Å is 29.462%, h = 9 Å, 12 Å, and 15 Å with the electronic density in the valence
band has constant value of 29.463%. It turns out that the highest electron density level leads to the
least flexible conductivity because the electrons are closely linked to the network node. Increasing the
thickness of the atomic layers of poly(C13H8OS–H) leads to an increase of the density of electrons in
the valence band, after that this effect is less pronounced with a slight increase from 4.011% to 4.018%.
Electron density not significantly changed in the conduction band at h = 6 Å, in which electron density
in the conduction band of poly(C13H8OS–H) increases at E = 2.5 eV (Figure 3), leading to a decrease of
the mobility of electrons in the valence band. This shows an important effect of bond layers, on the
structural characteristics, the transition temperature, and electronic properties of poly(C13H8OS–H).
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3.2. Effect of Impurities/Heterogeneity

When C13H8OS–X is doped/modified by different atoms or functional groups: H, Br, OH, OCH3,

and OC2H5, the different energies of the molecule, the structure, electronic structure as a function of
temperature were calculated and then plotted in Figure 4.
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(c), poly(C13H8OS–OCH3) (d), and poly(C13H8OS–OC2H5) (e), Eg of poly with different impurities (f).

The results show that the material shape is poly(C13H8OS–H) (Figure 4a), with the bandgap
of Eg = 1.646 eV (Figure 4f). For poly(C13H8OS–X) material doped/modified with X (X is H, Br,
OH, OCH3, OC2H5), the shapes of poly(C13H8OS–Br), poly(C13H8OS–OH), poly(C13H8OS–OCH3),
and poly(C13H8OS–OC2H5) have changed significantly: temperature range of phase transition of
poly(C13H8OS–H) = 504 K < T < 558 K; poly(C13H8OS–Br) = 450 K < T < 509 K (Figure 4b);
poly(C13H8OS–OH) = 488 K < T < 548 K (Figure 5c); poly(C13H8OS–OCH3) = 493 K < T < 560 K
(Figure 4d); poly(C13H8OS–OC2H5) = 491 K < T < 572 K (Figure 4e), and the bandgap Eg decreases
from Eg = 1.646 eV to Eg = 1.621 eV with poly(C13H8OS–Br) and Eg increases with poly(C13H8OS–OH)
from Eg = 1.646 eV to Eg = 1.697 eV; Eg increased from 1.646 eV to 1.920 eV with poly(C13H8OS–OCH3);
Eg increased from 1.646 eV to 2.078 eV with poly(C13H8OS–OCH3) (Figure 4f). This shows that the
doping poly(C13H8OS–H) with Br (electrophilic group) leads to a decrease of both T and Eg while
doping this molecule with nucleophilic groups such as OH, OCH3, and OC2H5 leads to an increment
of T and Eg.

The effect of the nature of the substituents/substitution groups on the molecular shape and the
electron density of the energy bands are then investigated and the obtained results are shown in
Figure 5.
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The results show that molecular shape exhibits box-shaped with a precise cell size as follows:
C13H8OS–H: a = 24 Å, b = 133 Å and c = 6 Å; C13H8OS–Br: a = 26 Å, b = 133 Å, c = 6 Å; poly(C13H8OS–OH):
a = 26 Å, b = 133 Å, c = 6 Å; C13H8OS–OCH3: a = 29 Å, b = 133 Å, c = 6 Å; poly(C13H8OS–OC2H5):
a = 32 Å, b = 133 Å, c = 6 Å. The bond angles of different poly(C13H8OS–H) derivatives are also
calculated: poly(C13H8OS–H) with C–C–H = 120.02◦; poly(C13H8OS–Br) with C–C–Br = 119.13◦; poly
(C13H8OS–OH) with C–O–H = 109.38◦; poly(C13H8OS–OCH3) with C–C–O = 115.62◦, O–C–H = 110.56◦,
H–C–H = 109.66◦; poly(C13H8OS–OC2H5) with C–O–C = 118.28◦, O–C–H = 108.79◦, H–C–H = 108.79◦,
C–C–H = 109.22◦. The electronic density of poly(C13H8OS–H) with energy bands of E = −20, −15, −10,
−5, −2.5, 0, 2.5, 5 and 7.5 eV exhibit electric densities equal to 1.728%, 8.574%, 11.993%, 24.814%, 11.434%,
3.945%, 2.022%, 4.182%, and 0%, respectively (Figure 5f). If doping the functional side groups Br, OH,
CH3, or C2H5 on C13H8OS, the electronic density will be greatly changed. For example, for energy in
the range of 20 eV, the electron density increases from 1.728% to 2.55%, 4.033%, 5.667%, or 7.325%; for
the energy band E =−15 eV, the electron density decreased from 8.57% to 6.02%, 5.91%, 4.83%, or 2.359%;
for the E = −10 eV energy range, the electron density decreases from 11.99% to 8.01%. The obtained
results show that the distance and the angle between atoms in the aromatic rings did not change
significantly for C13H8OS–H. However, the distance between the atoms of impurities/heterogeneity
varies greatly for poly(C13H8OS–H) doped with C–H (1.09 Å—Figure 5a); poly (C13H8OS–Br) doped
with C–Br = 1.93 Å (Figure 5b); poly(C13H8OS–OH) doped with C–O = 1.36 Å, O–H = 0.78 Å (Figure 5c);
poly(C13H8OS–OCH3) with C–O =1.44 Å, O–H = 1.10 Å (Figure 5d); poly(C13H8OS–OC2H5) with
C–O = 1.45 Å, C–C is 1.51 Å, C–H, = 1.10 Å (Figure 5e).

Besides, in the valence region, the electron density accounts for the largest proportion, reaching
the extreme value in the energy band E = −5 eV. These results confirmed this is still a semiconductor
material and only increasing the conductivity when doping the group Br function leads to a decrease
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in the Eg bandgap, a decrease in conductivity when doping/introducing the OH, CH3, or the C2H5

functional side groups leads to an increase in the Eg bandgap (Figure 5f). These results are shown in
the first Brillouin region (the level of 0) corresponding to the density of electrons increased from 3.945%
to 3.949%, 4.509%, 7.903% and 13.967% and this leads to an increment of the electron mobility of the
C13H8OS substance with Br doping but decreases with H, OH, OCH3, and OC2H5 functional side
groups. This confirms the influence of impurities/heterogeneity on the lattice structure and electronic
structure of C13H8OS material. In other words, when increasing the distance between atomic layers,
the structural shape, the distance between the atoms, the total energy of the system and the bandgap
are almost constant, especially the phase transition temperature and the conductivity of electrons
decreases. When doping/fine-tuning with different groups and atoms such as Br, OH, OCH3, or OC2H5,
the distance between atoms, the total energy of the system, and the bandgap show a great change
(increase the conductivity when Br is doped, reducing the conductivity when it is doped with OH,
OCH3. or OC2H5).

4. Conclusions

In summary, we report a successful investigation of factors affecting the structural characteristics,
the transition temperature, electronic properties of Poly C13H8OS–X, where X are H, Br, OH, OCH3,
or OC2H5 by means of DFT using the GGA-PW91 package. The results showed that the interval
between round one and round two: C–C: varies from 1.36 Å to 1.50 Å, C–O: 1.25 Å, C–H: 1.09 Å.
The obtained results are completely consistent with the structural determination for which C–C = 1.33 Å,
C–O =1.23 Å. The second round: C–C= 1.36–1.42 Å, C–S = 1.72 Å, C–H: 1.09 Å, C–H: 1.09 Å [47].
When increasing the thickness (h) of the atomic layer from h = 6 Å to h = 9, 12 and 15 Å, the transition
temperature range of poly(C13H8OS–H) shows a negligible change value from 504 K < T < 558 K to
504 K < T < 564 K and Eg increases from Eg = 1.646 eV to Eg = 1.675 eV.

The nature of the substituents (H, Br, OH, CH3, C2H5) in C13H8OS has a significant effect on the
molecular shape and bond length. These values are successfully calculated and reported as follows:
C13H8OS–H with C–H = 1.09 Å; C13H8OS–Br with C–Br = 1.93 Å; C13H8OS–OH with C–O = 1.36 Å,
O–H = 0.78 Å; C13H8OS–OCH3 with C–O = 1.44 Å, O–H = 1.10 Å; C13H8OS–OC2H5 with C–O =1.45 Å,
C–C = 1.51 Å, C–H = 1.10 Å. The transition temperatures (T) can also be calculated: C13H8OS–H: 504 K
< T < 558 K; C13H8OS–Br: 450 K < T < 509 K; C13H8OS–OH: 488 K < T < 548 K; C13H8OS–OCH3: 493 K
< T < 560 K; and C13H8OS–OC2H5: 491 K < T < 572 K.

When doping the C13H8OS with Br the bandgap Eg decreases, while the doping/modification with
H, OH, OCH3, or OC2H5 leads to an increase of the electrical conductivity in C13H8OS. Our findings
show that all derived C13H8OS/derivatives still display semiconductor behavior unless/except the case
of Br. The precise values of the molecular structure, the chemical bonds, and bond angles provide
useful information for future investigations of these new conjugated molecules, especially for potential
applications in the energy field and electrical conducting materials based on conjugated polymers.
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